首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shilu is a large porphyry–skarn deposit in the Yunkai district in Guangdong Province, South China. The Shilu granitic intrusion in the mine area is a granodiorite which is genetically related to Cu mineralization. Plagioclase in the granodiorite has a zoned texture and is mainly andesine with minor amounts of labradorite, whereas the K-feldspars exhibit Carlsbad twins and some are also characterized by a zonal texture. K-feldspars from the granodiorite show high contents of Or (87–92 wt.%) with minor Ab (8–13 wt.%) and negligible An value of 0–0.3 wt.%. Biotite can be classified as magnesio-biotite, and is characterized by Mg-rich [Mg/(Mg + Fe) = 0.54–0.60] and AlVI-low (average values = 0.11). Hornblende is chiefly magnesiohornblende and tschermakite. LA-ICP-MS zircon U–Pb age of the Shilu granodiorite is 107 ± 0.7 Ma, which is consistent with molybdenites Re–Os age of 104.1 ± 1.3 Ma. Geochemical data indicate that the Shilu granodiorite is silica-rich (SiO2 = 63.43–65.03 wt.%) and alkali-rich (K2O + Na2O = 5.45–6.05 wt.%), as well as calcium-rich (CaO = 4.76–5.1 wt.%). Trace element geochemistry results show enrichments in large ion lithophile elements (e.g., Rb, K, and Ba) and depletions in some high field strength elements (e.g., Nb, P, Ta, and Ti). The total rare earth element (REE) content of the granodioritic rocks is low (∑ REE < 200 ppm), and is characterized by light REE enrichment [(La/Yb)N > 9] and moderately negative Eu anomalies (Eu/Eu* = 0.83–0.90). These mineralogical, geochronological, and geochemical results suggest that the Shilu granodiorite has a mixed crust–mantle source with a geochemical affinity to I-type granitoids. Hornblende thermobarometry yielded magmatic crystallization temperatures of 686–785 °C and crystallization pressures between 1.0 and 2.34 kbar, which is converted to depths in a range of 3.31 to 7.71 km. Biotite thermobarometry yielded similar temperatures and lower pressures of 680–780 °C and 0.8–2 kbar (depth 2.64–6.6 km), respectively. The parent magma had a high oxygen fugacity. The Shilu granodiorite has a relatively low εNd/t–t value and high (87Sr/86Sr)i value, and Nd isotopes yield two-stage depleted mantle Nd model ages of 969–1590 Ma. Our new data, combined with previous studies, imply that the granodiorite and the associated Shilu Cu–Mo deposit was formed in an extensional environment, closely related to remelting of residual subducted slab fragments in the Jurassic.  相似文献   

2.
Unconsolidated sand, gravel and clay deposits near Beihai and in the Leizhou Peninsula in southern China form an unconfined aquifer, aquitard and a confined aquifer. Water and soil samples were collected from the two aquifers in the coastal Beihai area for the determination of chemical compositions, minerals and soluble ions. Hydrogeochemical modeling of three flow paths through the aquitard are carried out using PHREEQC to determine water–rock interactions along the flow paths. The results indicate that the dissolution of anorthite, fluorite, halite, rhodochrosite and CO2, and precipitation of potash feldspar and kaolinite may be occurring when groundwater leaks through the aquitard from the unconfined aquifer to the confined aquifer. Cation exchanges between Na and Ca can also happen along the flow paths.  相似文献   

3.
Long-standing controversy persists over the presence and role of iron–rich melts in the formation of volcanic rock-hosted iron deposits. Conjugate iron–rich and silica–rich melt inclusions observed in thin-sections are considered as direct evidence for the presence of iron-rich melt, yet unequivocal outcrop-scale evidence of iron-rich melts are still lacking in volcanic rock-hosted iron deposits. Submarine volcanic rock-hosted iron deposits, which are mainly distributed in the western and eastern Tianshan Mountains in Xinjiang, are important resources of iron ores in China, but it remains unclear whether iron-rich melts have played a role in the mineralization of such iron ores. In this study, we observed abundant iron-rich agglomerates in the brecciated andesite lava of the Heijianshan submarine volcanic rock–hosted iron deposit, Eastern Tianshan, China. The iron-rich agglomerates occur as irregular and angular masses filling fractures of the host brecciated andesite lava. They show concentric potassic alteration with silicification or epidotization rims, indicative of their formation after the wall rocks. The iron-rich agglomerates have porphyritic and hyalopilitic textures, and locally display chilled margins in the contact zone with the host rocks. These features cannot be explained by hydrothermal replacement of wall rocks(brecciated andesite lava) which is free of vesicle and amygdale, rather they indicate direct crystallization of the iron-rich agglomerates from iron-rich melts. We propose that the iron-rich agglomerates were formed by open-space filling of volatile-rich iron-rich melt in fractures of the brecciated andesite lava. The iron-rich agglomerates are compositionally similar to the wall-rock brecciated andesite lava, but have much larger variation. Based on mineral assemblages, the iron-rich agglomerates are subdivided into five types, i.e., albite-magnetite type, albite-K-feldsparmagnetite type, K-feldspar–magnetite type, epidote-magnetite type and quartz-magnetite type, representing that products formed at different stages during the evolution of a magmatic-hydrothermal system. The albite-magnetite type represents the earliest crystallization product from a residual ironrich melt; the albite-K-feldspar-magnetite and K-feldspar-magnetite types show features of magmatichydrothermal transition, whereas the epidote-magnetite and quartz-magnetite types represent products of hydrothermal alteration. The occurrence of iron-rich agglomerates provides macroscopic evidence for the presence of iron-rich melts in the mineralization of the Heijianshan iron deposit. It also indicates that iron mineralization of submarine volcanic rock-hosted iron deposits is genetically related to hydrothermal fluids derived from iron-rich melts.  相似文献   

4.
The Oubulage copper-gold deposit locates in the Alashan region of west Inner Mongolia Autonomous Region, was fourid recently in an assessment performed by team 511, Inner Mongolia Nonferrous Metals Geological Exploration Bureau. With large scale potentiality, the deposit distributes in lower Permian volcanic rock and subvolcanic rock, the main hosting rocks are quartz porphyry, dacitic melted volcanic breccia and liparitic volcanic breccia. Single zircon U-Pb and quartz 40Ar/39 Ar methods are applied to determine U-Pb ages of quartz porphyry vein of metallogenic epoch, and 40Ar/ 39 Ar age of ore-bearing quartz vein. The experiment results show that the age of quartz porphyry is 277. 4±3 Ma and the age of ore-bearing quartz vein is 264. 3±0. 5 Ma, indicating that Oubulage copper-gold deposit was formed in the late Hereynian Period. This copper-gold deposit and other gold deposits in the same area, such as Zhulazaga gold deposit and Hulunxibai gold deposit, all were formed in the late Hereynian Period, implying that Hereynian Period is a major copper-gold ore-forming epoch in the west of China.  相似文献   

5.
Here we report the occurrence of some uncommon mineral assemblages including pääkönenite, aurostibite, native arsenic, native antimony, and native bismuth found in the Baogutu gold deposit in the western Junggar, Xinjiang, NW China. The mineralization could be generally subdivided into two types: the gold-bearing quartz-vein type mineralization and disseminated mineralization in the wall rocks. The sulfide minerals in gold lodes commonly include pyrite, arsenopyrite, marcasite, and stibnite. However, the L7 lode in No. 4 orebody and the L1 lode in No. 11 orebody of the Baogutu gold deposit are quite different in terms of their mineral assemblages. The L7 lode contains native arsenic–quartz veins in shallow levels and stibnite–quartz veins at depth. Gold-bearing minerals (electrum, native gold, and rarely aurostibite) mainly coexist with pääkönenite, stibnite, native arsenic, and native antimony. The crystallization of As- and Sb-bearing minerals was likely to have consumed H2S from the hydrothermal fluid, which probably triggered the precipitation of native gold. The L1 lode consists of several discontinuous sulfide-dominated lensoid orebodies. The massive sulfide ores that produced most of the gold resource are characterized by an intimate association between native bismuth and native gold mineralization.  相似文献   

6.
《Tectonophysics》1987,135(4):329-345
Hydraulic fracturing stress measurements have been made in fifteen boreholes of various depths from 100 to 800 m in the Kanto-Tokai area since 1978. About 90 sets of in-situ stresses have been obtained successfully. The maximum and minimum horizontal compressive stresses increase linearly with depth in each borehole. The difference between the maximum and minimum principal stresses also increases with depth. The increase of stress difference with depth is interpreted in terms of large stress relaxation in shallow parts of the boreholes where low confining pressure and many pre-existing microcracks are dominant. The maximum shear stress at a depth of 400 m ranges from 1 to 8 MPa depending on the site. It is not always the case that the regions of small shear stresses are inactive in microseismicity and crustal movement. This phenomenon is attributed to the relaxation of shear stress at the measured depths and to the regional variation in increasing rate of shear stress. The maximum compressive stress direction is obtained from detection of the fracture azimuth after hydraulic fracturing. Stress direction measured at each borehole agrees well with that estimated from geologic and seismic methods near the measurement site. Several stress provinces where the stress directions appear almost uniform are defined in the Kanto-Tokai area. The regional distribution of the stress directions is understood in terms of the relative movement of three plates, the Philippine Sea, Pacific, and Eurasian plates, which are in contact with each other in this area.  相似文献   

7.
The Talvivaara deposit contains 1550 Mt of ore averaging 0.22% Ni, 0.13% Cu, 0.49% Zn and 0.02% Co. The precursors of the host rocks were deposited 2.1–1.9 Ga ago in a stratified marine basin. Fractured talc-carbonate rocks delineate the eastern border of the deposit and serpentinites and talc-carbonate rocks occur along the rift-related sequence to the north and south of Talvivaara. Characteristic features are high concentrations of organic carbon and sulphur with median values of 7.6% and 8.2%, respectively. Organic carbon is graphitic at present and a variety of sulphide textures occur, representing multiphase evolution during diagenesis, tectonic deformation and medium-grade regional metamorphism. The main sulphides of the Talvivaara ore are pyrrhotite, pyrite, sphalerite, chalcopyrite and pentlandite. Sulphides occur both as fine-grained disseminations and coarse grains or aggregates. Chalcopyrite mainly occurs in joint surfaces and quartz-sulphide veins and pentlandite occur as inclusions in pyrrhotite. Alabandite (MnS) occurs in black shales and black metacarbonate rocks. The early low-T sulphide minerals were overprinted by later stage processes. No framboidal pyrite is any longer present, but spheroidal pyrite with a grain size of < 0.01 mm and containing up to 0.7% Ni occurs. During the deposition of the organic-rich mud the anoxic/euxinic bottom waters were enriched in Ni+, Cu+ and Zn2 +. Sulphur isotope δ34S values indicate mixing of sulphur derived from different processes or fractionation by sulphate reduction in a restricted basin. Both thermochemical and bacterial sulphate reductions were important for the generation of reduced sulphur.  相似文献   

8.
Tsushima Island is one of the oldest zinc-lead mining areas in Japan. River water and sediment samples were collected mainly from Taishu area to determine the contamination level of Zn and to clarify its behaviour in the natural system. Among the water samples analysed, 64% exceeded the standard environmental limit of 0.03 µg ml− 1 for Zn. In most cases, Zn concentration in sediment samples also exceeded the standard value, and the concentration varied from 86.75–7490.07 µg g− 1. The mineralogical constituents in sediments were almost similar and quartz had the strongest peak, but the interior part of the ores had many minerals, with galena having the highest proportion. Considering the enrichment factor values (EFc), 12 samples have values of more than 50, indicating a high pollution load for Zn. This study revealed that the sulphide ores, and contaminated sediments, are the possible contamination sources of Shiine River, and Zn dissolution occurred by reactions, such as desorption and ion exchange.  相似文献   

9.
The newly discovered Fuxing porphyry Cu deposit is located in the Dananhu–Tousuquan arc, adjacent to the Tuwu–Yandong Cu deposits of Eastern Tianshan, in the southern Central Asian Orogenic Belt. The Fuxing deposit is hosted by volcanic rocks (basalt and dacite) in the Early Carboniferous Qi'eshan Group and Carboniferous felsic intrusions (plagiogranite porphyry, monzogranite, and quartz diorite). New SIMS zircon U–Pb dating indicates that the plagiogranite porphyry and monzogranite emplaced at 332.1 ± 2.2 Ma and 328.4 ± 3.4 Ma, respectively. The basalts are characterized by low SiO2 contents (47.47–54.90 wt.%), a lack of Eu anomalies, strong depletion of Na, Ta, and Ti elements but positive Sr, U, and Pb anomalies, high Y (20.8–28.2 ppm) and HREE concentrations (Yb = 2.23–3.06 ppm), and relatively low (La/Yb)N (2.20–3.92) values; the dacite samples have high SiO2 contents (66.13–76.93 wt.%), clearly negative Eu anomalies, high Mg# values (36–51), and high Y (41.8–54.9 ppm) and Yb (5.76–8.98 ppm) concentrations. The basalts and dacites exhibit similar signatures as normal arc rocks, and were considered to be derived from partial melting of mantle-wedge peridotite that was previously metasomatized by slab melts. In contrast, the plagiogranite porphyry, monzogranite, and quartz diorite show the same geochemical affinity with modern adakites, which are characterized by high SiO2 contents (67.55–79.00 wt.%), minor negative to positive Eu anomalies, strong depletion of heavy rare earth elements (Yb = 0.17–1.19 ppm) and Y (1.86–10.1 ppm), positive K, Rb, Sr, and Ba but negative Nb, Ta, Th, and Ti anomalies, and high (La/Yb)N ratios and Mg# values. Moreover, these adakitic felsic intrusions display relatively high positive zircon εHf(t) values (+ 11.4 to + 18.3), low 87Sr/86Sr (0.706080–0.711239), high 143Nd/144Nd (0.512692–0.512922) ratios, and consistent zircon δ18O values (4.41‰–5.48‰), suggesting that their parental magma were most likely derived from partial melting of the subducted oceanic crust followed by mantle peridotite interaction. Based on the whole-rock geochemical and Sr–Nd–Hf–O isotopic data, as well as detailed petrographic analyses, we further suggest that the Fuxing igneous rocks and associated porphyry Cu mineralization were generated by the northward subduction of the paleo-Tianshan oceanic plate beneath the Dananhu–Tousuquan island arc during the Early Carboniferous.  相似文献   

10.
The Zhongdian area in Yunnan, southwestern China, located at the southern end of the Yidun volcano-magmatic arc that was formed during the Triassic westward subduction of the Gaze-Litang Ocean, hosts numerous Triassic large porphyry and skarn deposits. The arc suffered Jurassic to Cretaceous arc-continental orogenic collision and Cenozoic intracontinental strike-slip shearing. The Hongshan Cu (–Mo–Pb–Zn) deposit is potentially a large deposit and contains two ore types: 1) predominant layered skarn Cu–(Pb–Zn) ores along marble-hornfels contacts; and 2) minor crosscutting vein-type Cu–Mo mineralization. Previous research forwards a two-stage genetic model without sufficient dating evidence, supposing the skarn mineralization is related to the Triassic calc-alkalic intrusions and the vein-type mineralization related to Cretaceous quartz monzonite porphyries. Re–Os dating of molybdenite from vein-type ores and quartz monzonite porphyries and that of pyrrhotite from skarn ores are presented here to constrain the mineralization age and rebuild the genetic model. Analyses of eight molybdenite samples yield an isochron age of 79.7 ± 3.1 Ma (MSWD = 9.2) for the vein-type mineralization and a model age of 81.9 ± 1.1 Ma for the quartz monzonite porphyries. Isotope data on seven pyrrhotite samples from the skarn ores yield an isochron age of 79 ± 16 Ma z(MSWD = 8.4). The Re–Os ages for the two ore types are concordant within analytical errors, indicating that the Hongshan deposit was formed in the Late Cretaceous. Elevated Re contents in molybdenite (13.65 to 63.91 μg/g) and extremely radiogenic initial 187Os/188Os ratios in pyrrhotite (0.7673 to 0.8184; weighted average 0.796 ± 0.038), together with elevated γOs values in pyrrhotite (507 to 547; average 528) imply a significant crustal component in the ore-forming materials that was likely derived from a lower crustal reservoir. Combined with the tectonic evolution of the Zhongdian area and geochemical characteristics of corresponding intrusions, the ages of mineralization obtained in this study indicate that the Hongshan deposit was formed in a post-collision setting with a genetic relationship to the emplacement of the quartz monzonite porphyry. These results provide significant new information for the study and exploration of the Late Cretaceous metallogeny in the Zhongdian area.  相似文献   

11.
On June 14 2008, an Iwate–Miyagi inland earthquake that had a magnitude of 7.2 hit the eastern foot of the Ohu Mountains in Tohoku district, Japan. The seismic peak ground acceleration was greater than 1,000 gal in the Aratozawa Dam area. The earthquake triggered a massive landslide at the upper reach of the dam. The landslide had the sediment volume of over 67 million cubic meters and is considered the largest catastrophic landslide in Japan during the last 100 years. This report presents a summary of our findings pertinent to the landslide’s activities based on our field investigations that started the day after the landslide. This report covers: (1) details of the land deformations caused by the landslide, (2) geological background pertinent to landslide development, and (3) estimation of the slip surface and the other physical properties of the landslide based on the analysis of the boring core specimens and landform features. The landslide is roughly divided into two sections, a lower and an upper half. The lower half moved almost simultaneously as one massive block of 700 m long, 800 m wide, and 70–80 m thick. The slip surface had developed on the very fine sand of the alternate layer of fine-grained sandstone and siltstone. The slickensided slip surface has a gradient of only 2°. This feature indicates that the type of the landslide movement is considered to be a block glide. The landslide body is nearly identical to the topography of the landslide area that was developed about 50,000 years ago. This shows the possibility that the landslide was reactivated. The upper half consists of two large ridges and the broad debris field and is 600 m long, 900 m wide, and 70–100 m thick. The maximum height of the main scarp is over 150 m.  相似文献   

12.
Analysis of magmatic and sedimentary rocks of several large igneous provinces has demonstrated that the release of gas during plutonic-metamorphic processes may be linked to global climate change and mass extinctions. Aguablanca, one of the largest Cu–Ni–PGE deposits in Europe, formed during the Variscan orogeny when a mafic magma intruded limestones and shales, creating a contact aureole composed of marble, skarn and hornfels. Our petrological and geochemical investigation of the aureole provides evidence that a combination of the two processes led to the formation of the ore deposit: The assimilation of terrigenous sediments supplied S to the magma while the assimilation of carbonates changed the oxygen fugacity and decreased the solubility of sulfur in the magma. The metamorphic assemblages in the contact aureole are directly related to heterogeneity of the protolith and particularly to the original proportions of calcite and clay. We modeled carbon dioxide degassing during contact metamorphism and showed that pure limestone is relatively unproductive because of its high reaction temperature. The presence of clay, however, leads to the formation of calc-silicates and significantly enhances CO2 degassing. Our estimations suggest that degassing of the Aguablanca contact aureole released about 74.8 Mt of CO2, a relatively low volume that we attribute to the composition of the host rock, mainly a pure limestone. A far larger volume of carbon dioxide was emitted by the contact metamorphism of dolostones in the contact aureole of Panzhihua (part of Emeishan large igneous province, SW China). We propose that the level of emission of carbon dioxide depends strongly on the nature of the protolith and has to be considered when predicting environmental impact during the emplacement of large igneous provinces.  相似文献   

13.
Wang  Minfang  Zhang  Xubo  Guo  Xiaonan  Pi  Daohui  Yang  Meijun 《Mineralogy and Petrology》2018,112(1):85-103
Mineralogy and Petrology - Electron probe microanalysis (EPMA) results are reported for newly identified silver–bearing minerals from the Xinhua deposit, Yunkaidashan area, South China. The...  相似文献   

14.
Tabular–type uranium ore deposits (the Hangjinqi and Daying deposits) have recently been found in the Middle Jurassic Zhiluo Formation, north of the Ordos Basin, China. Petrographic observations, the chemical composition of U minerals determined by EMPA and fs–LA–ICP–MS, whole rock geochemistry and the microthermometric study of fluid inclusions have been integrated to characterize the genetic conditions of the U mineralization in the Hangjinqi sandstone–hosted deposit. Two different groups of U minerals have been identified. One group includes coffinite(I) associated with vanadium–rich micas. Coffinite(I) is enriched in vanadium (V) and devoid of iron (Fe) and yttrium (Y) and has a LREE–enriched chondrite–normalized REE pattern. The U minerals of this group are similar to meteoric fluid infiltration related deposits. The second group has coeval coffinite(II) and coarsely crystalline calcite cement. Coffinite(II) is enriched in Y and Fe and depleted in V and is marked by a flat chondrite–normalized REE pattern, which is compatible with typical hydrothermal genetic deposits with high–salinity mineralizing fluids. The temperature and salinity of the primary aqueous inclusions in the ore–stage calcite are 120–180 °C and 8.00–16.34% (eq. wt% NaCl), respectively. These mineral assemblages, temperatures and salinities indicate that the Hangjinqi deposit was affected by two distinct types of ore–bearing fluids: low–salinity meteoric waters and high–salinity hydrothermal fluids. The meteoric fluids event began at 97 ± 5 Ma with the titling of the northern Ordos Basin and the uplift of the Hetao region to the north. Hydrothermal U mineralization occurred since 39 ± 2 Ma with the rifting of the Hetao graben. Thus, the previous biogenic model for the U mineralization should be modified in the uraniferous region of the north Ordos Basin.  相似文献   

15.
The paper reports the mineralogical and geochemical features of the Kysylga gold deposit located in the hornfelsed Norian sedimentary rocks and classified with low-sulfide gold–quartz type of deposits typical of the Verkhoyansk–Kolyma metallogenic province. Detailed typomorphic study of the major minerals (quartz, arsenopyrite, and gold) of the ore veins shows that the deposit is assigned to the gold–silver type. Mineralogical and geochemical data substantiate this conclusion.  相似文献   

16.
In the last few decades, a growing number of theorists have suggested that the natural environment can be a platform for promoting cooperation between former adversaries and can perhaps contribute to peacebuilding. However, environmental cooperation has not lived up to these claims. In many cases, such cooperation has largely been ineffective and/or inequitable. Therefore, there is a growing awareness that we cannot be overly optimistic at the first signs of ‘cooperation’. It is argued that this reality results from the great complexity inherent in cooperative interactions. This paper explores the nature of such cooperation in two Israeli–Palestinian case studies. The Israeli–Palestinian conflict is one of the longest-running protracted conflicts in the modern era and is currently characterised by a political stalemate. However, there is also a willingness by some at the local level to cooperate. Therefore Israel/Palestine provides an ideal case study. The findings of the paper illuminate the complex nature of environmental cooperation and reveal that even with the presence of good intentions, cooperation at the subnational level is impacted by the broader socio-political structures and contexts within which it is embedded. In these case studies, this is negatively affecting both the nature and scale of the processes and outcomes. Ultimately, these factors are making such interactions limited, unstable and/or prone to collapse. The paper concludes that only by conducting in-depth multi-tiered and context-specific analyses of cooperative processes and subsequently finding ways to overcome the identified barriers can we move towards more successful environmental cooperation.  相似文献   

17.
The Lanping–Simao Basin (LSB) is a Mesozoic–Cenozoic continental margin rift basin in Western China. It formed during the opening and closing of the Tethys Ocean. This basin is also known as a “metal belt” as it hosts several metal deposits, besides, the Mengye potash deposit. However, the exact dates of the formation either in the Paleocene or the Cretaceous, and thus the origins of the marine, continental or mixed origins of the Mengye deposits, remain disputed. Based on the basin's evolution, materials of marine origin and/or remnant seawater should be present, but instead the salt layers of the Mengye potash deposit present typically continental lithological features. This study examines and reviews evaporative minerals, Br/Cl and I/Cl molar ratios, and isotopes of S, B, and Sr·I and I/Cl data for this area has not been previously reported. The basin's evaporative minerals are dominated by halite and sylvite. The amounts of anhydrite, chlorocalcite, langbeinite, glaserite, tachyhydrite and glauberite are small. All of these form in both marine and continental environments. The values of I and the I/Cl molar ratios of halite and sylvite are from 0.07 to 0.27 ppm, and from 0.03 to 0.11 × 10 6, respectively, dependent on organic substances. Br and molar Br/Cl values are from 89.08 to 555.45 ppm and from 0.06 × 10 3 to 0.38 × 10 3, respectively. All of the Br/Cl molar ratios are lower than those of seawater, and most of them are < 0.1, suggesting continental or mixed origin. Previously published δ34S, δ11B and 87Sr/86Sr values for evaporative minerals indicate a continental origin for the Mengye potash deposit. However, materials of hydrothermal origin are widely distributed in the basin and may have played an active role for the formation of the potash deposit. Thus the Mengye potash deposit could be of continental origin, with a remnant seawater trace.  相似文献   

18.
19.
Fault zones control the locations of many ore deposits, but the ore-forming processes in such fault zones are poorly understood. We have studied the deformation and ore textures associated with fault zones that controlled the lead–zinc mineralization of the Dongmozhazhua deposit, central Tibet, ∼100 km southwest of Yushu City. Geological mapping shows that the structural framework of the Dongmozhazhua area is defined by NW–SE-trending reverse faults and superposed folds that indicate at least two stages of deformation. The first stage is characterized by tight nearly E–W-striking folds that formed during the closure of the Jinshajiang Paleo-Tethyan Ocean in the Triassic. The second stage of deformation produced NW–SE-trending reverse faults and related structures of the Fenghuoshan–Nangqian fold-and-thrust belt associated with India–Asia collision in the late Eocene to Oligocene. Scanline surveys along the ore-controlling fault zones show an internal structure that comprises a damage zone, a breccia zone with clasts that have become rounded, and a breccia zone with lenticular clasts, and this complex architecture was formed during at least two compressional substages of deformation. The Pb–Zn mineralization in the Dongmozhazhua area occurs exclusively close to NW–SE-trending reverse fault zones. Microtextural observations reveal that mineralization occurred as veinlets and disseminated blebs in limestone clasts, and as continuous bands and cements in fractured rocks. Cataclastic sulfide grains also can be seen in the matrix of some fault zones. The types of mineralization differ with structural position. The fillings of the ore-bearing veinlets typify the products of hydraulic fracture and both types of mineralization took place concurrently with regional contraction. We consider, therefore, that the ore-bearing fluids in the Dongmozhazhua deposit were concentrated in fault zones during regional compression and that the ore minerals were precipitated during hydraulic fracturing of host rocks. Subsequent fault activity pulverized some pre-existing sulfide material into cataclastic grains in the matrix of a tectonic breccia that developed in the same faults.  相似文献   

20.
ABSTRACT

The Circum–Balkhash–Junggar area, including mostly Kazakhstan, NW China, Russia, Kyrgyzstan, Tajikistan, Uzbekistan, and Mongolia, occupies an important tectonic position of the Central Asian Orogenic Belt (CAOB) (Figure 1). Tectonically, this vast area records the complicated geodynamic processes, among which the most prominent stages are the formation of the U-shaped Kazakhstan Orocline and its interactions with adjacent Altai (Altay), Junggar (West Junggar, Junggar Basin, and East Junggar), and Tianshan orogenic collages in the Palaeozoic, bearing large-scale mineral deposits. The formation of the Late Palaeozoic mineral deposits is related to the tectonic evolution of the Devonian and Carboniferous–Permian volcano-magmatic arcs in the region. However, the link between the metallogeny and the evolution of the volcano-magmatic arcs is not well understood and existing geodynamic models have not explained satisfactorily the mechanism of the huge metallogenic belt. Therefore, this special issue focuses on the formation of the Late Palaeozoic porphyry Cu deposits and their link to the tectonic evolution of the Devonian and Carboniferous–Permian volcano-magmatic arcs with emphasis on comparative studies across the international borders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号