首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
????T/P(TOPEX/POSEIDON)????????????????????????????????????T/P?????????????????????????????????????????????????????????У??????С????????????????????????????????????????????????????Ч??????T/P?????Ч???????0.3m??????T/P????????Jason??1?????????????????????????????????????????????????????????????????????????????????????????????????????á?T/P??Jason??1????????????????Ч?????????????????????????0.21 m??0.05 m??  相似文献   

2.
We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs), Simulating WAves Nearshore (SWAN) wave model, and the Model Coupling Toolkit (MCT). The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process. Experimental results in an idealized setting show that under the steady state, the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 m/s. The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW, taking 14% of the direct wind energy rate input. Considering the Stokes drift effects, the total mechanical energy rate input was increased by approximately 14%, which highlights the importance of CSF in modulating the upper ocean circulation. The actual run conducted in Taiwan Adjacent Sea (TAS) shows that: 1) CSF-based wave-current coupling has an impact on ocean surface currents, which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy’s vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree, 3.75% on average.  相似文献   

3.
Wind plays an important role in hydrodynamic processes such as the expansion of Changjiang (Yangtze) River Diluted Water (CDW), and shelf circulation in the Changjiang estuary. Thus, it is essential to include wind in the numerical simulation of these phenomena. Synthetic aperture radar (SAR) with high resolution and wide spatial coverage is valuable for measuring spatially inhomogeneous ocean surface wind fields. We have collected 87 ERS-2 SAR images with wind-induced streaks that cover the Cbangjiang coastal area, to verify and improve the validity of wind direction retrieval using the 2D fast Fourier transform method. We then used these wind directions as inputs to derive SAR wind speeds using the C-band model. To demonstrate the applicability of the algorithms, we validated the SAR-retrieved wind fields using QuikSCAT measurements and the atmospheric Weather Research Forecasting model. In general, we found good agreement between the datasets, indicating the reliability and applicability of SAR- retrieved algorithms under different atmospheric conditions. We investigated the main error sources of this process, and conducted sensitivity analyses to estimate the wind speed errors caused by the effect of speckle, uncertainties in wind direction, and inaccuracies in the normalized radar cross section. Finally, we used the SAR-retrieved wind fields to simulate the salinity distribution off the Changjiang estuary. The findings of this study will be valuable for wind resource assessment and the development of future numerical ocean models based on SAR images.  相似文献   

4.
Ocean waves alter the roughness of sea surface, and sea spray droplets redistribute the momentum flux at the air-sea interface. Hence, both wave state and sea spray influence sea surface drag coefficient. Based on the new sea spray generation function which depends on sea surface wave, a wave-dependent sea spray stress is obtained. According to the relationship between sea spray stress and the total wind stress on the sea surface, a new formula of drag coefficient at high wind speed is acquired. With the analysis of the new drag coefficient, it is shown that the drag coefficient reduces at high wind speed, indicating that the sea spray droplets can limit the increase of drag coefficient. However, the value of high wind speed corresponding to the initial reduced drag coefficient is not fixed, and it depends on the wave state, which means the influence of wave cannot be ignored. Comparisons between the theoretical and measured sea surface drag coefficients in field and laboratory show that under different wave ages, the theoretical result of drag coefficient could include the measured data, and it means that the new drag coefficient can be used properly from low to high wind speeds under any wave state condition.  相似文献   

5.
A method for sea surface wind field retrieval from SAR image mode data   总被引:2,自引:0,他引:2  
To retrieve wind field from SAR images, the development for surface wind field retrieval from SAR images based on the improvement of new inversion model is present. Geophysical Model Functions(GMFs) have been widely applied for wind field retrieval from SAR images. Among them CMOD4 has a good performance under low and moderate wind conditions. Although CMOD5 is developed recently with a more fundamental basis, it has ambiguity of wind speed and a shape gradient of normalized radar cross section under low wind speed condition. This study proposes a method of wind field retrieval from SAR image by combining CMOD5 and CMOD4 Five VV-polarisation RADARSAT2 SAR images are implemented for validation and the retrieval results by a combination method(CMOD5 and CMOD4) together with CMOD4 GMF are compared with QuikSCAT wind data. The root-mean-square error(RMSE) of wind speed is 0.75 m s-1 with correlation coefficient 0.84 using the combination method and the RMSE of wind speed is 1.01 m s-1 with correlation coefficient 0.72 using CMOD4 GMF alone for those cases. The proposed method can be applied to SAR image for avoiding the internal defect in CMOD5 under low wind speed condition.  相似文献   

6.
In this study, we measured the droplet size distribution(DSD) and visibility of sea fog using a fog droplet spectrometer and visibility meter, respectively, during the July 23-August 3 and August 22-September 13 periods of the 2016 Chinese National Arctic Research Expedition. We calculated the visibility using the Mie theory and the DSD data and then compared the calculated with the observed visibility. The comparison shows that the deviations in the calculated visibility caused by DSD data sampling errors cannot be ignored. During navigation, wind and ship speeds tended to push or pull the sampled air and cause turbulence pulsation, which influenced the sampling of the fog droplet spectrometer. This influence is weak when the liquid water content(LWC) is high but becomes stronger as the LWC decreases. Taking the sailing speed and heading into consideration, the wind speed component parallel and perpendicular to the air inlet of the fog droplet spectrometer exhibit different laws in the deviation. By performing a fitting analysis of the calculated and observed visibilities under different wind speeds and wind directions, here, we present two sets of correction coefficients for the two wind-speed components and a method for correcting the calculated visibility. This correction method shows excellent results.  相似文献   

7.
The seasonal response of surface wind speed to sea surface temperature(SST)change in the Northern Hemisphere was investigated using 10 years(2002-2011)high-resolution satellite observations and reanalysis data.The results showed that correlation between surface wind speed perturbations and SST perturbations exhibits remarkable seasonal variation,with more positive correlation is stronger in the cold seasons than in the warm seasons.This seasonality in a positive correlation between SST and surface wind speed is attributable primarily to seasonal changes of oceanic and atmospheric background conditions in frontal regions.The mean SST gradient and the prevailing surface winds are strong in winter and weak in summer.Additionally,the eddy-induced response of surface wind speed is stronger in winter than in summer,although the locations and numbers of mesoscale eddies do not show obvious seasonal features.The response of surface wind speed is apparently due to stability and mixing within the marine atmospheric boundary layer(MABL),modulated by SST perturbations.In the cold seasons,the stronger positive(negative)SST perturbations are easier to increase(decrease)the MABL height and trigger(suppress)momentum vertical mixing,contributing to the positive correlation between SST and surface wind speed.In comparison,SST perturbations are relatively weak in the warm seasons,resulting in a weak response of surface wind speed to SST changes.This result holds for each individual region with energetic eddy activity in the Northern Hemisphere.  相似文献   

8.
The 21st century Maritime Silk Road(MSR) proposed by China strongly promotes the maritime industry. In this paper, we use wind and ocean wave datasets from 1979 to 2014 to analyze the spatial and temporal distributions of the wind speed, significant wave height(SWH), mean wave direction(MWD), and mean wave period(MWP) in the MSR. The analysis results indicate that the Luzon Strait and Gulf of Aden have the most obvious seasonal variations and that the central Indian Ocean is relatively stable. We analyzed the distributions of the maximum wind speed and SWH in the MSR over this 36-year period. The results show that the distribution of the monthly average frequency for SWH exceeds 4 m(huge waves) and that of the corresponding wind speed exceeds 13.9 ms~(-1)(high wind speed). The occurrence frequencies of huge waves and high winds in regions east of the Gulf of Aden are as high as 56% and 80%, respectively. We also assessed the wave and wind energies in different seasons. Based on our analyses, we propose a risk factor(RF) for determining navigation safety levels, based on the wind speed and SWH. We determine the spatial and temporal RF distributions for different seasons and analyze the corresponding impact on four major sea routes. Finally, we determine the spatial distribution of tropical cyclones from 2000 to 2015 and analyze the corresponding impact on the four sea routes. The analysis of the dynamic characteristics of the MSR provides references for ship navigation as well as ocean engineering.  相似文献   

9.
Callaghan and White(2009) put forward the automated whitecap extraction(AWE) technique to determine the whitecap coverage(W). An improved AWE was used to analyze images collected in the South China Sea during 2012 and 2013 and in western Pacific during 2015 to determine W. The influences of meteorological and oceanographic factors on whitecap coverage were investigated in this study. It is found that W increases with wind speed. Scale factor and exponent of parameterization for W(U10) vary greatly in different models. Overall, there is a larger scatter of W at low wind speed than at high wind speed. W decreases with the increasing of wave age. Compared with wind speed, the scatter of W is smaller with wave age, which means the impact of wave age on the whitecap coverage is more robust under various environmental conditions. There is no significant dependence on SST and whitecap coverage seems to weakly decrease with SST. W decreases with the atmospheric stability. Relationship between W and wind speed change when swells are dominant. Swell can suppress wave breaking and decrease W. The effect is independent of the deflection angle between wind wave and swell.  相似文献   

10.
海面风场是海洋学的基本参量,获取海面风场对了解海洋的物理过程以及海洋与大气之间的相互作用至关重要。宽阔的海域面积及复杂的海面状况通常使南海海面上的风场信息很难被及时获取。ENVISAT ASAR是一种全天候全天时监测海面的微波雷达传感器,可实时获取海面风场数据。本文基于已有ASAR数据对南海海面风场进行反演实验,首先将结合高斯曲线拟合的FFT风向反演方法应用于南海风向反演,并参考Cross-Calibrated Multi-Platform (CCMP)风场数据去除180o方向模糊获得海面风向。然后,将高斯曲线拟合-FFT风向与传统的峰值-FFT风向进行对比,最后将准确率较高的高斯曲线拟合-FFT风向分别输入CMOD4模型和CMOD5模型获得海面风速大小。实验结果与CCMP参考数据的比较结果表明,在风条纹不明显的情况下,利用结合高斯曲线的FFT风向反演方法和CMOD4模型风速反演方法可有效地进行南海海面风场反演。该成果对利用SAR数据实时获取南海大面积海面风场信息,尤其是观测点缺乏海域的风场信息,具有重要的指导意义。  相似文献   

11.
The altimeter normalized radar cross section(NRCS) has been used to retrieve the sea surface wind speed for decades, and more than a dozen of wind speed retrieval algorithms have been proposed. Despite the continuing efforts to improve the wind speed measurements, a bias dependence on wave state persists in all wind algorithms. On the basis of recent evidence that short waves are essentially modulated by local winds and much less affected by wave state, we proposed a physics-based approach to retrieve the wind speed from the dual-frequency difference in terms of the mean square slope of short waves. A collocated dataset of coincident altimeter/buoy measurements were used to develop and validate the approach. Validation against buoy measurements indicates that the approach is almost unbiased and has an overall root mean square error of 1.24 m s-1, which is 5.3% lower than the single-parameter algorithm in operational use(Witter and Chelton, 1991) and 2.4% lower than another dual-frequency approach(Chen et al., 2002). Furthermore, the results indicate that the new approach significantly improves the wave-dependent bias compared to the single-parameter algorithm. The capacity of altimeter to retrieve sea surface wind speed appears to be limited for the case of winds below 3 m s-1. The validity of the approach at high winds needs to be further examined in the future study.  相似文献   

12.
In this study, the statistical characterization of sea conditions in the East China Sea(ECS) is investigated by analyzing a significant wave height and wind speed data at a 6-hour interval for 30 years(1980–2009), which was simulated and computed using the WAVEWATCH Ⅲ(WW3) model. The monthly variations of these parameters showed that the significant wave height and wind speed have minimum values of 0.73 m and 5.15 ms~(-1) and 1.73 m and 8.24 ms~(-1) in the month of May and December, respectively. The annual, seasonal, and monthly mean sea state characterizations showed that the slight sea generally prevailed in the ECS and had nearly the highest occurrence in all seasons and months. Additionally, the moderate sea prevailed in the winter months of December and January, while the smooth(wavelets) sea prevailed in May. Furthermore, the spatial variation of sea states showed that the calm and smooth sea had the largest occurrences in the northern ECS. The slight sea occurred mostly(above 30%) in parts of the ECS and the surrounding locations, while higher occurrences of the rough and very rough seas were distributed in waters between the southwest ECS and the northeast South China Sea(SCS). The occurrences of the phenomenal sea conditions are insignificant and are distributed in the northwest Pacific and its upper region, which includes the Southern Kyushu-Palau Ridge and Ryukyu Trench.  相似文献   

13.
This paper presents a study on drag coefficients under typhoon wind forcing based on observations and numerical experiments. The friction velocity and wind speed are measured at a marine observation platform in the South China Sea. Three typhoons: SOULIK(2013), TRAMI(2013) and FITOW(2013) are observed at a buoy station in the northeast sea area of Pingtan Island. A new parameterization is formulated for the wind drag coefficient as a function of wind speed. It is found that the drag coefficient(Cd) increases linearly with the slope of 0.083′10~(-3) for wind speed less than 24 m s~(-1). To investigate the drag coefficient under higher wind conditions, three numerical experiments are implemented for these three typhoons using SWAN wave model. The wind input data are objective reanalysis datasets, which are assimilated with many sources and provided every six hours with the resolution of 0.125?×0.125?. The numerical simulation results show a good agreement with wave observation data under typhoon wind forcing. The results indicate that the drag coefficient levels off with the linear slope of 0.012′10~(-3) for higher wind speeds(less than 34 m s~(-1)) and the new parameterization improvese the simulation accuracy compared with the Wu(1982) default used in SWAN.  相似文献   

14.
The vortex-induced vibration of two identical rigidly mounted risers in a parallel arrangement was studied using Ansys-CFX and model tests.The vortex shedding and force were recorded to determine the effect of spacing on the two-degree-of-freedom oscillation of the risers.CFX was used to study the single riser and two parallel risers in 2–8D spacing considering the coupling effect.Because of the limited width of water channel,only three different riser spacings,2D,3D,and 4D,were tested to validate the characteristics of the two parallel risers by comparing to the numerical simulation.The results indicate that the lift force changes significantly with the increase in spacing,and in the case of 3D spacing,the lift force of the two parallel risers reaches the maximum.The vortex shedding of the risers in 3D spacing shows that a variable velocity field with the same frequency as the vortex shedding is generated in the overlapped area,thus equalizing the period of drag force to that of lift force.It can be concluded that the interaction between the two parallel risers is significant when the risers are brought to a small distance between them because the trajectory of riser changes from oval to curve 8 as the spacing is increased.The phase difference of lift force between the two risers is also different as the spacing changes.  相似文献   

15.
The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote monitoring of geophysical parameters such as sea surface temperature,wind speed,water vapor,and liquid cloud water content. However,rain alters the properties of atmospheric scattering and absorption,which contaminates the brightness temperatures measured by the microwave radiometer. Therefore,it is difficult to retrieve AMSR2-derived sea surface wind speeds under rainfall conditions. Based on microwave radiative transfer theory,and using AMSR2 L1 brightness temperature data obtained in August 2012 and NCEP reanalysis data,we studied the sensitivity of AMSR2 brightness temperatures to rain and wind speed,from which a channel combination of brightness temperature was established that is insensitive to rainfall,but sensitive to wind speed. Using brightness temperatures obtained with the proposed channel combination as input parameters,in conjunction with HRD wind field data,and adopting multiple linear regression and BP neural network methods,we established an algorithm for hurricane wind speed retrieval under rainfall conditions. The results showed that the standard deviation and relative error of retrievals,obtained using the multiple linear regression algorithm,were 3.1 m/s and 13%,respectively. However,the standard deviation and relative error of retrievals obtained using the BP neural network algorithm were better(2.1 m/s and 8%,respectively). Thus,the results of this paper preliminarily verified the feasibility of using microwave radiometers to extract sea surface wind speeds under rainfall conditions.  相似文献   

16.
Synthetic aperture radar(SAR)is a suitable tool to obtain reliable wind retrievals with high spatial resolution.The geophysical model function(GMF),which is widely employed for wind speed retrieval from SAR data,describes the relationship between the SAR normalized radar cross-section(NRCS)at the copolarization channel(vertical-vertical and horizontal-horizontal)and a wind vector.SAR-measured NRCS at cross-polarization channels(horizontal-vertical and vertical-horizontal)correlates with wind speed.In this study,a semi-empirical algorithm is presented to retrieve wind speed from the noisy Chinese Gaofen-3(GF-3)SAR data with noise-equivalent sigma zero correction using an empirical function.GF-3 SAR can acquire data in a quad-polarization strip mode,which includes cross-polarization channels.The semi-empirical algorithm is tuned using acquisitions collocated with winds from the European Center for Medium-Range Weather Forecasts.In particular,the proposed algorithm includes the dependences of wind speed and incidence angle on cross-polarized NRCS.The accuracy of SAR-derived wind speed is around 2.10ms−1 root mean square error,which is validated against measurements from the Advanced Scatterometer onboard the Metop-A/B and the buoys from the National Data Buoy Center of the National Oceanic and Atmospheric Administration.The results obtained by the proposed algorithm considering the incidence angle in a GMF are relatively more accurate than those achieved by other algorithms.This work provides an alternative method to generate operational wind products for GF-3 SAR without relying on ancillary data for wind direction.  相似文献   

17.
We compared data of sea surface wind from the European Centre for Medium-Range Weather Forecasts Interim Reanalysis(ERA-Interim) with that collected from eight buoys deployed in the Yellow and East China seas.The buoy data covered a period from 2010 to 2011,during which the longest time series without missing data extended for 329 days.Results show that the ERA-Interim wind data agree well with the buoy data.The regression coefficients between the ERA-Interim and observed wind speed and direction are greater than 0.7 and 0.79,respectively.However,the ERA-Interim wind data overestimate wind speed at most of the buoy stations,for which the largest bias is 1.8 m/s.Moreover,it is found from scatter plots of wind direction that about 13%of the ERA-Interim wind data can be classified as bad for wind speeds below6 m/s.Overall,the ERA-Interim data forecast both the wind speed and direction well,although they are not very representative of our observations,especially those where the wind speed is below 6 m/s.  相似文献   

18.
随着经济的快速发展,中国大部分地区空气污染状况日趋严重。空气污染物浓度插值对于进一步分析污染物时空分布情况,估计不同地区人群的暴露风险,制定防范措施具有重要作用。然而,现有空间插值方法由于没有充分考虑风向和风速因素对于污染物扩散的影响,故直接应用于空气污染物浓度插值,会对插值结果造成不利的影响。因此,本文提出一种顾及风向和风速的空气污染物浓度插值方法(Direction-Velocity IDW,DVIDW)。该方法首先根据离散气象站点处的风向和风速数据建立风场表面,然后利用风场数据计算空气污染物的扩散距离,根据扩散距离计算风场中待求点与采样点间的最短路径距离,最后由最短路径距离替代欧式距离进行反距离加权插值。本文分别采用2组实际空气污染物浓度数据,对DVIDW方法和其他常用的空间插值方法进行实验对比分析,验证了本文方法的可行性和优越性。  相似文献   

19.
The multi-scale characteristics of wave significant height (Hss) in eastern China seas were revealed by multi-scale wavelet analysis. In order to understand the relation between wave and wind, the TOPEX/Poseidon measurements of Hs and wind speed were analyzed. The result showed that Hs and wind speed change in multi-scale at one-, two-month, half-, one- and two-year cycles. But in a larger time scale, the variations in Hs and wind speed are different. Hs has a five-year cycle similar to the cycle of ENSO variation, while the wind speed has no such cycle. In the time domain, the correlation between Hs and ENSO is unclear.  相似文献   

20.
Considering the dependent relationship among wave height, wind speed, and current velocity, we construct novel trivariate joint probability distributions via Archimedean copula functions. Total 30-year data of wave height, wind speed, and current velocity in the Bohai Sea are hindcast and sampled for case study. Four kinds of distributions, namely, Gumbel distribution, lognormal distribution, Weibull distribution, and Pearson Type III distribution, are candidate models for marginal distributions of wave height, wind speed, and current velocity. The Pearson Type III distribution is selected as the optimal model. Bivariate and trivariate probability distributions of these environmental conditions are established based on four bivariate and trivariate Archimedean copulas, namely, Clayton, Frank, Gumbel-Hougaard, and Ali-Mikhail-Haq copulas. These joint probability models can maximize marginal information and the dependence among the three variables. The design return values of these three variables can be obtained by three methods: univariate probability, conditional probability, and joint probability. The joint return periods of different load combinations are estimated by the proposed models. Platform responses (including base shear, overturning moment, and deck displacement) are further calculated. For the same return period, the design values of wave height, wind speed, and current velocity obtained by the conditional and joint probability models are much smaller than those by univariate probability. Considering the dependence among variables, the multivariate probability distributions provide close design parameters to actual sea state for ocean platform design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号