首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various aquatic plants from Lake Qinghai, the largest inland saline lake in China, and terrestrial plants from the surrounding area were investigated for the distribution of n-alkanes and their δD values. The n-alkanes in the samples range from C15 to C33 with C preference index (CPI) values of 4.0–29.7. The n-C23 or n-C25 alkane is the dominant compound in the aquatic submerged plants. The aquatic emergent and terrestrial plants have an abundance maximum at n-C27, n-C29 or n-C31. The average chain length (ACL) values, ranging from 26.0 to 29.6, are closely related to the plant species. The n-alkanes from the aquatic plants have mean δD values of −169‰ to −121‰ and those from the terrestrial plants values of −173‰ to −109‰. The H isotopic composition (δD) and fractionation differ significantly among the plants studied. Comparison shows that additional evaporative enrichment of the lake water associated with saline lakes and humidity influence the δD values of the n-alkanes in aquatic and terrestrial plants, respectively. The mean δD values of n-alkanes in the plants decrease with increasing ACL value. The n-alkanes from the different types of plants are more depleted in D relative to environmental water and those from aquatic plants (with a mean value of −143‰) have a greater isotopic fractionation than terrestrial plants (mean value −113‰).  相似文献   

2.
《Applied Geochemistry》2004,19(1):55-72
Bulk and molecular stable C isotopic compositions and biomarker distributions provide evidence for a diverse community of algal and bacterial organisms in the sedimentary organic matter of a carbonate section throughout the Permian–Triassic (P/Tr) transition at the Idrijca Valley, Western Slovenia. The input of algae and bacteria in all the Upper Permian and Lower Scythian samples is represented by the predominance of C15–C22 n-alkanes, odd C-number alkylcyclohexanes, C27 steranes and substantial contents of C21–C30 acyclic isoprenoids. The occurrence of odd long-chain n-alkanes (C22–C30) and C29 steranes in all the samples indicate a contribution of continental material. The decrease of Corg and Ccarb contents, increase of Rock-Eval oxygen indices, and 13C-enrichment of the kerogen suggest a decrease in anoxia of the uppermost Permian bottom water. The predominance of odd C-number alkylcycloalkanes, C27 steranes, and C17 n-alkanes with δ13C values ∼−30‰, and 13C-enrichment of the kerogens in the lowermost Scythian samples are evidence of greater algal productivity. This increased productivity was probably sustained by a high nutrient availability and changes of dissolved CO2 speciation associated to the earliest Triassic transgression. A decrease of Corg content in the uppermost Scythian samples, associated to a 13C-depletetion in the carbonates (up to 4‰) and individual n-alkanes (up to 3.4‰) compared to the Upper Permian samples, indicate lowering of the primary productivity (algae, cyanobacteria) and/or higher degradation of the organic matter.  相似文献   

3.
Hydrogen isotopic composition of n-alkanes was measured in sediments from an excavated profile of the Early Cretaceous Yixian Formation in Liaoning Province, NE China, aiming to assess the significance of the δD value of n-alkanes in ancient lacustrine sediments as the indicator for determining the source inputs of organic matters and paleoclimatic conditions. The δD values of n-alkanes are in the range of − 250‰ to − 85‰ and display an obvious three-stage variation pattern through the profile, which is consistent with the distribution of the dominated n-alkanes and the profile of their δ13C values. The δD and δ13C values of n-alkanes suggest that short-chain n-alkanes are primarily derived from photosynthetic bacteria and algae; n-C29 and n-C31 are mainly originated from terrestrial higher plants; n-C28 and n-C30 may be derived from the same precursor but via the different biological mechanism of hydrogen isotopic fractionation; while the source inputs of medium-chain n-alkanes are more complicated, with n-C23 being derived from some specific algae or biosynthesized by various aquatic organisms. The paleoclimatic conditions are reconstructed via two approaches. The reconstructed hydrogen isotopic values of lake water and meteoric water (expressed as δDLW and δDMW, respectively) were at the intervals of − 51.8‰ to 17.0‰ and − 118.1‰ to − 43.5‰, respectively, indicating a general climate transition from semi-arid to arid. The calculated ΔδDLW-MW values vary from 37.0‰ to 89.1‰ and display a similar but a significant large-scale variation trend with the ΔδDC23  long (− 28.8‰ to 85.0‰; long represents long-chain n-alkanes) and ΔδDmid-long (− 15.4‰ to 43.4‰; mid represents medium-chain n-alkanes) values. The discrepancy may be attributed to the source input overlap for n-alkanes and the uncertainties of εwater/lipid values. The coupling of ΔδDC23  long, ΔδDmid-long and ΔδDLW-MW values with the paleoclimatic evidence indicates that the δD values of n-alkanes could be more sensitive to the change of paleoclimatic conditions.  相似文献   

4.
We present a systematic study of chain-length distributions and D/H ratios of n-alkyl lipids (both n-alkanes and n-alkanoic acids) in a wide range of terrestrial and aquatic plants around and in Blood Pond, Massachusetts, USA. The primary goal is to establish a model to quantitatively assess the aquatic plant inputs of the mid-chain length n-alkyl lipids to lake sediments and to determine the average hydrogen isotopic ratios of these lipids in different plants. Our results show that middle-chain n-alkyl lipids (C21-C23n-alkanes and C20-C24n-alkanoic acids) are exceptionally abundant in floating and submerged aquatic plants, in contrast to the dominance of long-chain n-alkyl lipids (C27-C31n-alkanes and C26-C32n-alkanoic acids) in other plant types, which are consistent with previously published data from Mountain Kenya and the Tibetan Plateau. Combining available data in different environmental settings allows us to establish statistically robust model distributions of n-alkyl lipids in floating/submerged macrophytes relative to other plant types. Based on the model distributions, we established a multi-source mixing model using a linear algebra approach, in order to quantify the aquatic inputs of mid-chain n-alkyl lipids in lake sediments. The results show that ∼97% of the mid-chain n-alkyl lipids (C23n-alkane and C22n-acid (behenic acid)) in Blood Pond sediments are derived from floating and submerged macrophytes. In addition, D/H ratios of C22n-acid and C23n-alkane in the floating and submerged plants from Blood Pond display relatively narrow ranges of variation (−161 ± 16‰ and −183 ± 18‰, respectively). Our study demonstrates that mid-chain n-alkyl lipids such as C23n-alkane and C22n-acid could be excellent recorders of past lake water isotopic ratios in lakes with abundant floating and submerged macrophyte inputs.  相似文献   

5.
We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C23-C33n-alkanes ranged from −37.2‰ to −31.5‰, while δD values of these alkanes showed a large degree of variability that ranged from −244‰ to −180‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C vs. δD diagram of n-alkanes among forest, wetland and lake samples showed that C25-C31n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.  相似文献   

6.
During the last decade, compound-specific hydrogen isotope analysis of plant leaf-wax and sedimentary n-alkyl lipids has become a promising tool for paleohydrological reconstructions. However, with the exception of several previous studies, there is a lack of knowledge regarding possible effects of early diagenesis on the δD values of n-alkanes. We therefore investigated the n-alkane patterns and δD values of long-chain n-alkanes from three different C3 higher plant species (Acer pseudoplatanus L., Fagus sylvatica L. and Sorbus aucuparia L.) that have been degraded in a field leaf litterbag experiment for 27 months.We found that after an initial increase of long-chain n-alkane masses (up to ∼50%), decomposition took place with mean turnover times of 11.7 months. Intermittently, the masses of mid-chain n-alkanes increased significantly during periods of highest total mass losses. Furthermore, initially high odd-over-even predominances (OEP) declined and long-chain n-alkane ratios like n-C31/C27 and n-C31/C29 started to converge to the value of 1. While bulk leaf litter became systematically D-enriched especially during summer seasons (by ∼8‰ on average over 27 months), the δD values of long-chain n-alkanes reveal no systematic overall shifts, but seasonal variations of up to 25‰ (Fagus, n-C27, average ∼13‰).Although a partly contribution by leaf-wax n-alkanes by throughfall cannot be excluded, these findings suggest that a microbial n-alkane pool sensitive to seasonal variations of soil water δD rapidly builds up. We propose a conceptual model based on an isotope mass balance calculation that accounts for the decomposition of plant-derived n-alkanes and the build-up of microbial n-alkanes. Model results are in good agreement with measured n-alkane δD results. Since microbial ‘contamination’ is not necessarily discernible from n-alkane concentration patterns alone, care may have to be taken not to over-interpret δD values of sedimentary n-alkanes. Furthermore, since leaf-water is generally D-enriched compared to soil and lake waters, soil and water microbial n-alkane pools may help explain why soil and sediment n-alkanes are D-depleted compared to leaves.  相似文献   

7.
The presence of PAHs, n-alkanes, pristane, and phytanes in core sediment from the Vossoroca reservoir (Parana, southern Brazil) was investigated. The total concentration of the 16 PAHs varied from 15.5 to 1646 μg kg−1. Naphthalene was present in all layers (3.34–74.0 μg kg−1). The most abundant and dominant n-alkanes were n-C15 and n-C36, with average concentrations of 198.1 ± 46.8 and 522.9 ± 167.7 μg kg−1, respectively. Lighter n-alkanes were distributed more evenly through the layers and showed less variation, specially n-C9, n-C12, and n-C18, with average concentrations of 14.6 ± 3.0, 31.6 ± 1.9, and 95.0 ± 5.2 μg kg−1, respectively; heavier n-alkanes were more unevenly distributed.  相似文献   

8.
Most research on long chain methyl ketones has focused on their origins and distributions. Their application in paleoclimate studies is less common than that of other n-alkyl lipids. The goal of this research was to explore this potential by studying n-alkan-2-ones from the Hani peat sequence in northeastern China. They were identified using gas chromatography-mass spectrometry (GC-MS) and showed a distribution ranging from C19 to C31 with a strong odd/even predominance. This type of distribution is considered to derive from Sphagum and microbial oxidation of n-alkanes. Comparison with climate sensitive indicators and macrofossil analysis shows that microbial oxidation of n-alkanes derived from higher plants was enhanced during the warm early Holocene period. This led us to develop three n-alkan-2-one proxies - C27/ΣC23-31 (C27/HMW-KET), carbon preference index (CPIH-KET) and average chain length (ACL(27-31)-KET) - as possible indicators of paleoclimate in the peat-forming environment. These proxies, in combination with C27n-alkane δD values and peat cellulose δ18O records, might allow examination of paleo-ecosystem behavior during climatic evolution in northeastern China over the past 16,000 yr.  相似文献   

9.
A Pliocene oil shale (Pula, Hungary), a C3 plant Triticum aestivum and a C4 plant Zea mays were compared using isotopic composition of bulk organic matter, along with distributions and individual carbon isotope ratios of n-alkanes from organic extracts. The microalga Botryococcus braunii (A race) was thus shown to be the main source of the predominant 27, 29 and 31 n-alkanes of Pula sediment Therefore, the dominance of odd carbon-numbered n-alkanes in the range C2535 in extracts from immature sediments shall not be systematically assigned to higher plant contribution but algal input is also possible. In fact, the long chain n-alkanes with an odd predominance previously observed in extracts of various immature sediments are likely to be derived at least partially, from algae.  相似文献   

10.
The free, adsorbed and inclusion oils were recovered by sequential extraction from eleven oil and tar containing reservoir rocks in the Tazhong Uplift of Tarim Basin. The results of gas chromatography (GC) and GC–mass spectrometry analyses of these oil components and seven crude oils collected from this region reveal multiple oil charges derived from different source rocks for these oil reservoirs. The initially charged oils show strong predominance of even over odd n-alkanes in the range n-C12 to n-C20 and have ordinary maturities, while the later charged oils do not exhibit any predominance of n-alkanes and have high maturities. The adsorbed and inclusion oils of the reservoir rocks generally have high relative concentrations of gammacerane and C28 steranes, similar to the Cambrian-Lower Ordovician source rocks. In contrast, the free oils of these reservoir rocks generally have low relative concentrations of gammacerane and C28 steranes, similar to the Middle-Upper Ordovician source rocks. There are two interpretations of this result: (1) the initially charged oils are derived from the Cambrian-Lower Ordovician source rocks while the later charged oils are derived from the Middle-Upper Ordovician source rocks; and (2) both the initially and later charged oils are mainly derived from the Cambrian-Lower Ordovician source rocks but the later charged oils are contaminated by the oil components from the Silurian tar sandstones and the Middle-Upper Ordovician source rocks.  相似文献   

11.
Lipids extracted from lacustrine deposits in the paleolake Qarhan of the Qaidam basin in the northeastern Tibetan Plateau were determined by conventional gas chromatography-mass spectrometry. Several series of biomarkers were identified, mainly including n-alkanes, n-alkan-2-ones, n-alkanoic acids, branched alkanes, triterpenoids and steroids, indicative of various biogenic contributions. On the basis of cluster analysis, the n-C15, n-C17, n-C19 alkanes were proposed to be derived from algae and/or photosynthetic bacteria, the n-C21, n-C23, n-C25 homologues from aquatic plants, and the n-C29, n-C31 homologues from vascular plants. In contrast, the n-C27 alkane is not categorized in the n-C29 and n-C31 group of alkanes, probably due to more complex origins including both aquatic and vascular plants, and/or differential biodegradation. Stratigraphically, layers-2, 4 and 5 were found to show a close relationship in n-alkane distribution, associated with a positive shift in carbon isotope composition of bulk organic matter (δ13Corg), inferring a cold/dry period. Layers-1 and 6 were clustered together in association with a negative δ13Corg, excursion, probably indicating a relatively warm/humid climate. The potential coupling between the n-alkane distributions and δ13Corg, suggests a consequence of vegetation change in response to climate change, with the late MIS3 being shown to be unstable, thought to be the climatic optimum in the Tibetan Plateau. Our results suggest that the cluster analysis used in this study probably provides an effective and authentic method to investigate the n-alkane distribution in paleolake sediments.  相似文献   

12.
We characterized the compositions of organic compounds in a Cheremushka bog sediment core (deposited over the last 35 kyr), located at the eastern coast of Lake Baikal, to obtain basic information about the terrestrial organic matter (OM) which contributed to Lake Baikal sediments. The bog sediment was analyzed for the molecular composition of n-alkanes, lignin phenols and n-C24 to C30 alkanoic acids, as well as the carbon isotopic composition of plant wax derived n-C27 to C33 alkanes.Concentrations of lignin phenols [vanillyl (V) plus syringyl (S) phenols] normalized to total organic carbon (TOC) in the Holocene are twice those for the last glacial maximum (LGM), while concentrations of TOC-normalized n-C24 to C30 alkanoic acids do not change markedly in this period. Thus, the ratio of lignin phenols to n-C24 to C30 alkanoic acids increases from the LGM to the Holocene. This result is essentially consistent with pollen analysis indicating an expansion of woody plants in the Holocene and a prevailing herb-abundant environment for the LGM. The δ13C values of n-C27 to C33 alkanes (e.g. ?29‰ to ?33‰ for C31) indicate the presence of C3-dominant plants throughout the core.The contribution of terrestrial OM to Lake Baikal sediments was estimated using the biomarkers, on the assumption that the OM in the bog sediments is a representative of the terrestrial OM around the lake. Hence, the estimation using lignin phenol or n-C24 to C30 alkanoic acid parameters indicates that 11–24% of the TOC in the Academician Ridge sediments is land-derived for both the Holocene and the LGM, which is similar to the estimates from C/N values of bulk OM. However, the estimates for terrestrial OM using the n-C27 to C33 alkane parameter are generally higher than those using lignin phenol or n-C24 to C30 alkanoic acid parameters. The difference is thought to be associated with the difference in source and behavior of these biomarkers.  相似文献   

13.
The occurrence of C12C22n-alkanes with a strong even carbon-number preference is reported in recent and Miocene sediments, encompassing marine and freshwater systems, deposited under oxic and anoxic conditions. It is therefore shown that these n-alkanes can be found in a wider type of sedimentary environment than those previously described. The occurrence in some cases of a parallel distribution of C14C20n-alk-1-enes is also illustrated. A variety of biological sources, including both marine and freshwater bacteria as well as fungi and yeast species is suggested to account for such distributions.  相似文献   

14.
The carbon isotope composition (δ13C values) of long chain n-alkanes in lake sediments has been considered a reliable means of tracking changes in the terrigenous contribution of plants with C3 and C4 photosynthetic pathways. A key premise is that long chain leaf wax components used for isotope analysis are derived primarily from terrigenous higher plants. The role of aquatic plants in affecting δ13C values of long chain n-alkanes in lacustrine sediments may, however, have long been underestimated. In this study, we found that a large portion of long chain n-alkanes (C27 and C29) in nearshore sediments of the Lake Qinghai catchment was contributed by submerged aquatic plants, which displayed a relatively positive carbon isotope composition (e.g. −26.7‰ to −15.7‰ for C29) similar to that of terrestrial C4 plants. Thus, the use of δ13C values of sedimentary C27 and C29 n-alkanes for tracing terrigenous vegetation composition may create a bias toward significant overestimation/underestimation of the proportion of terrestrial C4 plants. For sedimentary C31, however, the contribution from submerged plants was minor, so that the δ13C values for C31 n-alkane in surface sediments were in accord with those of the modern terrestrial vegetation in the Lake Qinghai region. Moreover, we found that changes in the δ13C values of sedimentary C27 and C29 n-alkanes were closely related to water depth variation. Downcore analysis further demonstrated the significant influence of endogenous lipids in lake sediments for the interpretation of terrestrial C4 vegetation and associated environment/climate reconstruction. In conclusion, our results suggest that the δ13C values of sedimentary long chain n-alkanes (C27, C29 and C31) may carry different environmental signals. While the δ13C values of C31 were a reliable proxy for C4/C3 terrestrial vegetation composition, the δ13C values of C27 and C29 n-alkanes may have recorded lake ecological conditions and sources of organic carbon, which might be affected by lake water depth.  相似文献   

15.
Numerous Ordovician oils worldwide are known to show unusual and distinctive distributions of hydrocarbons which, it has been suggested, are derived from a “unique benthonic mat-forming non-photosynthetic prokaryotic organism”, Gloeocapsomorpha prisca Zalessky 1917, which is the major contributor of organic matter. Organic matter-rich sediments from the Canning and Amadeus Basins of Australia, known to contain G. prisca fossils and to have the characteristic predominance of odd carbon number (C13–C19) n-alkanes, were investigated to determine other hydrocarbon distributions. Sediments from both basins contained abundant n-alkylcyclohexanes with odd carbon number predominance (C13–C19) and methyl-n-alkylcyclohexanes (C14–C20) which, in immature sediments, showed an even carbon number predominance. The isomer distribution of these latter compounds was determined by direct comparison with synthetic standards. The sediments from both basins also contained very similar distributions of steranes and pentacyclic triterpanes and the derived kerogens had a characteristically light carbon isotope signature.Pyrolysis of a G. prisca-rich kerogen yielded a hydrocarbon mixture with a similar composition to the sediment extract, except that there was a marked increase in the relative abundance of pristane, phytane, alkylcyclohexanes, steranes and hopanes relative to n-alkanes. We argue on the basis of the geological, geochemical and palynological data that G. prisca was probably planktonic, photosynthetic and very possibly eukaryotic and that the striking character of Ordovician oils and sediments derive from bacterial and other diagenetic imprints superimposed on the primary signature of this organism.  相似文献   

16.
Future climatic conditions may coincide with an increased potential for wildfires in grassland and forest ecosystems, whereby charred biomass would be incorporated into soils. Molecular changes in biomass upon charring have been frequently analysed with a focus on black carbon. Aliphatic and aromatic hydrocarbons, known to be liberated during incomplete combustion of biomass have been preferentially analysed in soot particles, whereas determinations of these compounds in charred biomass residues are scarce. We discuss the influence of increasing charring temperature on the aliphatic and aromatic hydrocarbon composition of crop grass combustion residues. Straw from rye, representing C3 grasses and maize, representing C4 grasses, was charred in the presence of limited oxygen at 300, 400 and 500 °C. Typical n-alkane distribution patterns with a strong predominance of long chain odd-numbered n-alkanes maximising at C31 were observed in raw straw. Upon combustion at 300 °C aliphatic hydrocarbons in char were dominated by sterenes, whereas at 400 °C sterenes disappeared and medium chain length n-alkanes, maximising around n-C20, with a balanced odd/even distribution were present. At a charring temperature of 500 °C n-alkane chain length shifted to short chain homologues, maximising at C18 with a pronounced predominance of even homologues. Even numbered, short chain n-alkanes in soils may thus serve as a marker for residues of charred biomass. Aromatic hydrocarbons indicate an onset of aromatization of biomass already at 300 °C, followed by severe aromatization upon incomplete combustion at 400–500 °C. The diagnostic composition of aliphatic and aromatic hydrocarbons from charred biomass affords potential for identifying residues from burned vegetation in recent and fossil soils and sediments.  相似文献   

17.
《Organic Geochemistry》1987,11(4):291-302
Normal alkanes (n-C13n-C36), isoprenoid hydrocarbons (i-C15, i-C16, i-C18, i-C19, and i-C20) triterpanes (C27C32), and (C27C29) are present in low concentrations offshore Antarctica in near-surface, Quaternary sediment of the Wilkes Land continental margin and of the western Ross Sea. The distributions of these hydrocarbons are interpreted relative to possible sources and processes. The hydrocarbons appear to be mixtures of primary and recycled material from marine and terrigenous sources. The n-alkanes are most abundant and are characterized by two distinct populations, one of probable marine origin and the other likely from terrigenous, vascular plant sources. Because the continent of Antarctica today is devoid of higher plants, the plant-derived hydrocarbons in these offshore sediments probably came from wind-blown material and recycled Antarctic sediment that contains land-plant remains from an earlier period of time. Isoprenoid hydrocarbons are partially recycled and mainly of marine origin; the dominance of pristane over phytane suggests oxic paleoenvironmental conditions. Both modern and ancient triterpanes and steranes are present, and the distribution of these indicates a mixture of primary and recycled bacterial, algal, and possible higher-plant materials. Although the sampled sediments were deposited during the Quaternary, they apparently contain a significant component of hydrocarbons of pre-Quaternary age.  相似文献   

18.
A large predominance of docosane, a wide range of n-alkanes otherwise possessing an odd/even ratio and a complex mixture of branched/cyclic hydrocarbons has been isolated from polythene vial closures. One of two types of polythene feedstock granules of a type used in the manufacture of laboratory plastic ware gave similar results with the exception that the n-alkane homology possessed a slight even/odd predominance; the other type produced a small amount of alkanes in which the normals had a more pronounced even/odd predominance. These findings are noteworthy on two counts. Firstly, docosane has been reported to be a predominant member of the homologous n-alkanes isolated from a series of sediments and indeed its predominance has been suggested as a measure of the maturity of these sediments. Secondly, odd/even alkane homologies are usually regarded, in geochemical analyses, as being biological environmental indicators.  相似文献   

19.
Even-carbon number C22-C28n-alkanes, are present in higher concentrations than their C21-C29 odd-carbon number homologs in an organic-rich rock of Mississippian (ca. 310 × 106-yr-old) age, which contains algae-like remnants. Environmental indicators associated with this organic-rich rock permitted environmental comparison with ancient and modern environments that contain n-alkanes which exhibit similar distributions. The results of these comparisons suggest that even-carbon number n-alkanes are preferentially produced in highly saline, carbonate environments where aerobic and anaerobic bacteria have subsisted on the remains of blue-green algae.  相似文献   

20.
We determined the distribution of lipids (n-alkanes and n-alkan-2-ones) in present-day peat-forming plants in the Roñanzas Bog in northern Spain. Consistent with the observation of others, most Sphagnum (moss) species alkanes maximized at C23, whereas the other plants maximized at higher molecular weight (C27 to C31). We show for the first time that plants other than seagrass and Sphagnum moss contain n-alkan-2-ones. Almost all the species analysed showed an n-alkan-2-one distribution between C21 and C31 with an odd/even predominance, maximizing at C27 or C29, except ferns, which maximized at lower molecular weight (C21-C23). We also observed that microbial degradation can be a major contributor to the n-alkan-2-one distribution in sediments as opposed to a direct input of ketones from plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号