首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cuiabá Gold Deposit is located in the northern part of the Quadrilátero Ferrífero, Minas Gerais State, Brazil. The region constitutes an Archean granite–greenstone terrane composed of a basement complex (ca. 3.2 Ga), the Rio das Velhas Supergroup greenstone sequence, and related granitoids (3.0–2.7 Ga), which are overlain by the Proterozoic supracrustal sequences of the Minas (< 2.6–2.1  Ga) and Espinhaço (1.7 Ga) supergroups.The stratigraphy of the Cuiabá area is part of the Nova Lima Group, which forms the lower part of the Rio das Velhas Supergroup. The lithological succession of the mine area comprises, from bottom to top, lower mafic metavolcanics intercalated with carbonaceous metasedimentary rocks, the gold-bearing Cuiabá-Banded Iron Formation (BIF), upper mafic metavolcanics and volcanoclastics and metasedimentary rocks. The metamorphism reached the greenschist facies. Tectonic structures of the deposit area are genetically related to deformation phases D1, D2, D3, which took place under crustal compression representing one progressive deformational event (En).The bulk of the economic-grade gold mineralization is related to six main ore shoots, contained within the Cuiabá BIF horizon, which range in thickness between 1 and 6 m. The BIF-hosted gold orebodies (> 4 ppm Au) represent sulfide-rich segments of the Cuiabá BIF, which grade laterally into non-economic mineralized or barren iron formation. Transitions from sulfide-rich to sulfide-poor BIF are indicated by decreasing gold grades from over 60 ppm to values below the fire assay detection limit in sulfide-poor portions. The deposit is “gold-only”, and shows a characteristic association of Au with Ag, As, Sb and low base-metal contents. The gold is fine grained (up to 60 μm), and is generally associated with sulfide layers, occurring as inclusions, in fractures or along grain boundaries of pyrite, the predominant sulfide mineral (> 90 vol.%). Gold is characterized by an average fineness of 0.840 and a large range of fineness (0.759 to 0.941).The country rocks to the mineralized BIF show strong sericite, carbonate and chlorite alteration, typical of greenschist facies metamorphic conditions. Textures observed on microscopic to mine scales indicate that the mineralized Cuiabá BIF is the result of sulfidation involving pervasive replacement of Fe-carbonates (siderite–ankerite) by Fe-sulfides. Gold mineralization at Cuiabá shows various features reported for Archean gold–lode deposits including the: (1) association of gold mineralization with Fe-rich host rocks; (2) strong structural control of the gold orebodies, showing remarkable down-plunge continuity (> 3 km) relative to strike length and width (up to 20 m); (3) epigenetic nature of the mineralization, with sulfidation as the major wall–rock alteration and directly associated with gold deposition; (4) geochemical signature, with mineralization showing consistent metal associations (Au–Ag–As–Sb and low base metal), which is compatible with metamorphic fluids.  相似文献   

2.
The orogenic banded iron formation (BIF)-hosted Au mineralization at São Bento is a structurally-controlled, hydrothermal deposit hosted by Archean rocks of the Rio das Velhas greenstone belt, Quadrilátero Ferrífero region, Brazil. The deposit has reserves of 14.3 t Au and historical (underground) production of 44.6 t Au between 1987 and 2001. The oxide-facies São Bento BIF is mineralized at its lower portion, where in contact with carbonaceous, pelitic schists, particularly in the proximity of sulfide-bearing quartz veins. Shear-related Au deposition is associated with the pervasive, hydrothermal sulfidation (mainly arsenopyrite) of the Fe-rich bands of the São Bento BIF. Auriferous, sulfide- and quartz-rich zones represent proximal alteration zones. They are enveloped by ankerite-dominated haloes, which reflect progressive substitution of siderite and magnetite within the BIF by ankerite and pyrrhotite, respectively. The São Bento BIF was intensely and extensively deformed, first into open, upright folds that evolved into tight, asymmetric, isoclinal folds. The inverse limb of these folds attenuated and gave way to sheath folds and the establishment of ductile thrusts. Mineralized horizons at São Bento result from early structural modifications imposed by major transcurrent and thrusts faults, comprising the Conceição, Barão de Cocais and São Bento shear zones. Dextral movement on the SW–NE-directed Conceição shear zone may have generated splays at a compressional side-stepping zone, such as the São Bento shear zone, which is the structural locus for the São Bento gold mineralization. Relaxation of the Conceição shear zone under more brittle conditions resulted in the development of dilatational zones where gold–sulfide–quartz veins formed. These structures are considered to have been generated in the Archean. Geochronological data are scarce, with Pb–Pb analyses of refractory arsenopyrite and pyrite from bedded and remobilized ore plotting on a single-stage growth curve at 2.65 Ga. A later compressional, ductile deformation of unknown age overprinted, rotated and flattened the original, N60E-directed structure of the whole rock succession, with development of planar and linear fabrics that appear similar to Proterozoic-aged structures. Fluid inclusion studies indicate low salinity, aqueous fluids, with or without CO2 and/or CH4, with extremely variable CO2/CH4 ratios, of probable metamorphic origin. Fluid evolution shows a paragenetic decrease in the carbonic phase from 10–15% to 5%, and increase in the H2O/(CO2 + CH4) and CO2/CH4 ratios, suggesting important interaction with carbonaceous sediment. Trapping conditions indicate a temperature of 300 °C at 3.2 kbar.  相似文献   

3.
Precambrian banded iron formations (BIFs) in the Quadrilátero Ferrífero host a special kind of Au–Pd mineralization known as Jacutinga. The main orebodies are hosted within the Cauê Syncline, a SW-verging fold that involves Paleoproterozoic metasedimentary rocks in the Itabira District, a regional synclinorium with BIFs in the core of synclinal folds in the northeastern part of Quadrilatéro Ferrífero, Minas Gerais. Structural analysis reveals two important features of the district: the polydeformed character of the rocks and the importance of brittle structures in the control of the orebodies. Two deformational events are recognized in this area. The first event developed the main foliation, S1, that is the enveloping surface of the Cauê Syncline. The second event is better defined in the northern boundary of the structure where it is represented by a right-lateral wrench fault zone that has developed a foliation, S2, that truncates S1. This wrench fault was also responsible for the development of a system of fractures (Frm) that host the Au–Pd mineralization. The auriferous bodies of Cauê Syncline (Y, X, Área Central, Aba Norte, Noroeste and Aba Leste/Aba Leste Inferior) were generated during this second event. Shear fractures (R, R′ and P) and tension fractures (T) developed in response to the wrench fault system under brittle conditions. The best-developed, and most commonly mineralized fractures are R and T in all auriferous bodies. Elsewhere, the best mineralization occurs in the contacts of hematite bodies (soft/hard) and intrusive rocks with fractured itabirites. Other mineralization (Aba Norte, Área Central and X) is hosted on the contacts of other units.A system of fractures, as well as their intersections, thus represents the structural control on Jacutinga bodies and is responsible for the geometry of the orebodies. Of importance, there is no control by mineral/stretching lineations, fold axes and other ductile structure on the geometry and plunge of the orebodies.  相似文献   

4.
The Morro Velho gold deposit, Quadrilátero Ferrífero region, Minas Gerais, Brazil, is hosted by rocks at the base of the Archean Rio das Velhas greenstone belt. The deposit occurs within a thick carbonaceous phyllite package, containing intercalations of felsic and intermediate volcaniclastic rocks and dolomites. Considering the temporal and spatial association of the deposit with the Rio das Velhas orogeny, and location in close proximity to a major NNW-trending fault zone, it can be classified as an orogenic gold deposit. Hydrothermal activity was characterized by intense enrichment in alteration zones of carbonates, sulfides, chlorite, white mica±biotite, albite and quartz, as described in other Archean lode-type gold ores. Two types of ore occur in the deposit: dark gray quartz veins and sulfide-rich gold orebodies. The sulfide-rich orebodies range from disseminated concentrations of sulfide minerals to massive sulfide bodies. The sulfide assemblage comprises (by volume), on average, 74% pyrrhotite, 17% arsenopyrite, 8% pyrite and 1% chalcopyrite. The orebodies have a long axis parallel to the local stretching lineation, with continuity down the plunge of fold axis for at least 4.8 km. The group of rocks hosting the Morro Velho gold mineralization is locally referred to as lapa seca. These were isoclinally folded and metamorphosed prior to gold mineralization. The lapa seca and the orebodies it hosts are distributed in five main tight folds related to F1 (the best examples are the X, Main and South orebodies, in level 25), which are disrupted by NE- to E-striking shear zones. Textural features indicate that the sulfide mineralization postdated regional peak metamorphism, and that the massive sulfide ore has subsequently been neither metamorphosed nor deformed. Lead isotope ratios indicate a model age of 2.82 ± 0.05 Ga for both sulfide and gold mineralization. The lapa seca are interpreted as the results of a pre-gold alteration process and may be divided into carbonatic, micaceous and quartzose types. The carbonatic lapa seca is subdivided into gray and brown subtypes. Non-mineralized, gray carbonatic lapa seca forms the hanging wall to the orebodies, and is interpreted as the product of extreme CO2 metasomatism during hydrothermal alteration. This dolomitic lapa seca ranges in composition from relatively pure limestone and dolomite to silty limestone and dolomite. The brown carbonatic and micaceous lapa secas are the host rocks to gold. These units are interpreted to correspond to the sheared and hydrothermal products of metamorphosed volcaniclastic and/or volcanic rocks of varying composition from dacitic to andesitic, forming various types of schists and phyllites. The high-grade, massive sulfide orebodies occur at the base of the gray carbonatic lapa seca. Both disseminated mineralization and quartz veins are hosted by micaceous lapa seca. The data are consistent with a model of epigenetic mineralization for the lapa seca, from a hydrothermal fluid derived in part from the Archean basement or older crust material.  相似文献   

5.
The gold–tourmaline quartz–vein deposit of Passagem de Mariana, in the southeastern part of the Quadrilátero Ferrífero, produced more than 60 tonne of gold, from the end of the 17th Century until 1954. The mine has not operated since 1985. Orebodies are veins composed of white quartz (> 60 vol.%), carbonate (ankerite), tourmaline, sericite and sulfides. Tourmaline (dravite), up to 10 vol.% of the vein, occurs as subhedral, coarse, commonly zoned crystals, and is concentrated along vein boundaries and on the edges of host rock inclusions in the veins. Tourmaline is present in all rock types in the mine, but the chemical composition of the host rocks determinates the intensity of tourmalinization, with the alteration being greater in sericitic phyllites, graphite–sericite phyllites, and calcareous rocks. The most abundant sulfide is arsenopyrite, which is normally associated with pyrite and pyrrhotite. Minor amounts of chalcopyrite, galena, löllingite, berthierite, and maldonite are present throughout the deposit. Sulfides are concentrated at veins boundary or are dispersed in the veins. Arsenopyrite is associated, most commonly, with calcareous rocks, and graphite–sericite phyllite. Pyrrhotite is usually found at the base of itabirites. Gold abundance is directly proportional to sulfide concentration. Hydrothermal alteration associated with the veins includes silicification, tourmalinization, and sulfidation. The mineralized zone is a shear zone associated with a bedding-parallel thrust fault that juxtaposes the itabirite (Lower Proterozoic Minas Supergroup) over other units. This shear zone/thrust fault extends for tens of km beyond the Passagem mine and hosts numerous gold deposits. The richest orebodies are along the itabirite footwall contact and within the graphite–sericite phyllite (Main orebody). Although many lithologic units were mineralized the graphite–sericite phyllite appears to have been most favorable for gold deposition.The area underwent three phases of deformation, D1, D2 and D3. Mineral assemblages indicate upper-greenschist to lower-amphibolite conditions of regional metamorphism. Retrograde metamorphism, characterized by chloritization of biotite and chloritization and biotitization of garnet, developed locally. The gold-bearing veins crosscut the main foliation and lithologic contacts at low angle and occur within, or are in contact with, all lithotypes. Field and laboratory data indicate that gold mineralization at Passagem de Mariana is epigenetic. Gold deposition occurred after the peak of metamorphism, within the late- to post-D2 period of deformation, which is correlated with second set of structures of Trasamazonian age of Alkmim and Marshak [Alkmim, F.F., Marshak, S., 1998. Transamazonian Orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Research 90, 29-58.], indicating that the gold mineralization occurred between 2.124 and 2.04 Ga. We choose to regard Passagem de Marina as an orogenic gold deposit as defined by Groves et al. [Groves, D. I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., Robert, F., 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews 13, 7-27.], i.e., an epigenetic, structurally-hosted lode–gold vein system in a deformed metamorphic terrane.  相似文献   

6.
Mercury contents in Precambrian banded iron formation-hosted hematite ores are virtually unknown. In an attempt to provide information on the abundance and distribution of Hg in Fe ore, we present analyses for Hg in samples of high-grade soft hematite ore from Gongo Soco, Minas Gerais, Brazil. Bulk samples contain from <  5 to 25  ppb Hg without obvious correlation with major elements. Granulometric fractions of follow-up samples have amounts of Hg from 6 to 48  ppb and display positive linear correlations with total Mn as MnO (r = 0.87), LOI (r = 0.87) and SiO2 (r = 0.76), as well as a negative linear correlation with total Fe as Fe2O3 (r = −  0.87). The correlations suggest that Hg is associated with a hydrated ferruginous groundmass bearing residual Mn, Al and Si, which replaced gangue minerals in itabirite in the process of formation of the Gongo Soco soft hematite ore.  相似文献   

7.
The Quadrilátero Ferrífero is a classic gold province on a global scale, with hundreds of individual gold occurrences in the Archean greenstone belt comprising the Rio das Velhas Supergroup. There are numerous small gold deposits, including Faria, Esperança III, Bicalho, Bela Fama, Juca Vieira, Brumal, Boa Vista, Fernandes, Moita, Roça Grande, Bico de Pedra and Pari, as well as the world-class deposits of Morro Velho and Cuiabá. All these deposits, whether large or small, are structurally controlled and related to either shear zones or folds. Extensive down-plunge continuity is a consistent feature of the deposits. In the Rio das Velhas greenstone belt, six main styles of gold mineralization are recognized. These are deposits hosted within: (1), Lapa seca (e.g., Morro Velho, Bicalho, Bela Fama), (2), Banded iron formations (e.g., Cuiabá, São Bento, Raposos, Faria, Brumal, Roça Grande), (3), Quartz veins (e.g., Juca Vieira, Fernandes), (4), Disseminated sulfides with quartz veinlets (e.g., Moita), (5), Amphibolites (e.g., Pari), and (6), Disseminated to massive base-metal sulfides (e.g., Bico de Pedra). The first four types of deposits are epigentic (orogenic) gold deposits, similar to those found in greenstone belts worldwide. The last two are unusual types of gold deposit, peculiar to the Quadrilátero Ferrífero. Bico de Pedra is a polymetallic Au–Ag–Zn–Pb–Cu deposit related to an aplite intrusion, whereas Pari is a stratiform Au-bearing-banded iron formation metamorphosed to epidote–amphibolite metamorphic facies.  相似文献   

8.
Archean terrains of the Quadrilátero Ferrífero comprise a greenstone belt association surrounded by granitoid–gneiss complexes, mainly composed of banded TTG gneisses whose igneous protoliths are older than 2900 Ma. This early continental crust was affected by three granitic magmatic episodes during the Neoarchean: ca. 2780 to 2760 Ma; 2720 to 2700 Ma; and 2600 Ma. Dating of felsic volcanic and volcaniclastic rocks defines a felsic magmatic event within the greenstone belt association around 2772 Ma, contemporaneous with emplacement of several of the granitic plutons and constrains a major magmatic and tectonic event in the Quadrilátero Ferrífero. Lead isotopic studies of lode–gold deposits indicate that the main mineralization episode occurred at about 2800 to 2700 Ma.Proterozoic evolution of the Quadrilátero Ferrífero comprises deposition of a continental-margin succession hosting thick, Lake Superior-type banded iron formations, at ca. 2500 to 2400 Ma, followed by deposition of syn-orogenic successions after 2120 Ma. The latter is related to the Transamazonian Orogeny. The western part of the Quadrilátero Ferrífero was also affected by the Brasiliano Orogeny (600 to 560 Ma).  相似文献   

9.
U–Pb SHRIMP results of 2672 ± 14 Ma obtained on hydrothermal monazite crystals, from ore samples of the giant Morro Velho and Cuiabá Archean orogenic deposits, represent the first reliable and precise age of gold mineralization associated with the Rio das Velhas greenstone belt evolution, in the Quadrilátero Ferrífero, Brazil. In the basal Nova Lima Group, of the Rio das Velhas greenstone belt, felsic volcanic and volcaniclastic rocks have been dated between 2792 ± 11 and 2751 ± 9 Ma, coeval with the intrusion of syn-tectonic tonalite and granodiorite plutons, and also with the metamorphic overprint of older tonalite–trondhjemite–granodiorite crust. Since cratonization and stable-shelf sedimentation followed intrusion of Neoarchean granites at 2612 + 3/− 2 Ma, it is clear that like other granite–greenstone terranes in the world, gold mineralization is constrained to the latest stages of greenstone evolution.  相似文献   

10.
This paper investigates the denudation rates in the Quadrilátero Ferrífero, Minas Gerais State (Brazil). The aim is to compare chemical weathering rates from measurements of solute fluxes in rivers and long-term mean erosion rates deduced from in situ-produced cosmogenic 10Be concentrations measured in fluvial sediments. Both water samples and sediments were collected in fifteen stations (checkpoints) located in four hydrographic basins with low anthropogenic perturbations.Depending of the type of substratum, three degrees of chemical denudation rates from water samples are observed: (i) high rates in marbles; (ii) medium rates in schists, phyllites, granites, gneisses and migmatites; (iii) low rates in quartzites and itabirites. Preliminary results of long-term erosion rates deduced from in situ-produced 10Be are comparable with those of chemical rates.  相似文献   

11.
The Rio das Velhas greenstone belt is located in the Quadrilátero Ferrífero region, in the southern extremity of the São Francisco Craton, central-southern part of the State of Minas Gerais, SE Brazil. The metavolcano–sedimentary rocks of the Rio das Velhas Supergroup in this region are subdivided into the Nova Lima and Maquiné Groups. The former occurs at the base of the sequence, and contains the major Au deposits of the region. New geochronological data, along with a review of geochemical data for volcanic and sedimentary rocks, suggest at least two generations of greenstone belts, dated at 2900 and 2780 Ma. Seven lithofacies associations are identified, from bottom to top, encompassing (1) mafic–ultramafic volcanic; (2) volcano–chemical–sedimentary; (3) clastic–chemical–sedimentary, (4) volcaniclastic association with four lithofacies: monomictic and polymictic breccias, conglomerate–graywacke, graywacke–sandstone, graywacke–argillite; (5) resedimented association, including three sequences of graywacke–argillite, in the north and eastern, at greenschist facies and in the south, at amphibolite metamorphic facies; (6) coastal association with four lithofacies: sandstone with medium- to large-scale cross-bedding, sandstone with ripple marks, sandstone with herringbone cross-bedding, sandstone–siltstone; (7) non-marine association with the lithofacies: conglomerate–sandstone, coarse-grained sandstone, fine- to medium-grained sandstone. Four generations of structures are recognized: the first and second are Archean and compressional, driven from NNE to SSW; the third is extensional and attributed to the Paleoproterozoic Transamazonian Orogenic Cycle; and the fourth is compressional, driven from E to W, is related to the Neoproterozoic Brasiliano Orogenic Cycle. Gold deposits in the Rio das Velhas greenstone belt are structurally controlled and occur associated with hydrothermal alterations along Archean thrust shear zones of the second generation of structures.Sedimentation occurred during four episodes. Cycle 1 is interpreted to have occurred between 2800 and 2780 Ma, based on the ages of the mafic and felsic volcanism, and comprises predominantly chemical sedimentary rocks intercalated with mafic–ultramafic volcanic flows. It includes the volcano–chemical–sedimentary lithofacies association and part of the mafic–ultramafic volcanic association. The cycle is related to the initial extensional stage of the greenstone belt formation, with the deposition of sediments contemporaneous with volcanic flows that formed the submarine mafic plains. Cycle 2 encompasses the clastic–chemical–sedimentary association and distal turbidites of the resedimented association, in the eastern sector of the Quadrilátero Ferrífero. It was deposited in the initial stages of the felsic volcanism. Cycle 2 includes the coastal and resedimented associations in the southern sector, in advanced stages of subduction. In this southern sedimentary cycle it is also possible to recognize a stable shelf environment. Following the felsic volcanism, Cycle 3 comprises sedimentary rocks of the volcaniclastic and resedimented lithofacies associations, largely in the northern sector of the area. The characteristics of both associations indicate a submarine fan environment transitional to non-marine successions related to felsic volcanic edifices and related to the formation of island arcs. Cycle 4 is made up of clastic sedimentary rocks belonging to the non-marine lithofacies association. They are interpreted as braided plain and alluvial fan deposits in a retroarc foreland basin with the supply of debris from the previous cycles.  相似文献   

12.
The present study deals with the mineralogy and geochemistry of the clayey facies of the Água Limpa kaolin deposit, situated in the Moeda Syncline, Quadrilátero Ferrífero, Minas Gerais, Brazil. Kaolinite, quartz, oxides and iron hydroxides (hematite and goethite) represent the mineral assembly of the five facies of the deposit. White mica, rutile, anatase and gibbsite are heterogeneously distributed along the profile. Despite the variable behavior of the chemical elements along the profile, the geochemical patterns for major and rare earth elements enable to define the filiations generated by the laterization process that affected the sediments.  相似文献   

13.
The role of hydrothermal fluids in assisting the activity of strike-slip faults is investigated using a range of new geological, geophysical, and geochemical data obtained on the Argentat fault, Massif Central, France. This fault zone, 180-km-long and 6 to 8 km-width, has experienced coeval intense channeling of hydrothermal fluids and brittle deformation during a short time span (300–295 Ma). According to seismic data, the fault core is a 4-km-wide, vertical zone of high fracture density that rooted in the middle crust (~ 13 km) and that involved fluids in its deeper parts (9–13 km depth). If stress analyses in the fault core and strain analyses in the damage zone both support a left-lateral movement along the fault zone, it is inferred that hydrothermal fluids have strongly influenced fault development, and the resulting fault has influenced fluid flow. Fluid pressure made easier fracturing and faulting in zones of competent rocks units and along rheological boundaries. Repeated cycles of increase of fault-fracture permeability then overpressure of hydrothermal fluids at fault extremity favored strong and fast development of the crustal-scale strike-slip fault. The high permeability obtained along the fault zone permitted a decrease of coupling across the weak fault core. Connections between shallower and lower crustal fluids reservoirs precipitate the decrease of fault activity by quartz precipitation and sulfides deposition. The zones of intense hydrothermal alteration at shallows crustal levels and the zones of fluid overpressure at the base of the upper crust both controlled the final geometry of the crustal-scale fault zone.  相似文献   

14.
Short-wave infrared (SWIR) reflectance spectroscopy was used to characterize hydrothermal minerals and map alteration zones in the Tuwu Cu–Au deposit, Xinjiang, China. The Palaeozoic hydrothermal system at Tuwu is structurally controlled, developed in andesitic volcanic rocks and minor porphyries. Hydrothermal alteration is characterized by horizontally zoned development of quartz, sericite, chlorite, epidote, montmorillonite and kaolin about individual porphyry dykes and breccia zones, as is shown by changes outward from a core of quartz veining and silicification, through an inner zone of sericite + chlorite to a marginal zone of chlorite + epidote. The alteration system comprises several such zoning patterns. Silicification and sericitization are spatially associated with Cu–Au mineralization. Zoning is also shown by compositional variations such that Fe-rich chlorite and Al-rich sericite occur preferentially toward the core and the most intensely altered parts, whereas Mg-rich chlorite and relatively Al-poor sericite are present on the margin and the relatively weakly altered parts of the hydrothermal alteration system. The compositions of chlorite and sericite, therefore, can be potentially used as vectors to Cu–Au mineralization. Montmorillonite and kaolinite, of probable weathering origin, are located near the surface, forming an argillic blanket overlying Cu–Au mineralization. Sporadic montmorillonite is also present at depth in the hydrothermal alteration system, formed by descending groundwater. Presence of a well-developed kaolinite-bearing zone on the surface is an indication of possible underlying Cu–Au mineralization in this region. Epidote occurs widely in regional volcanic rocks, as well as in variably altered rocks on the margin of the hydrothermal mineralization system at Tuwu. The widespread occurrence of epidote in volcanic country rocks probably reflects a regional hydrothermal alteration event prior to the localized, porphyry intrusion-related hydrothermal process that led to the Cu–Au mineralization at Tuwu.  相似文献   

15.
勐满金矿床是西南三江特提斯造山带迄今为止报导的为数不多的热泉型金矿床之一,也是南澜沧江带唯一发现的该成因类型的金矿床。然而目前对勐满金矿床热液蚀变特征的分析不足和地球化学数据的缺乏,一直制约着对其成矿过程的深入理解。勐满金矿床原生矿体产于早古生代澜沧群曼来组片岩和侏罗纪花开左组碎屑岩不整合面附近,断裂构造导流、控矿作用显著。矿区两类围岩均发生强烈蚀变,但蚀变类型简单,仅为硅化和高岭土化,与金成矿密切相关。热液高岭土化的大量发育,反映围岩中的长石等含铝矿物与呈酸性的流体发生作用。全岩微量元素组成对比研究表明,近矿围岩蚀变过程中未发生明显的微量元素迁移。镜下观察到Au与黄铜矿等金属硫化物共生,元素相关性分析显示Au与Ag、Cu、Pb、As、S、Sb等元素有正相关趋势,表明它们由统一热液系统携带并发生卸载。在弱酸性成矿流体中,Au主要以金硫络合物的形式进行迁移。当含Au流体运移至地层不整合面附近时,与围岩反应并发生强烈高岭土化,导致流体中的SiO_2和高岭石含量急剧增加,逐渐在矿区导流断裂中沉淀下来。断裂变窄甚至封闭,流体内压持续升高,最终发生爆破,成矿流体强烈减压沸腾,引发金硫络合物失稳,Au发生卸载并沉淀。该过程反复多次发生,形成了矿区含金硅质角砾岩及蚀变岩型矿石。  相似文献   

16.
The Tiámaro deposit in Michoacán state has been dated as Lower Cretaceous (Valanginian), though most of the porphyry deposits in central Mexico were dated or have an attributed Eocene–Oligocene age. The host rocks belong to a volcanoplutonic complex overlain by red conglomerates. These rocks were intruded by pre-Valanginian plutonic and hypabissal rocks. Propylitic, phyllic, and argillic alteration assemblages developed, and their superimposition draws the evolution of the deposit. Stage I is represented by propylitic assemblages, stage II contains the main ore forming stockworks and both phyllic and argillic assemblages, and stage III contains late carbonatization assemblages. The obtained temperatures and salinities from inclusion fluids are low for a porphyry-type deposit, but we interpret that the known part of the deposit represents the shallow portion of a bigger deposit. The evolution of mineralizing fluids draws a dilution trend of brines from “porphyry-like” to “epithermal-like” stages. The richest ore zone is roughly located between the 300 and 350 °C isotherms, though unnoticed resources may occur at depth.  相似文献   

17.
Orogenic gold mineralization at the Damang deposit, Ghana, is associated with hydrothermal alteration haloes around gold‐bearing quartz veins, produced by the infiltration of a H2O–CO2–K2O–H2S fluid following regional metamorphism. Alteration assemblages are controlled by the protoliths with sedimentary rocks developing a typical assemblage of muscovite, ankerite and pyrite, while intrusive dolerite bodies contain biotite, ankerite and pyrrhotite, accompanied by the destruction of hornblende. Mineral equilibria modelling was undertaken with the computer program thermocalc , in subsets of the model system MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–CO2–H2O–TiO2–Fe2O3, to constrain conditions of regional metamorphism and the subsequent gold mineralization event. Metapelites with well‐developed amphibolite facies assemblages reliably constrain peak regional metamorphism at ~595 °C and 5.5 kbar. Observed hydrothermal alteration assemblages associated with gold mineralization in a wide compositional range of lithologies are typically calculated to be stable within P–T–X(CO2) arrays that trend towards lower temperatures and pressures with increasing equilibrium fluid X(CO2). These independent P–T–X(CO2) arrays converge and the region of overlap at ~375–425 °C and 1–2 kbar is taken to represent the conditions of alteration approaching equilibrium with a common infiltrating fluid with an X(CO2) of ~0.7. Fluid‐rock interaction calculations with M–X(CO2) diagrams indicate that the observed alteration assemblages are consistent with the addition of a single fluid phase requiring minimum fluid/rock ratios on the order of 1.  相似文献   

18.
Draa Sfar is a siliciclastic–felsic, volcanogenic massive sulphide (VMS) Zn–Pb–Cu deposit located 15 km north of Marrakesh within the Jebilet massif of the western Moroccan Meseta. The Draa Sfar deposit occurs within the Sarhlef series, a volcano-sedimentary succession that hosts other massive sulphide deposits (e.g., Hajar, Kettara) within the dominantly siliciclastic sedimentary succession of the lower Central Jebilet. At Draa Sfar, the footwall lithofacies are dominated by grey to black argillite, carbonaceous argillite and intercalated siltstone with localized rhyodacitic flows and domes, associated in situ and transported autoclastic deposits, and lesser dykes of aphanitic basalt and gabbro. Thin- to thick-bedded, black carbonaceous argillite, minor intercalated siltstone, and a large gabbro sill dominate the hanging wall lithofacies. The main lithologies strike NNE–SSW, parallel to a pronounced S1 foliation, and have a low-grade, chlorite–muscovite–quartz–albite–oligoclase metamorphic assemblage. The Draa Sfar deposit consists of two stratabound sulphide orebodies, Tazakourt to the south and Sidi M'Barek to the north. Both orebodies are hosted by argillite in the upper part of the lower volcano-sedimentary unit. The Tazakourt and Sidi M'Barek orebodies are highly deformed, sheet-like bodies of massive pyrrhotite (up to 95% pyrrhotite) with lesser sphalerite, galena, chalcopyrite, and pyrite. The Draa Sfar deposit formed within a restricted, sediment-starved, fault-controlled, anoxic, volcano-sedimentary rift basin. The deposit formed at and below the seafloor within anoxic, pelagic muds.The argillaceous sedimentary rocks that surround the Draa Sfar orebodies are characterized by a pronounced zonation of alteration assemblages and geochemical patterns. In the more proximal volcanic area to the south, the abundance of medium to dark green chlorite progressively increases within the argillite toward the base of the Tazakourt orebody. Chlorite alteration is manifested by the replacement of feldspar and a decrease in muscovite abundance related to a net addition of Fe and Mg and a loss of K and Na. In the volcanically distal and northern Sidi M'Barek orebody alteration within the footwall argillite is characterized by a modal increase of sericite relative to chlorite. A calcite–quartz–muscovite assemblage and a pronounced decrease in chlorite characterize argillite within the immediate hanging wall to the entire Draa Sfar deposit. The sympathetic lateral change from predominantly sericite to chlorite alteration within the footwall argillite with increasing volcanic proximity suggests that the higher temperature part of the hydrothermal system is coincident with a volcanic vent defined by localized rhyodacitic flow/domes within the footwall succession.  相似文献   

19.
Chemical analyses suggest that the metavolcanic rocks of the Almas Greenstone Belt (AGB), Tocantins State, Brazil have a continental affinity, possibly related to a continental rift environment. They were metamorphosed to amphibolite facies during a regional tectono-metamorphic event (Dn), retrogressed to greenschist facies assemblages and then hydrothermally altered within dextral strike–slip shear zones (Dn+1). Fracture sets related to Dn+2 intersect Sn+1.The Paiol Gold Mine is one of several mineralised zones within metabasic and meta-intermediate rocks of the AGB. It exploits shoots of sulphide–Au–quartz mineralisation that occupy dilational zones approximately perpendicular to an elongation lineation (Ln+1) within mylonitic foliation Sn+1 (Sn+1=S within the S–C fabric). The dilational zones probably formed due to dextral displacement on sinistrally en echelon C surfaces. Minor amounts of gold may have been introduced or remobilised during Dn+2.Coexisting primary and pseudosecondary fluid inclusions in mineralised quartz veins from ore shoots comprise a high-salinity three-phase type (Type II) and a lower salinity two-phase type (Type I). Homogenisation temperatures for Type II inclusions range from 200 to 410 °C and Type I from 90 to 320 °C. The inclusions and their temperature ranges are believed to reflect heat exchange and some mixing between the two fluid types under relatively constant ambient temperatures, but variable (though broadly declining) fluid temperatures. This took place late in Dn+1 in conjunction with greenschist facies retrogression and localised hydrothermally induced metasomatism.  相似文献   

20.
The Milin Kamak gold-silver deposit is located in Western Srednogorie zone, 50 km west of Sofia, Bulgaria. This zone belongs to the Late Cretaceous Apuseni-Banat-Timok-Srednogorie magmatic and metallogenic belt. The deposit is hosted by altered trachybasalt to andesitic trachybasalt volcanic and volcanoclastic rocks with Upper Cretaceous age, which are considered to be products of the Breznik paleovolcano. Milin Kamak is the first gold-silver intermediate sulfidation type epithermal deposit recognized in Srednogorie zone in Bulgaria. It consists of eight ore zones with lengths ranging from 400 to 1000 m, widths from several cm to 3–4 m, rarely to 10–15 m, an average of 80–90 m depth (a maximum of 200 m) and dip steeply to the south. The average content of gold is 5.04 g/t and silver – 13.01 g/t. The styles of alteration are propylitic, sericite, argillic, and advanced argillic. Ore mineralization consists of three stages. Quartz-pyrite stage I is dominated by quartz, euhedral to subhedral pyrite, trace pyrrhotite and hematite in the upper levels of the deposit. Quartz-polymetallic stage II is represented by major anhedral pyrite, galena, Fe-poor sphalerite; minor chalcopyrite, tennantite, bournonite, tellurides and electrum; and trace pyrrhotite, arsenopyrite, marcasite. Gangue minerals are quartz and carbonates. The carbonate-gold stage III is defined by deposition of carbonate minerals and barite with native gold and stibnite.Fluid inclusions in quartz are liquid H2O-rich with homogenization temperature (Th) ranging from 238 to 345 °C as the majority of the measurements are in the range 238–273 °C. Ice-melting temperatures (Tm) range from −2.2 to −4.1 °C, salinity – from 3.7 to 6.6 wt.% NaCl equiv. These measurements imply an epithermal environment and low- to moderate salinity of the ore-forming fluids.δ34S values of pyrite range from −0.49 to +2.44‰. The average calculated δ34S values are 1.35‰. The total range of δ34S values for pyrite are close to zero suggesting a magmatic source for the sulfur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号