首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Cadmium and copper in the dissolved and particulate phase and in zooplankton were determined in the Bahía Blanca estuary during six surveys from March to December 2005. Temperature, pH, salinity, dissolved oxygen, suspended particulate matter, particulate organic matter and chlorophyll-a were also considered. Dissolved Cd was below the detection limit (0.2 μg L−1) for almost the entire study period whereas Cu concentrations (0.5–2.4 μg L−1) indicated a continuous dissolved Cu input. Particulate Cd concentrations ranged from below the detection limit (<0.01) to 28.6 μg g−1 d.w. while particulate Cu ranged from below the detection limit (<0.04) to 53.5 μg g−1 d.w. Cd in mesozooplankton ranged from below the detection limit (<0.01) to 37.4 μg g−1 d.w. Some of the Cd levels were higher than those reported for other aquatic ecosystems. Cu in the mesozooplankton ranged from 1.3 to 89.3 μg g−1 d.w., values which were within the reported values or higher than other studies. The log of the partition coefficients (log (Kd)) of Cd was 0.04, while log (Kd) for Cu ranged from −0.39 to 2.79. These values were lower than both those calculated for other estuaries and the typical coefficients for marine environments. The log of the bioconcentration factor (log BCF) of Cd was 1.78, indicating that Cd concentration was higher in the zooplankton than in the dissolved phase. Log BCF of Cu ranged from 1.15 to 3. The logs of the biomagnification factors (log BMF) of Cd were low, with a range between −3.45 and 2.21 and those for Cu ranged from −0.1 to 3.35. Positive values indicate biomagnification while negative values indicate biodiminution. In general, no significant dissolved Cd concentration appeared to be present in the Bahía Blanca estuary and Cu values did not indicate a critical environmental status. The particulate phase seemed to be the major carrier for Cd and Cu and TPCu values were within the normal values for an anthropogenically stressed estuary but not for a strongly polluted system. This fraction was the most important metal source for the mesozooplankton. Moreover, the highest metal concentrations were in the mesozooplankton since most of the bioconcentration and biomagnification factors were positive, especially for Cu.  相似文献   

2.
We present a method for measuring 15N–NH4+ in marine, estuarine and fresh waters. The advantage of this method is that it is broadly applicable to all types of water and it allows measurements in samples with lower ammonium concentrations than has previously been possible. The procedure is a modification of the ammonia diffusion method and uses large sample volumes (often 4 l) to obtain sufficient N for isotope ratio mass spectrometric analysis. Large volume samples have not previously been used with the diffusion procedure because isotopic fractionation occurs due to incomplete recovery of ammonium. However, the method we present accounts for this fractionation and allows precise correction of measured δ15N values.  相似文献   

3.
Down-core sediment pigment concentrations from four Northern European estuaries were measured using high-performance liquid chromatography (HPLC) to investigate phytoplankton community structure and preservation conditions over the last ca. 100 years where all sites have experienced different levels of eutrophication. Phytoplankton pigments have been shown to be useful biomarkers for phytoplankton community structure and abundance due to their taxonomic specificity. The pigment concentrations and sediment pigment inventory showed large variation between the four sites. Concentrations ranged from more than 6000 nmol/g OC to less than 100 nmol/g OC and the inventory integrated over the top 10 cm from more than 300 nmol/cm2 to less than 30 nmol/cm2 for total identified pigments. Good pigment preservation in Mariager Fjord (Denmark) reflected the almost permanently anoxic conditions. Pigments in Laajalahti (Finland) showed peak concentrations around the time of highest nitrogen loading events known from historical and modelled records over the past 100 years. In contrast, poor down-core preservation of pigments (especially carotenoids) was observed in the Ems-Dollard (The Netherlands) and Himmerfjärden (Sweden) estuaries. The Ems-Dollard site is an intertidal mudflat that experiences daily exposure to light and air, which enhances pigment degradation. In Himmerfjärden, resuspension is an important process affecting both the sedimentation rate and degradation properties. The different preservation conditions at the four sites were supported by the differences in two degradation indicators; the ratio of pheopigment-a to chlorophyll-a and total carotenoids to total pigments. Class-specific carotenoid pigments represented the dominant algal groups reported from each site, however, no distinct down-core changes in the pigment composition were observed at any of the four sites. This indicated that changes in plankton community structure on the group level have been limited over this time period or masked by low preservation of pigments.  相似文献   

4.
Seismic surveys are frequently a matter of concern regarding their potentially negative impacts on marine mammals. In the Southern Ocean, which provides a critical habitat for several endangered cetacean species, seismic research activities are undertaken at a circumpolar scale. In order to minimize impacts of these surveys, pre-cruise planning requires detailed, spatio-temporally resolved knowledge on the likelihood of encountering these species in the survey area. In this publication we present predictive habitat modelling as a potential tool to support decisions for survey planning. We associated opportunistic sightings (2005–2011) of humpback (Megaptera novaeangliae, N=93) and Antarctic minke whales (Balaenoptera bonaerensis, N=139) with a range of static and dynamic environmental variables. A maximum entropy algorithm (Maxent) was used to develop habitat models and to calculate daily basinwide/circumpolar prediction maps to evaluate how species-specific habitat conditions evolved throughout the spring and summer months. For both species, prediction maps revealed considerable changes in habitat suitability throughout the season. Suitable humpback whale habitat occurred predominantly in ice-free areas, expanding southwards with the retreating sea ice edge, whereas suitable Antarctic minke whale habitat was consistently predicted within sea ice covered areas. Daily, large-scale prediction maps provide a valuable tool to design layout and timing of seismic surveys as they allow the identification and consideration of potential spatio-temporal hotspots to minimize potential impacts of seismic surveys on Antarctic cetacean species.  相似文献   

5.
The Marine Living Resources Act (MLRA), which was enacted in 1998, is the primary legislation addressing South Africa's marine fisheries. In June 2012, another important instrument, the Policy for the Small Scale Fisheries Sector (SSFP) in South Africa, was adopted to rectify the exclusion of many small-scale fishers from access to resources, that had resulted from weaknesses in the MLRA. This paper assesses the MLRA, aspects of the SSFP and selected other subsidiary policies and regulations in relation to current best-practices, especially the extent to which they support an ecosystem approach to fisheries (EAF). The study concludes that there are some serious gaps and shortcomings in the MLRA that should be addressed. These include, among others, the need to: (i) revise the MLRA so as to incorporate requirements for open and transparent management and governance; (ii) entrench the principles of co-management, emphasised in the SSFP, for all fisheries; and (iii) include a legal requirement for detailed management plans for all fisheries. Despite these shortcomings, there has been considerable progress in implementation of EAF, at least in the country's bigger fisheries. However, this should not be seen as a justification for avoiding or delaying a revision of the MLRA to bring it into line with modern best-practices as encompassed by EAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号