首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The consistent equations for random force-free magnetic fields are obtained from the fluctuation and average equations of both momentum and induction ones based on the statistical approach. Some features of average force-free fields are discussed. This idea may be applied to explain many configurations of magnetic field in the astronomical environment.  相似文献   

2.
The determination of the average path-length of photons emerging from a finite planeparallel atmosphere with molecular scattering is discussed. We examine the effects of polarisation on the average path-length of the emergent radiation by comparing the results with those obtained for the atmosphere where the scattering obeys the scalar Rayleigh function. Only the axial radiation field is considered for both cases.To solve this problem we have used the integro-differential equations of Chandrasekhar for the diffuse scattering and transmission functions (or matrices). By differentiation of these equations with respect to the albedo of single scattering we obtain new equations the solution of which gives us the derivatives of the intensities of the emergent radiation at the boundaries.As in the case of scalar transfer the principles of invariance by Chandrasekhar may be used to find an adding scheme to obtain both the scattering and transmission matrices and their derivatives with respect to the albedo of single scattering. These derivatives are crucial in determining the average path length.The numerical experiments have shown that the impact of the polarisation on the average pathlength of the emergent radiation is the largest in the atmospheres with optical thickness less than, or equal to, three, reaching 6.9% in the reflected radiation.  相似文献   

3.
An appropriate generalization of the Jacobi equation of motion for the polar moment of inertia I is considered in order to study the N-body problem with variable masses. Two coupled ordinary differential equations governing the evolution of I and the total energy E are obtained. A regularization scheme for this system of differential equations is provided. We compute some illustrative numerical examples, and discuss an average method for obtaining approximate analytical solutions to this pair of equations. For a particular law of mass loss we also obtain exact analytical solutions. The application of these ideas to other kind of perturbed gravitational N-body systems involving drag forces or a different type of mass variation is also considered. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
In this paper we consider a locally-rotationally-symmetric (LRS) Bianchi type-V perfect fluid model with variable cosmological ‘constant’ representing the energy density of vacuum. The field equations are solved with and without heat conduction by using a variation law for the mean Hubble parameter, which is related to the average scale factor of the metric and yields a constant value of the deceleration parameter. A constant value of deceleration parameter generates power-law form of average scale factor which is used to find the exact solutions with and without heat conduction with decaying vacuum density. The solutions presented here satisfy all the necessary conditions for the physically acceptability. The thermodynamical relations in decaying vacuum fluid model are also studied in detail.  相似文献   

5.
In the present paper we study some new aspects of the Bianchi type-V space time. The Electric and Magnetic parts of Weyl tensors are calculated in terms of tilted congruence and discussed the purely magnetic Weyl tensor. Einstein field equations for purely magnetic space time are obtained and solution of such field equations called purely magnetic solution. To get deterministic solutions of the field equations we consider a new law of variation of average scale factor which yields time dependent deceleration parameter. Certain physical and geometrical properties of the model are also discussed.  相似文献   

6.
Principles of the theory of turbulence in relativistic cosmology are developed. By averaging Einstein's equations over stochastic fields a self-consistent system of equations is obtained which describes statistically: (1) the influence of the turbulence on the ‘basic state of the Universe (the background) on which the turbulence develops; (2) the behaviour of the turbulence on the background ‘distorted’ by it. By means of a qualitative study of exact equations in the region of a strong turbulence at an early stage of cosmological expansion conditions of the absence of singularity are found and the possibility of stationary solutions in the homogeneous, isotropic, on the average, Universe (the cosmological constantA=0) is shown. The rate of cosmological expansion increases if the energy density of the turbulence is positive, and decreases if it is negative. The latter alternative takes place if the absolute value of the energy density of excitations, which will change into potential motions in the future, exceeds the energy density of the remaining part of the turbulence.  相似文献   

7.
Stability equations for the low frequency ordinary mode propagating perpendicular to a homogeneous magnetic field in the presence of a heat flux in a collisionless plasma are derived by working within an appropriate velocity reference frame. Solutions indicate the ordinary mode is stable under average solar wind conditions at 1 AU.  相似文献   

8.
Four operating neutrino observatories confirm the long standing discrepancy between detected and predicted solar neutrino flux. Among these four experiments the Homestake experiment is taking data for almost 25 years. The reliability of the radiochemical method for detecting solar neutrinos has been tested recently by the GALLEX experiment. All efforts to solve the solar neutrino problem by improving solar, nuclear, and neutrino physics have failed so far. This may also mean that the average solar neutrino flux extracted from the four experiments may not be the proper quantity to explain the production of neutrinos in the deep interior of the Sun. Occasionally it has been emphasized that the solar neutrino flux may vary over time. In this paper we do address relations among specific neutrino fluxes produced in the proton-proton chain that are imposed by the coupled systems of nonlinear partial differential equations of solar structure and kinetic equations by focusing our attention on a statistical interpretation of selected kinetic equations of PPII/PPIII branch reactions of the protonproton chain. A fresh look at the statistical implications for the outcome of kinetic equations for nuclear reactions may shed light on recent claims that the7 Be-neutrino flux of the Sun is suppressed in comparison to the pp- and8B neutrino fluxes and may hint at that the solar neutrino flux is indeed varying over time as shown by the Homestake experiment.  相似文献   

9.
The Bianchi type-V cosmological model with viscous fluid and creation particle in Brans-Dicke theory has been considered. The present paper deals with Bianchi type-V cosmological model with bulk viscosity and particle creation described by full causal thermodynamics in Brans-Dicke theory. We have discussed two types of solutions of the average scale factor for a Bianchi type-V model by using a variation law of Hubble’s parameter, which yields a constant value of the deceleration parameter. The exact solutions to the corresponding field equations are obtained in quadrature form. The solutions to the Einstein field equations are obtained for power law and exponential form. The cosmological parameters have been discussed in detail.  相似文献   

10.
The solutions of Einstein’s equations with cosmological constant (Λ) in the presence of a creation field have been obtained for general class of anisotropic cosmological models. We have obtained the cosmological solutions for two different scenarios of average scale factor. In first case, we have discussed three different types of physically viable cosmological solutions of average scale factor for the general class of Bianchi cosmological models by using a special law for deceleration parameter which is linear in time with a negative slope. In second case, we have discussed another three different forms of cosmological solutions by using the average scale factor in three different scenarios like Intermediate scenario, Logamediate scenario and Emergent scenario. All physical parameters are calculated and discussed in each physical viable cosmological model. We examine the nature of creation field and cosmological constant is dominated the early Universe but they do not survive for long time and finally tends to zero for large cosmic time t. We have also discussed the all energy conditions in each cases.  相似文献   

11.
The equations of motion governing the evolution of a collisionless gravitating system of particles in an expanding universe can be cast in a form which is almost independent of the cosmological density parameter, Ω, and the cosmological constant, Λ. The new equations are expressed in terms of a time variable τ=ln D , where D is the linear rate of growth of density fluctuations. The dependence on the density parameter is proportional to ε=Ω−0.2−1 times the difference between the peculiar velocity (with respect to τ) of particles and the gravity field (minus the gradient of the potential); or, before shell-crossing, times the sum of the density contrast and the velocity divergence. In a one-dimensional collapse or expansion, the equations are fully independent of Ω and Λ before shell crossing. In the general case, the effect of this weak Ω dependence is to enhance the rate of evolution of density perturbations in dense regions. In a flat universe with Λ7ne;0, this enhancement is less pronounced than in an open universe with Λ=0 and the same Ω. Using the spherical collapse model, we find that the increase of the rms density fluctuations in a low-Ω universe relative to that in a flat universe with the same linear normalization is ∼0.01ε(Ω)〈δ3〉, where δ is the density field in the flat universe. The equations predict that the smooth average velocity field scales like Ω0.6, while the local velocity dispersion (rms value) scales, approximately, like Ω0.5. High-resolution N -body simulations confirm these results and show that density fields, when smoothed on scales slightly larger than clusters, are insensitive to the cosmological model. Haloes in an open model simulation are more concentrated than haloes of the same M /Ω in a flat model simulation.  相似文献   

12.
Exploring the global dynamics of a planetary system involves computing integrations for an entire subset of its parameter space. This becomes time-consuming in presence of a planet close to the central star, and in practice this planet will be very often omitted. We derive for this problem an averaged Hamiltonian and the associated equations of motion that allow us to include the average interaction of the fast planet. We demonstrate the application of these equations in the case of the μ Arae system where the ratio of the two fastest periods exceeds 30. In this case, the effect of the inner planet is limited because the planet’s mass is one order of magnitude below the other planetary masses. When the inner planet is massive, considering its averaged interaction with the rest of the system becomes even more crucial.  相似文献   

13.
Cosmos 72 (1965-53B) was launched on 16 April 1965 into a near-circular orbit with an average height of 570 km and inclination 56°. Over the years, the orbit has contracted slowly under the influence of air drag, and On 27 June 1972 passed through exact 15th-order resonance, when successive equator crossings are 24° apart in longitude and the ground track repeats after 15 rev. The orbit has been determined at seven epochs between April 1972 and February 1973, using the RAE orbit refinement program PROP, with 544 optical and radar observations: the average orbital accuracy is about 50 m in height and 0.0008° in inclination.For Cosmos 72 the change in inclination at 15th-order resonance, due to perturbations by 15th-order harmonics in the geopotential, is greater than for any satellite previously analysed— nearly 0.07°—and analysis of the change, using the seven PROP orbits and 45 U.S. Navy orbits, yields equations accurate to 4 per cent for the geopotential coefficients of order 15 and odd degree (15, 17, 19 …). A similar analysis of the variation in eccentricity gives less accurate equations for coefficients of order 15 and even degree (16, 18 …). The variations in right ascension of the node and argument of perigee have also been analysed.  相似文献   

14.
Abstract— Olivine in the angritic meteorite Lewis Cliff (LEW) 86010 contains abundant exsolution lamellae of kirschsteinite. Compositional gradients adjacent to the interface in both host and lamellae were formed by diffusion of chemical components into and out of the lamellae during cooling and growth. We have compared these gradients with compositional profiles calculated from diffusion and heat flow equations to estimate the cooling rate and burial depth of the sample. The resulting values for cooling rate and burial depth depend on which values are used for the diffusion rate of Ca in olivine, and how measured diffusivities are extrapolated to the lower temperatures at which the lamellae grew. If the highest diffusion coefficients are used, the cooling rates obtained from seven different lamellae range from 30 to 52 °C/year, with an average of 42 °C/year, and burial depths (assuming an overburden with a thermal diffusivity typical of solid rock) range from 14 to 17 m, with an average of 15 m. If the lowest reasonable diffusion coefficients are used, the cooling rates range from 1.4 to 2.2 °C/year, with an average of 1.7 °C/year, and the depths range from 68 to 83 m, with an average of 75 m. For the highest Ca diffusivities, details of the compositional profiles near the olivine/kirschsteinite interface suggest that continuous cooling was greatly accelerated at a temperature near 600–700 °C. The simplest physical explanation for such an acceleration is excavation of the sample from its original burial depth by an impact event. If Ca diffusivities are lower, a two-stage cooling history is not required.  相似文献   

15.
The determination of the photon path-length distribution function (PLDF) in a semi-infinite plane-parallel homogeneous atmosphere is discussed while the atmosphere scatters radiation according to the 2 × 2 Rayleigh-Cabannes phase matrix. The Piessens-Huysmans method of numerically inverting the Laplace transform which proved to be successful for the non-polarized radiation works in this special case as well. To employ this method we had to define the complex H-matrix and to find a fast method to determine its numerical values. For determining the average path-lengths and the dispersion we set up a system of integral equations the solution of which gave us the H-matrix and its first two derivatives with respect to the albedo of single scattering.The influence of different parameters characterizing the interaction of the polarized radiation with the atmosphere on the PLDF and the average path-length is studied in detail and a sample of average path-lengths is given in Table I.  相似文献   

16.
The determination of the average path-length of photons in a finite isotropically scattering plane-parallel homogeneous atmosphere is discussed. To solve this problem we have used the kernel approximation method which easily allows us to find the derivatives of the intensity with respect to optical depth, optical thickness and albedo of single scattering.In order to check the results we have used another approach by exploiting the set of integrodifferential equations of Chandrasekhar for theX- andY-functions. This approach allows us to find the average path length only at the boundaries of the atmosphere but on the other hand it gives also the dispersion of the path-length distribution function, thus generating the input parameters for determining the approximate path-length distribution function. It occurred that the set so obtained is stable and the results are highly accurate.As a by-product we obtain the first two derivatives of theX- andY-functions with respect to the albedo of single scattering and optical thickness, and the mixed derivative.  相似文献   

17.
G.P. Horedt 《Icarus》1985,64(3):448-470
We derive first-order differential equations for the late stages of planetary accretion (planetesimal mass >1013 g). The effect of gravitational encounters, energy exchange, collisions, and gas drag has been included. Two simple models are discussed, namely, (i) when all planetesimals have the same mass and (ii) when there is one large planetesimal and numerous small planetesmals. Gravitational two-body encounters are modeled according to Chandrasekhar's classical theory from stellar dynamics. It is shown that the velocity increase due to mutual encounters can be modeled according to the simple theory of random flights. We find analytical equations for the average velocity decrease due to collisions. Gas drag, if present, is modeled in averaged form up to the first order in the eccentricities and inclinations of the planetesimals. Characteristic time scales for the formation of the terrestrial planets are found for the most favorable models to be of order 108 year. The calculated mass of rock and ice of the giant planets is too low as compared to the observed one. This difficulty of our model could be overcome by assuming a several times larger surface density, an enlarged accretion cross section, and gas accretion during the final stages of accretion of the solid cores of the giant planets. Analytical and numerical results are presebted, the evolutionary tracks showing satisfactory agreement with observations for some models.  相似文献   

18.
By the new vector method in a nonlinear setting, a physical libration of the Moon is studied. Using the decomposition method on small parameters we derive the closed system of nine differential equations with terms of the first and second order of smallness. The conclusion is drawn that in the nonlinear case a connection between the librations in a longitude and latitude, though feeble, nevertheless exists; therefore, the physical libration already is impossible to subdivide into independent from each other forms of oscillations, as usually can be done. In the linear approach, ten characteristic frequencies and two special invariants of the problem are found. It is proved that, taking into account nonlinear terms, the invariants are periodic functions of time. Therefore, the stationary solution with zero frequency, formally supposing in the linear theory a resonance, in the nonlinear approach gains only small (proportional to e) periodic oscillations. Near to zero frequency of a resonance there is no, and solution of the nonlinear equations of physical libration is stable. The given nonlinear solution slightly modifies the previously unknown conical precession of the Moon’s spin axis. The character of nonlinear solutions near the basic forcing frequency Ω1, where in the linear approach there are beats, is carefully studied. The average method on fast variables is obtained by the linear system of differential equations with almost periodic coefficients, which describe the evolution of these coefficients in a nonlinear problem. From this follows that the nonlinear components only slightly modify the specified beats; the interior period T ≈ 16.53 days appears 411 times less than the exterior one T ≈ 18.61 Julian years. In particular, with such a period the angle between ecliptic plane and Moon orbit plane also varies. Resonances, on which other researches earlier insisted, are not discovered. As a whole, the nonlinear analysis essentially improves and supplements a linear picture of the physical libration.  相似文献   

19.
The results of a statistical investigation of bright galaxies with a UV excess are given. The data obtained for them are compared with those for normal galaxies. A list of bright galaxies (mpg ≤14m.5 ) with a UV excess has been compiled, numbering 461. Their absolute stellar magnitudes and average geometrical linear diameters were determined. The relationships between Mpg and log D are given for galaxies with a UV excess and normal galaxies. The graphs of the relationships are expressed by second-degree equations. It is shown that the UV evolutionary stage of the galaxies has no influence on the relationship between Mpg and log D. Translated from Astrofizika, Vol. 43, No. 1, pp. 21-32, January–March, 2000.  相似文献   

20.
We propose a simple set of equations of motion for the fictitious ensemble average particle, with the effects of the turbulence phenomenologically incorporated into a friction tensor. The components of this tensor reflect the perpendicular and parallel coupling to the bulk flow and are estimated from test particle studies in fluctuating homogeneous magnetoplasmas. The approach is extended to moderately inhomogeneous media, and illustrated with the behavior of bow-shocked lithium ions in the magnetosheath for distinct turbulence regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号