首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contribution of bathymetry to the prediction of quantities related to the gravity field (e.g., gravity anomalies, geoid heights) is discussed in an extended test area of the central Mediterranean Sea. Sea gravity anomalies and a priori statistical characteristics of depths are used in a least-squares collocation procedure in order to produce new depths, giving a better smoothing of the gravity field when using a remove-restore procedure. The effect of the bottom topography on gravity-field modeling is studied using both the original and the new depths through a residual terrain modeling reduction. The numerical tests show a considerable smoothing of the sea gravity anomalies and the available altimeter heights when the new depth information is taken into account according to the covariance analysis performed. Moreover, geoid heights are computed by combining the sea gravity anomalies either with the original depths or with the new ones, using as a reference surface the OSU91A geopotential model. Comparing the computed geoid heights with adjusted altimeter sea-surface heights (SSHs), better results are obtained when subtracting the attraction of the new depth information. Similar results are obtained when predicting gravity anomalies from altimeter SSHs where the terrain effect on altimetry is based on the new bottom topography. Received: 10 September 1996 / Accepted: 4 August 1997  相似文献   

2.
最小二乘配置法中局部协方差函数的计算   总被引:3,自引:1,他引:2  
文汉江 《测绘科学》2000,25(3):37-39
随着 GPS日益广泛的应用及精度的不断提高 ,在有些实际应用中利用 GPS来代替传统的水准测量进行高程控制已成为可能 ,这也进一步提出了对高精度大地水准面的需求。快速傅立叶变换 (FFT)是目前计算大地水准面比较常用的方法之一 ,但需要将重力观测量进行内插得到规则格网上的平均重力异常。利用最小二乘配置法计算大地水准面可直接利用已有的观测值进行计算 ,同时可综合利用不同类型的数据 ,如重力异常和垂线偏差等计算大地水准面 ,因此最小二乘配置法仍有广泛的应用 ,但制约最小二乘配置应用的关键问题是局部协方差函数的计算。将主要讨论最小二乘配置法中局部协方差函数的计算 ,使所用的协方差函数能更好地反映已知的数据 ,从而获得更精确的结果。  相似文献   

3.
The determination of local geoid models has traditionally been carried out on land and at sea using gravity anomaly and satellite altimetry data, while it will be aided by the data expected from satellite missions such as those from the Gravity field and steady-state ocean circulation explorer (GOCE). To assess the performance of heterogeneous data combination to local geoid determination, simulated data for the central Mediterranean Sea are analyzed. These data include marine and land gravity anomalies, altimetric sea surface heights, and GOCE observations processed with the space-wise approach. A spectral analysis of the aforementioned data shows their complementary character. GOCE data cover long wavelengths and account for the lack of such information from gravity anomalies. This is exploited for the estimation of local covariance function models, where it is seen that models computed with GOCE data and gravity anomaly empirical covariance functions perform better than models computed without GOCE data. The geoid is estimated by different data combinations and the results show that GOCE data improve the solutions for areas covered poorly with other data types, while also accounting for any long wavelength errors of the adopted reference model that exist even when the ground gravity data are dense. At sea, the altimetric data provide the dominant geoid information. However, the geoid accuracy is sensitive to orbit calibration errors and unmodeled sea surface topography (SST) effects. If such effects are present, the combination of GOCE and gravity anomaly data can improve the geoid accuracy. The present work also presents results from simulations for the recovery of the stationary SST, which show that the combination of geoid heights obtained from a spherical harmonic geopotential model derived from GOCE with satellite altimetry data can provide SST models with some centimeters of error. However, combining data from GOCE with gravity anomalies in a collocation approach can result in the estimation of a higher resolution geoid, more suitable for high resolution mean dynamic SST modeling. Such simulations can be performed toward the development and evaluation of SST recovery methods.  相似文献   

4.
Geoid determination using one-step integration   总被引:1,自引:1,他引:0  
P. Novák 《Journal of Geodesy》2003,77(3-4):193-206
A residual (high-frequency) gravimetric geoid is usually computed from geographically limited ground, sea and/or airborne gravimetric data. The mathematical model for its determination from ground gravity is based on the transformation of observed discrete values of gravity into gravity potential related to either the international ellipsoid or the geoid. The two reference surfaces are used depending on height information that accompanies ground gravity data: traditionally orthometric heights determined by geodetic levelling were used while GPS positioning nowadays allows for estimation of geodetic (ellipsoidal) heights. This transformation is usually performed in two steps: (1) observed values of gravity are downward continued to the ellipsoid or the geoid, and (2) gravity at the ellipsoid or the geoid is transformed into the corresponding potential. Each of these two steps represents the solution of one geodetic boundary-value problem of potential theory, namely the first and second or third problem. Thus two different geodetic boundary-value problems must be formulated and solved, which requires numerical evaluation of two surface integrals. In this contribution, a mathematical model in the form of a single Fredholm integral equation of the first kind is presented and numerically investigated. This model combines the solution of the first and second/third boundary-value problems and transforms ground gravity disturbances or anomalies into the harmonically downward continued disturbing potential at the ellipsoid or the geoid directly. Numerical tests show that the new approach offers an efficient and stable solution for the determination of the residual geoid from ground gravity data.  相似文献   

5.
 Equations expressing the covariances between spherical harmonic coefficients and linear functionals applied on the anomalous gravity potential, T, are derived. The functionals are the evaluation functionals, and those associated with first- and second-order derivatives of T. These equations form the basis for the prediction of spherical harmonic coefficients using least-squares collocation (LSC). The equations were implemented in the GRAVSOFT program GEOCOL. Initially, tests using EGM96 were performed using global and regional sets of geoid heights, gravity anomalies and second-order vertical gravity gradients at ground level and at altitude. The global tests confirm that coefficients may be estimated consistently using LSC while the error estimates are much too large for the lower-order coefficients. The validity of an error estimate calculated using LSC with an isotropic covariance function is based on a hypothesis that the coefficients of a specific degree all belong to the same normal distribution. However, the coefficients of lower degree do not fulfil this, and this seems to be the reason for the too-pessimistic error estimates. In order to test this the coefficients of EGM96 were perturbed, so that the pertubations for a specific degree all belonged to a normal distribution with the variance equal to the mean error variance of the coefficients. The pertubations were used to generate residual geoid heights, gravity anomalies and second-order vertical gravity gradients. These data were then used to calculate estimates of the perturbed coefficients as well as error estimates of the quantities, which now have a very good agreement with the errors computed from the simulated observed minus calculated coefficients. Tests with regionally distributed data showed that long-wavelength information is lost, but also that it seems to be recovered for specific coefficients depending on where the data are located. Received: 3 February 2000 / Accepted: 23 October 2000  相似文献   

6.
. Satellite altimetry derived geoid heights and marine gravity anomalies can be combined to determine a detailed gravity field over the oceans using the least-squares collocation method and spectral combination techniques. Least-squares collocation, least-squares adjustment in the frequency domain and input-output system theory are employed to determine the gravity field (both geoid and anomalies) and its errors. This paper intercompares these three techniques using simulated data. Simulation studies show that best results are obtained by the input-output system theory among the three prediction methods. The least-squares collocation method gives results which are very close to but a little bit worse than those obtained using input-output system theory. This slightly poorer performance of the least-squares collocation method can be explained by the fact that it uses isotropic structured covariance (thus approximate signal PSD information) while the system theory method uses detailed signal PSD information. The method of least-squares adjustment in the frequency domain gives the poorest results among these three methods because it uses less information than the other two methods (it ignores the signal PSDs). The computations also show that the least-squares collocation and input-output system theory methods are not as sensitive to noise levels as the least-squares adjustment in the frequency domain method is. Received 19 January 1996; Accepted 17 July 1996  相似文献   

7.
We propose a methodology for the combination of a gravimetric (quasi-) geoid with GNSS-levelling data in the presence of noise with correlations and/or spatially varying noise variances. It comprises two steps: first, a gravimetric (quasi-) geoid is computed using the available gravity data, which, in a second step, is improved using ellipsoidal heights at benchmarks provided by GNSS once they have become available. The methodology is an alternative to the integrated processing of all available data using least-squares techniques or least-squares collocation. Unlike the corrector-surface approach, the pursued approach guarantees that the corrections applied to the gravimetric (quasi-) geoid are consistent with the gravity anomaly data set. The methodology is applied to a data set comprising 109 gravimetric quasi-geoid heights, ellipsoidal heights and normal heights at benchmarks in Switzerland. Each data set is complemented by a full noise covariance matrix. We show that when neglecting noise correlations and/or spatially varying noise variances, errors up to 10% of the differences between geometric and gravimetric quasi-geoid heights are introduced. This suggests that if high-quality ellipsoidal heights at benchmarks are available and are used to compute an improved (quasi-) geoid, noise covariance matrices referring to the same datum should be used in the data processing whenever they are available. We compare the methodology with the corrector-surface approach using various corrector surface models. We show that the commonly used corrector surfaces fail to model the more complicated spatial patterns of differences between geometric and gravimetric quasi-geoid heights present in the data set. More flexible parametric models such as radial basis function approximations or minimum-curvature harmonic splines perform better. We also compare the proposed method with generalized least-squares collocation, which comprises a deterministic trend model, a random signal component and a random correlated noise component. Trend model parameters and signal covariance function parameters are estimated iteratively from the data using non-linear least-squares techniques. We show that the performance of generalized least-squares collocation is better than the performance of corrector surfaces, but the differences with respect to the proposed method are still significant.  相似文献   

8.
LSC法(最小二乘配置法)因能融合不同种类重力观测数据确定大地水准面的特性而受到广泛关注,但由于协方差矩阵存在病态性,微小的观测误差将被协方差矩阵的小奇异值放大,导致计算的配置结果不稳定且精度偏低。本文提出Tikhonov_LSC法,即在LSC法中引入Tikhonov正则化算法,基于GCV法选择协方差矩阵的正则化参数,利用正则化参数修正协方差矩阵的小奇异值,以抑制其对观测误差的放大影响。基于Tikhonov_LSC法计算大地水准面,能有效提高其稳定性和精度。通过以EGM2008重力场模型分别计算山区、丘陵和海域重力异常作为基础数据确定相应区域大地水准面的实验,验证了该方法的有效性。  相似文献   

9.
从最小二乘配置方法的基本原理出发,以我国某地区范围内1km分辨率的大地水准面高模型数据为例,根据实用公式计算了试验区大地水准面高的协方差值后,采用多项式函数模型和高斯函数模型分别拟合了该地区大地水准面高的局部协方差函数,并对试验区内18个检核点做了推估计算。根据推估值(Nfit)与实测值(NGPSL)的比较分析表明,虽然多项式协方差函数模型略优于高斯协方差函数模型,但它们都能以厘米级的精度拟合局部大地水准面,这表明了配置法用于精化厘米级大地水准面的有效性。  相似文献   

10.
 Two numerical techniques are used in recent regional high-frequency geoid computations in Canada: discrete numerical integration and fast Fourier transform. These two techniques have been tested for their numerical accuracy using a synthetic gravity field. The synthetic field was generated by artificially extending the EGM96 spherical harmonic coefficients to degree 2160, which is commensurate with the regular 5 geographical grid used in Canada. This field was used to generate self-consistent sets of synthetic gravity anomalies and synthetic geoid heights with different degree variance spectra, which were used as control on the numerical geoid computation techniques. Both the discrete integration and the fast Fourier transform were applied within a 6 spherical cap centered at each computation point. The effect of the gravity data outside the spherical cap was computed using the spheroidal Molodenskij approach. Comparisons of these geoid solutions with the synthetic geoid heights over western Canada indicate that the high-frequency geoid can be computed with an accuracy of approximately 1 cm using the modified Stokes technique, with discrete numerical integration giving a slightly, though not significantly, better result than fast Fourier transform. Received: 2 November 1999 / Accepted: 11 July 2000  相似文献   

11.
为解决世界各国高程基准差异的问题,提出联合卫星重力场模型、地面重力数据、GNSS大地高、局部高程基准的正高或正常高,按大地边值问题法确定局部高程基准重力位差的方法。首先推导了利用传统地面"有偏"重力异常确定高程基准重力位差的方法;接着利用改化Stokes核函数削弱"有偏"重力异常的影响,并联合卫星重力场模型和地面"有偏"重力数据,得到独立于任何局部高程基准的重力水准面,以此来确定局部高程基准重力位差;最后利用GNSS+水准数据和重力大地水准面确定了美国高程基准与全球高程基准W0的重力位差为-4.82±0.05 m2s-2。  相似文献   

12.
Summary The least-squares collocation method has been used for the computation of a geoid solution in central Spain, combining a geopotential model complete to degree and order 360, gravity anomalies and topographic information. The area has been divided in two 1°× 1° blocks and predictions have been done in each block with gravity data spacing about 5 × 5 within each block, extended 1/2°. Topographic effects have been calculated from 6 × 9 heights using an RTM reduction with a reference terrain model of 30 × 30 mean heights.  相似文献   

13.
The accuracy of the gravity field approximation depends on the amount of the available data and their distribution as well as on the variation of the gravity field. The variation of the gravity field in the Greek mainland, which is the test area in this study, is very high (the variance of point free air gravity anomalies is 3191.5mgal 2). Among well known reductions used to smooth the gravity field, the complete isostatic reduction causes the best possible smoothing, however remain strong local anomalies which disturb the homogeneity of the gravity field in this area. The prediction of free air gravity anomalies using least squares collocation and regional covariance function is obtained within a ±4 ... ±19mgal accuracy depending on the local peculiarities of the free air gravity field. By taking into account the topography and its isostatic compensation with the usual remove-restore technique, the accuracy of the prediction mentioned obove was increased by about a factor of 4 and the prediction results become quite insensitive to the covariance function used (local or regional). But when predicting geoidal heights, in spite of using the smoothed field, the prediction results remain still depend on the covariance function used in such a way that differences up to about 50cm/100km result between relative geoidal heights computed with regional or local covariance functions.  相似文献   

14.
Gravity gradient modeling using gravity and DEM   总被引:2,自引:0,他引:2  
A model of the gravity gradient tensor at aircraft altitude is developed from the combination of ground gravity anomaly data and a digital elevation model. The gravity data are processed according to various operational solutions to the boundary-value problem (numerical integration of Stokes’ integral, radial-basis splines, and least-squares collocation). The terrain elevation data are used to reduce free-air anomalies to the geoid and to compute a corresponding indirect effect on the gradients at altitude. We compare the various modeled gradients to airborne gradiometric data and find differences of the order of 10–20 E (SD) for all gradient tensor elements. Our analysis of these differences leads to a conclusion that their source may be primarily measurement error in these particular gradient data. We have thus demonstrated the procedures and the utility of combining ground gravity and elevation data to validate airborne gradiometer systems.  相似文献   

15.
Minimization and estimation of geoid undulation errors   总被引:2,自引:1,他引:1  
The objective of this paper is to minimize the geoid undulation errors by focusing on the contribution of the global geopotential model and regional gravity anomalies, and to estimate the accuracy of the predicted gravimetric geoid.The geopotential model's contribution is improved by (a) tailoring it using the regional gravity anomalies and (b) introducing a weighting function to the geopotential coefficients. The tailoring and the weighting function reduced the difference (1) between the geopotential model and the GPS/levelling-derived geoid undulations in British Columbia by about 55% and more than 10%, respectively.Geoid undulations computed in an area of 40° by 120° by Stokes' integral with different kernel functions are analyzed. The use of the approximated kernels results in about 25 cm () and 190 cm (maximum) geoid errors. As compared with the geoid derived by GPS/levelling, the gravimetric geoid gives relative differences of about 0.3 to 1.4 ppm in flat areas, and 1 to 2.5 ppm in mountainous areas for distances of 30 to 200 km, while the absolute difference (1) is about 5 cm and 20 cm, respectively.A optimal Wiener filter is introduced for filtering of the gravity anomaly noise, and the performance is investigated by numerical examples. The internal accuracy of the gravimetric geoid is studied by propagating the errors of the gravity anomalies and the geopotential coefficients into the geoid undulations. Numerical computations indicate that the propagated geoid errors can reasonably reflect the differences between the gravimetric and GPS/levelling-derived geoid undulations in flat areas, such as Alberta, and is over optimistic in the Rocky Mountains of British Columbia.Paper presented at the IAG General Meeting, Beijing, China, August 8–13, 1993.  相似文献   

16.
 The AUSGeoid98 gravimetric geoid model of Australia has been computed using data from the EGM96 global geopotential model, the 1996 release of the Australian gravity database, a nationwide digital elevation model, and satellite altimeter-derived marine gravity anomalies. The geoid heights are on a 2 by 2 arc-minute grid with respect to the GRS80 ellipsoid, and residual geoid heights were computed using the 1-D fast Fourier transform technique. This has been adapted to include a deterministically modified kernel over a spherical cap of limited spatial extent in the generalised Stokes scheme. Comparisons of AUSGeoid98 with GPS and Australian Height Datum (AHD) heights across the continent give an RMS agreement of ±0.364 m, although this apparently large value is attributed partly to distortions in the AHD. Received: 10 March 2000 / Accepted: 21 February 2001  相似文献   

17.
The objective of this study is to evaluate two approaches, which use different representations of the Earth’s gravity field for downward continuation (DC), for determining Helmert gravity anomalies on the geoid. The accuracy of these anomalies is validated by 1) analyzing conformity of the two approaches; and 2) converting them to geoid heights and comparing the resulting values to GPS-leveling data. The first approach (A) consists of evaluating Helmert anomalies at the topography and downward-continuing them to the geoid. The second approach (B) downward-continues refined Bouguer anomalies to the geoid and transforms them to Helmert anomalies by adding the condensed topographical effect. Approach A is sensitive to the DC because of the roughness of the Helmert gravity field. The DC effect on the geoid can reach up to 2 m in Western Canada when the Stokes kernel is used to convert gravity anomalies to geoid heights. Furthermore, Poisson’s equation for DC provides better numerical results than Moritz’s equation when the resulting geoid models are validated against the GPS-leveling. On the contrary, approach B is significantly less sensitive to the DC because of the smoothness of the refined Bouguer gravity field. In this case, the DC (Poisson’s and Moritz’s) contributes only at the decimeter level to the geoid model in Western Canada. The maximum difference between the geoid models from approaches A and B is about 5 cm in the region of interest. The differences may result from errors in the DC such as numerical instability. The standard deviations of the hHN for both approaches are about 8 cm at the 664 GPS-leveling validation stations in Western Canada.  相似文献   

18.
为计算深圳精密重力大地水准面,利用62个高精度GPS水准点和4871个实测重力点数据对EGM96,WDM94和GPM98CR全球重力场模型表示深圳局部重力场进行了比较与评价。结果表明,由上述3个重力场模型计算的大地水准面高和重力异常与实测值之间存在明显的系统偏差,当采用GPS水准数据尽可能消除系统偏差以后,大地水准面高的精度得到显著提高,若应用移去-恢复技术确定深圳高精度大地水准面,则WDM94应该是首选的参考重力场模型。  相似文献   

19.
 The use of GPS for height control in an area with existing levelling data requires the determination of a local geoid and the bias between the local levelling datum and the one implicitly defined when computing the local geoid. If only scarse gravity data are available, the heights of new data may be collected rapidly by determining the ellipsoidal height by GPS and not using orthometric heights. Hence the geoid determination has to be based on gravity disturbances contingently combined with gravity anomalies. Furthermore, existing GPS/levelling data may also be used in the geoid determination if a suitable general gravity field modelling method (such as least-squares collocation, LSC) is applied. A comparison has been made in the Aswan Dam area between geoids determined using fast Fourier transform (FFT) with gravity disturbances exclusively and LSC using only the gravity disturbances and the disturbances combined with GPS/levelling data. The EGM96 spherical harmonic model was in all cases used in a remove–restore mode. A total of 198 gravity disturbances spaced approximately 3 km apart were used, as well as 35 GPS/levelling points in the vicinity and on the Aswan Dam. No data on the Nasser Lake were available. This gave difficulties when using FFT, which requires the use of gridded data. When using exclusively the gravity disturbances, the agreement between the GPS/levelling data were 0.71 ± 0.17 m for FFT and 0.63 ± 0.15 for LSC. When combining gravity disturbances and GPS/levelling, the LSC error estimate was ±0.10 m. In the latter case two bias parameters had to be introduced to account for a possible levelling datum difference between the levelling on the dam and that on the adjacent roads. Received: 14 August 2000 / Accepted: 28 February 2001  相似文献   

20.
Satellite gravity missions, such as CHAMP, GRACE and GOCE, and airborne gravity campaigns in areas without ground gravity will enhance the present knowledge of the Earths gravity field. Combining the new gravity information with the existing marine and ground gravity anomalies is a major task for which the mathematical tools have to be developed. In one way or another they will be based on the spectral information available for gravity data and noise. The integration of the additional gravity information from satellite and airborne campaigns with existing data has not been studied in sufficient detail and a number of open questions remain. A strategy for the combination of satellite, airborne and ground measurements is presented. It is based on ideas independently introduced by Sjöberg and Wenzel in the early 1980s and has been modified by using a quasi-deterministic approach for the determination of the weighting functions. In addition, the original approach of Sjöberg and Wenzel is extended to more than two measurement types, combining the Meissl scheme with the least-squares spectral combination. Satellite (or geopotential) harmonics, ground gravity anomalies and airborne gravity disturbances are used as measurement types, but other combinations are possible. Different error characteristics and measurement-type combinations and their impact on the final solution are studied. Using simulated data, the results show a geoid accuracy in the centimeter range for a local test area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号