首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solutes in saline groundwater (total dissolved solids up to 37 000 mg/L) in the Lake Cooper region in the southern margin of the Riverine Province of the Murray Basin are derived by evapotranspiration of rainfall with minor silicate, carbonate and halite dissolution. The distribution of hydraulic heads, salinity, percentage modern carbon (pmc) contents, and Cl/Br ratios imply that the groundwater system is complex with vertical flow superimposed on lateral flow away from the basin margins. Similarities in major ion composition, stable (O, H, and C) isotope, and 87Sr/86Sr ratios between groundwater from the shallower Shepparton Formation and the deeper Calivil – Renmark aquifer also imply that these aquifers are hydraulically interconnected. Groundwater in the deeper Calivil – Renmark aquifer in the Lake Cooper region has residence times of up to 25 000 years, implying that pre-land-clearing recharge rates were <1 mm/y. As in other regions of the Murray Basin, the low recharge rates account for the occurrence of high-salinity groundwater. Shallow (<20 m) groundwater yields exclusively modern 14C ages and shows a greater influence of evaporation over transpiration. Both these observations reflect the rise of the regional water-table following land clearing over the last 200 years and a subsequent increase in recharge to 10 – 20 mm/y. The rise of the regional water-table also has increased vertical and horizontal hydraulic gradients that may ultimately lead to the export of salt from the Lake Cooper embayment into the adjacent fresher groundwater resources.  相似文献   

2.
Since water resources of the Heihe River Basin are primarily in the form of surface runoff in the Qilian Mountains, identifying its sources and components is essential for researchers to understand water cycling and transformation in the basin. It will help to properly exploit water resources, and contribute to ecological environment construction. The paper uses the isotope data of hydrogen and oxygen in water and hydrochemistry data collected at a high altitude to trace the sources of surface runoff in Heihe River in rainy season and uses the three-component mixing model to estimate the contribution of each component to runoff. Results indicate that surface water consists of precipitation, melt water and groundwater, with precipitation being the primary component and contributing to 59%–64% of runoff. Melt water and groundwater account for 15%–25% and 12%–22%, respectively. Precipitation accounts for 60%, groundwater for 22% and glacial melt water for 18% of the outflow in the main stream of the Heihe River. The composition is of great significance for water cycling and conversion research as well as water resource evaluation and management.  相似文献   

3.
Yushugou River basin of East Tianshan Mountains receives water from melting glaciers. In recent years, the glaciers retreated strongly due to global warming which intensified the water cycle in the river basin. For this reason, the relation of water bodies based on hydrochemistry and isotope in the summer flood was carried out. Hydrochemistry research showed that there was frequent hydraulic interaction between river water and groundwater. Studying the isotopes and \(\hbox {Cl}^{-}\) of river water, glacier meltwater, groundwater and precipitation, indicated that Yushugou River was recharged by the glacier meltwater, groundwater and precipitation during the summer flood period. The analysis result based on the three-component mixing model showed that Yushugou River was recharged by 54.9% of glacier meltwater, 37.6% of the run-off came from groundwater, while less than 8% was contributed by precipitation. The study suggests that the role of glacier meltwater and groundwater, especially glacier meltwater, should be specially concerned in water resource protection and reasonable utilization, and the injection of glacier meltwater is the main reason for run-off variation in this alpine basin during the summer flood period.  相似文献   

4.
The present study was conducted to delineate the pollution vulnerability of the Quaternary aquifer in two areas, Imbaba and Shobra El-Khima, near Cairo, Egypt. Environmental isotopes combined with hydrochemistry were used for this purpose. The groundwater in the Imbaba area (average total dissolved solids about 900 mg/L; sodium/chloride, sulfate, and bicarbonate water types) is more mineralized than groundwater in the Shobra El-Khima area (average total dissolved solids 500 mg/L; calcium and sodium/bicarbonate water type). A high nitrate content and significant mineralization in the groundwater are probably due to contamination of recharge to the aquifer by irrigation drainage, deteriorated sewage networks, and septic tanks. The deuterium and oxygen-18 compositions of the groundwater are depleted compared to Nile River water, which is the main source of aquifer recharge. This less isotopically enriched water probably represents older Nile water recharge that flooded the region before construction of the Aswan High Dam in 1963, or it is a mixture of a young water and originally deposited paleowater that was in deeper horizons at a time of cooler and more humid climate. Intensive pumping has moved the paleowater higher in the aquifer. Groundwater in the Shobra El-Khima area has higher residence time, based on the tritium concentration, than groundwater in the Imbaba area. The percentage of the isotopically depleted water equals 75% in the Shobra El-Khima and 35% in Imbaba, and the thickness of the clay cap above the aquifer is 38 m in Shobra El-Khima and 20 m in Imbaba. These factors are indicative of the rate of recharge to the aquifer and were used to evaluate the pollution vulnerability in the two areas. Electronic Publication  相似文献   

5.
《Applied Geochemistry》2004,19(8):1233-1254
Combined hydrogeological and hydrogeochemical data allow flow systems and the origins of solutes in the Honeysuckle Creek area of the southeastern Murray Basin, which is an area affected by dryland salinity, to be constrained. Recharge occurs both on the uplands that are composed of fractured Violet Town Volcanic rocks and the Riverine Plain that comprises sediments of the Shepparton and Coonambidgal Formations. Groundwater from the Violet Town Volcanics has low salinity (<20 mmol/L Cl) and major ion geochemistry that is controlled largely by dissolution of silicate minerals. Low Cl/Br ratios (as low as 281 molar) suggest that this groundwater has not dissolved halite. Groundwater that recharged through the Riverine Plain sediments has higher Cl/Br ratios (up to 1146) and Cl concentrations of <20 mmol/L, consistent with it dissolving minor halite. Higher salinity (>20 mmol/L) groundwater has intermediate Cl/Br ratios (600–1000), which indicate that the high salinities do not simply result from halite dissolution. Rather, mixing of groundwater homogenises Cl/Br ratios, and evaporation as a consequence of a shallow water table is the dominant process that increases salinity. Oxygen and H isotopes also indicate that mixing and evaporation have occurred. These results indicate that land use over the whole region, not just the uplands, needs to be considered in any salinity management plans. Additionally future development of salinity is controlled by depth to the water table on the plains and the efficiency of recharge rather than by salt stores (halite or brines) in the unsaturated zone.  相似文献   

6.
Antimony is an element that is becoming of increasing concern as an environmental contaminant. Geothermal systems are a source of Sb into some fresh waters of New Zealand’s North Island. The purpose of this research was to determine the factors controlling the behaviour of geothermally-derived Sb in the large lowland Waikato River system. The Waikato River is New Zealand’s longest and most utilised river. Antimony in the system exhibited mainly conservative behaviour, and seasonally variable dilution was found to be the most important control on Sb concentrations. The most significant potential removal process was identified as adsorption of Sb onto suspended particulate material (SPM). The adsorption of Sb onto the SPM is enhanced at low (<5) pH conditions, and in the anoxic base of stratified lakes. There was evidence that the adsorption of Sb is mainly onto Fe oxides in SPM, and changes with changing Fe concentrations. Therefore, Sb adsorption was higher in winter (when Fe concentrations in SPM were higher) than in summer. In Lake Ohakuri, which was stratified during the late summer/early autumn of 2007, there was also potential for removal of Sb as Sb2S3 in the presence of sulfide formed in the anoxic layer. The behaviour of Sb was conservative through the estuary at the mouth of the river.  相似文献   

7.
This study presents results on the fluid and salt chemistry for the Makgadikgadi, a substantial continental basin in the semi-arid Kalahari. The aims of the study are to improve understanding of the hydrology of such a system and to identify the sources of the solutes and the controls on their cycling within pans. Sampling took place against the backdrop of unusually severe flooding as well as significant anthropogenic extraction of subsurface brines. This paper examines in particular the relationship between the chemistry of soil leachates, fresh stream water, salty lake water, surface salts and subsurface brines at Sua Pan, Botswana with the aim of improving the understanding of the system’s hydrology. Occasionally during the short wet season (December–March) surface water enters the saline environment and precipitates mostly calcite and halite, as well as dolomite and traces of other salts associated with the desiccation of the lake. The hypersaline subsurface brine (up to TDS 190,000 mg/L) is homogenous with minor variations due to pumping by BotAsh mine (Botswana Ash (Pty) Ltd.), which extracts 2400 m3 of brine/h from a depth of 38 m. Notable is the decrease in TDS as the pumping rate increases which may be indicative of subsurface recharge by less saline water. Isotope chemistry for Sr (87Sr/86Sr average 0.722087) and S (δ34S average 34.35) suggests subsurface brines have been subject to a lithological contribution of undetermined origin. Recharge of the subsurface brine from surface water including the Nata River appears to be negligible.  相似文献   

8.
9.
Environmental isotopes (particularly δ18O, δ2H, and δ13C values, 87Sr/86Sr ratios, and a14C) constrain geochemical processes, recharge distribution and rates, and inter-aquifer mixing in the Riverine Province of the southern Murray Basin. Due to methanogenesis and the variable δ13C values of matrix calcite, δ13C values are highly variable and it is difficult to correct 14C ages using δ13C values alone. In catchments where δ13C values, 87Sr/86Sr ratios, and major ion geochemistry yield similar a14C corrections, ∼15% of the C is derived from the aquifer matrix in the silicate-dominated aquifers, and this value may be used to correct ages in other catchments. Most groundwater has a14C above background (∼2 pMC) implying that residence times are <30 ka. Catchments containing saline groundwater generally record older 14C ages compared to catchments that contain lower salinity groundwater, which is consistent with evapotranspiration being the major hydrogeochemical process. However, some low salinity groundwater in the west of the Riverine Province has residence times of >30 ka probably resulting from episodic recharge during infrequent high rainfall episodes. Mixing between shallower and deeper groundwater results in 14C ages being poorly correlated with distance from the basin margins in many catchments; however, groundwater flow in palaeovalleys where the deeper Calivil–Renmark Formation is coarser grained and has high hydraulic conductivities is considerably more simple with little inter-aquifer mixing. Despite the range of ages, δ18O and δ2H values of groundwater in the Riverine Province do not preserve a record of changing climate; this is probably due to the absence of extreme climatic variations, such as glaciations, and the fact that the area is not significantly impacted by monsoonal systems.  相似文献   

10.
The Pecos River, situated in eastern New Mexico and western Texas, receives water from a drainage area of 91 000 km2. There are primarily two major water inputs, namely snowmelt from winter storms in the headwater region of the southern Rocky Mountains and runoff from warm-season monsoonal rainfall in the lower valley. The Pecos River suffers from high levels of total dissolved solids (TDS >5000 mg L−1) under normal flow conditions. This not only poses serious problems for agricultural irrigation and safe drinking water supply, but also results in a permanent loss of biodiversity. This study examines changes in stream flow and water chemistry of the Pecos River over the last 70 a to better understand the long-term variability in stream salinity and the role of agricultural practices in salt transfer. A TDS record from the lower Pecos River near Langtry (Texas) back to 1935 was extracted to show a distinct pattern of decadal variability similar to the Pacific Decadal Oscillation (PDO), in which stream salinity is overall above average when the PDO is in positive (warm) phase and below average when the PDO is in negative (cold) phase. This is due to: (1) the dissolved salts contributed to the river are largely from dissolution of NaCl and CaSO4-bearing minerals (e.g., halite and gypsum) in the upper basin, (2) the amount of the dissolved salts that reach the lower basin is mainly determined by the stream flow yield in the upper basin and (3) the stream flow yield from the upper basin is positively correlated with the PDO index. This further attests that large-scale climatic oscillation is the major source of long-term changes in stream flow and salinity of the Pecos River. On the other hand, there is also a strong indication that the rate of salt export has been affected by reservoir operations and water diversions for agricultural practices.  相似文献   

11.
Water resources have been overexploited for agricultural irrigation and industrial production in the upper and middle reaches of the Heihe River, northwestern China. Due to inadequate water resources management, the runoff entering into the lower reaches has been continuously reduced in recent years. The Heihe River is the primary recharge source for the groundwater of the lower reaches, so the decrease in runoff has caused the groundwater level to decline. As a result, a series of ecological and environmental problems has now appeared in the lower reaches, including river-flow interruptions, drying up of associated lakes, degeneration of vegetative cover and so on. In view of these issues, the National Water Diversion Project was put into practice in July 2000. It has significantly increased the quantity and frequency of flows entering into the lower reaches of the Heihe River, and has recharged the groundwater and improved the water quality to some degree along the length of the river. The water deliveries have had obvious influences on the groundwater in the lower reaches. The groundwater level increase and groundwater quality improvement have been of great benefit in restoring the ecological environment that was destroyed in past years.  相似文献   

12.
Russell J. Shiel 《GeoJournal》1996,40(1-2):101-113
Imbalances in aquatic ecosystems of the Murray-Darling Basin reflect 180 years of inappropriate land use practices. Regulation of most rivers in the Basin has reduced frequency or duration of inundation of floodplains, with profound effects on a species-rich, highly specialized aquatic biota. Exotic introductions (e.g. trout, carp) have further modified aquatic ecosystems. Floodplain billabongs (= ox-bow lakes) are critical to maintenance of floodplain biodiversity, yet with isolation of floodplains from the parent rivers, billabongs are being lost or severely degraded. Consideration is given to the apparent carrying-capacity of the Basin, the present over-commitment of its most valuable resource, water, and the prospects for amelioration in view of present conflicting land use and water abstraction requirements.  相似文献   

13.
Carbon and nitrogen dynamics were examined throughout the River Sava watershed, a major tributary of the River Danube, in 2005 and 2006. The River Sava exported 2.1 × 1011 mol C/yr as dissolved inorganic carbon (DIC), and emitted 2.5 × 1010 mol C/yr as CO2 to the atmosphere. Stable carbon isotope ratios indicate that up to 42% of DIC originated from carbonate weathering and 23% from degradation of organic matter. Loads of dissolved and particulate organic carbon increased with discharge and export rates were calculated to be 2.1 × 1010 mol C/yr and up to 4.1 × 109 mol C/yr, respectively. Isotopic compositions (δ13C and δ15N) and C/N ratios indicated that soil organic matter was the dominant source of particulate organic matter for 59% of the samples. Eighteen percent of the samples were dominated by plankton, 12% by periodic inputs of fresh terrestrial plant detritus with C/N > 15, and about 11% of the samples were dominated by the contribution of aquatic vascular plants. Nitrate inputs were controlled by land use in the River Sava watershed. δ15NNO3 values <6‰ were found in predominantly forested watersheds, while values >6‰ typically represented watersheds with a higher percentage of agricultural and/or urban land use. Elevated δ15NNO3 values (up to +25.5‰) at some sites were probably due to the combined effects of low-flow and inputs from sewage and/or animal waste.  相似文献   

14.
Huang  Xiangui  Ping  Jianhua  Leng  Wei  Yu  Yan  Zhang  Min  Zhu  Yaqiang 《Hydrogeology Journal》2021,29(6):2149-2170

Studies on groundwater recharge are essential for sustainable exploitation of groundwater resources, especially in areas of extensive groundwater exploitation such as the Anyanghe River alluvial fan (ARAF) in the North China Plain (NCP). However, the recharge sources and processes and the contribution of each recharge flow component remain unclear. This study used hydrochemistry, stable isotopes, and tritium to investigate sources and underlying processes of groundwater recharge, along with the steady flow Mixing Cell Model (MCMsf) to quantify the proportion of each source flow for the shallow confined groundwater system in the medial fan. The results showed that groundwater mainly originates from precipitation occurring on the eastern Taihang Mountain area with average elevation estimated at 700–1,000 m above sea level during the East Asia summer monsoon period since 1952. Recharge mechanisms are: (1) river water seepage for the unconfined aquifers of the proximal and medial fan; (2) lateral flow for the confined aquifers of the medial and distal fan; and (3) precipitation infiltration for the phreatic water system. The MCMsf simulation showed that the shallow confined groundwater system in the central zone of the medial fan mainly recharged by the lateral flow from the proximal fan, a constant and considerable recharge flow from the southwestern and southern hills, and river water seepage in the medial fan; the lateral recharge flow from the Zhanghe alluvial aquifer was insignificant by comparison. The results of this study can act as a valuable reference for sustainable groundwater management in the ARAF.

  相似文献   

15.
The Tyrell catchment lies on the western margin of the Riverine Province in the south-central Murray Basin, one of Australia’s most important groundwater resources. Groundwater from the shallow, unconfined Pliocene Sands aquifer and the underlying Renmark Group aquifer is saline (total dissolved solids up to 150,000 mg/L) and is Na-Cl-Mg type. There is no systematic change in salinity along hydraulic gradients implying that the aquifers are hydraulically connected and mixing during vertical flow is important. Stable isotopes (18O+2H) and Cl/Br ratios indicate that groundwater is entirely of meteoric origin and salts in this system have largely been derived by evapotranspiration of rainfall with only minor halite dissolution, rock weathering (mainly feldspar dissolution), and ion exchange between Na and Mg on clays. Similarity in chemistry of all groundwater in the catchment implies relative consistency in processes over time, independent of any climatic variation. Groundwater in both the Pliocene Sands and Renmark Group aquifers yield ages of up to 25 ka. The Tyrrell Catchment is arid to semi-arid and has low topography. This has resulted in relatively low recharge rates and hydraulic gradients that have resulted in long groundwater residence times.  相似文献   

16.
Chemical compositions and stable isotope ratios of water and sulphate were used to characterise sources and processes responsible for elevated concentrations of sulphate and other constituents in groundwater from aquifers at Colima State along Mexico’s Pacific Coast. The δ18O and δ2H values of the groundwater were similar to those of precipitation indicating a meteoric origin, and recharge processes are relatively uniform in large parts of the study area with only slight local evaporation effects. δ34Ssulphate and δ18Osulphate analyses indicated that high sulphate concentrations of up to 1,480 mg/l are mainly due to dissolution of evaporites and volcanic exhalations. Chloride is largely related to sources other than seawater. The Marabasco sub basin is affected by anthropogenic contamination through manganese and iron ore mining activities. The obtained knowledge regarding sources and areas of contamination will be essential for the development and design of a water quality monitoring program in the study area.  相似文献   

17.
距今近2万a来的古气候恢复越来越受到人们的重视,研究的方法途径也越来越丰富,利用沉积物碳酸盐碳氧同位素δ^18O、δ^13C值来反演古气候就是其中之一。文章利用古堰塞湖沉积物碳酸盐碳氧同位素记录对岷江上游叠溪古气候演化特征的初步研究表明,在距今约22000-9000年(约22KaBP-9KaBP)间该区古气候可分为7个阶段。各个阶段的古气候特征分别为:①约22kaBP-20kaBP,气候为冷干;②约20kaBP-17kaBP,气候为冷湿;③约17kaBP-14kaBP,气候为热干;④约14kaBP-13kaBP,气候为冷湿;⑤约13kaBP-11kaBP,气候为热偏干;⑥约11kaBP-10kaBP,气候为热干;⑦约10kaBP-9kaBP,气候为冷湿。  相似文献   

18.
《Applied Geochemistry》2004,19(4):593-610
In July 2001, samples of surface suspended particulate material (SPM) of the Irtysh river in its middle and lower reaches (from Omsk City to the confluence with the Ob river) and its main tributaries were collected (18 stations along 1834 km). The SPM samples were analyzed for major and trace element composition. The results show that the geochemistry of Irtysh river SPM is related to landscape and geochemical peculiarities of the river basin on one hand and to industrial activities within the drainage area on the other hand. In the upper basin polymetallic and cinnabar deposits and phosphorite deposits with high As content are widespread. The open-cut mining and developed oil-refining, power plants and other industries lead to the contamination of the environment by heavy metals and other contaminants. The territory of the West Siberian lowland, especially the Ob-Irtysh interfluve, is characterized by the occurrence of swamps and peat-bogs. Tributaries of the Irtysh river originating in this region, have a brown color and the chemical composition of the SPM is specific for stagnant water. In the first 500–700 km downstream from Omsk City the Irtysh river has the typical Al–Si-rich suspended matter composition. After the inflow of the tributaries with brown water the SPM composition is significantly changed: an increase of POC, Fe, P, Ca, Sr, Ba and As concentrations and a strong decrease of the lithogenic elements Al, Mg, K, Na, Ti, Zr can be observed. The data show that Fe-organic components (Fe-humic amorphous compounds, which contribute ca. 75–85% to the total Fe) play a very important role in SPM of the tributaries with brown water and in the Irtysh river in its lower reaches. Among the trace metals significant enrichments relative to the average for global river SPM could only be observed for As and Cd (coefficient of enrichment up to 16 for As and 3–3.5 for Cd). It can be shown that the enrichment of As in the SPM is related to natural processes, i.e. the weathering of phosphate containing deposits with high As concentrations in the upper Irtysh basin and the high As–P affinity in the swamp peaty soil. Dissolved P and As are absorbed by amorphous organic C/Fe oxyhydroxide components which act as carriers during the transport to the main stream of the Irtysh river. The role of anthropogenic factors is probably insignificant for As. In contrast, the enrichment of Cd is mainly related to anthropogenic input. The threefold enrichment of Cd in the SPM just below Omsk City and its continuous decrease down to background level at a distance of 500–700 km downstream points quite definitely to the municipal and industrial sewage of Omsk City as the main source of Cd in the SPM of the Irtysh river.  相似文献   

19.
This study aims to characterise the hydrogeology and hydrochemistry of the Parmelia aquifer and to understand controls on recent water-level changes as these are needed to underpin a quantitative analysis of recharge. The Parmelia aquifer, a layered sequence of sand, silt and discontinuous lenses of clay, receives diffuse rainfall recharge on its outcrop and groundwater recharge occurs across the Dandaragan Plateau at different rates. Water levels have risen steadily over the last three decades between 10 and 55 cm/y in response to the replacement of native vegetation with pasture and annual crops. The mean aquifer properties from sediment analyses indicate a very wide range of porosity (8.9 – 49.5 %) with an arithmetic mean of 26% and consequently a very broad range of specific yield (0.0004 – 0.4) with an arithmetic mean of 0.14. Groundwater in the Parmelia aquifer has an underlying meteoric origin with compositional changes due to reactions with silicate minerals and leaching of chloride that has concentrated in the soil by evapotranspiration. The hydrochemistry sampled at different depths and locations in the aquifer indicates that the groundwater is not well mixed, and variations arise due to relatively recent recharge that has undergone evaporation in some areas.  相似文献   

20.
Hydrochemical and environmental isotope methods were used to characterize the groundwater quality in ten wells belonging to the Euphrates alluvial aquifer in Syria, with the aim to assess the origin and dynamic of groundwater salinization in this system. The Euphrates River (ER) water along its entire course in Syria is rather fresh (TDS < 0.5 g/L), and thus, it is suitable for drinking and irrigation purposes. Groundwater salinity progressively increases from north to south, changing from almost freshwater (TDS < 0.6 g/L), with a Ca–Mg and HCO3 type near the Syrian–Turkish border to brackish water (1 < TDS < 3 g/L), with a Ca–Mg or Na–Ca–Mg and SO4–HCO3 type in the vicinity of Al-Raqqa, and hence it can safely be used for irrigation. Downstream Deir-Ezzor the groundwater quality becomes fairly saline to very saline (3 < TDS < 29 g/L), with a Na–Cl type, and therefore it has an absolute hazard (SAR > 5) for irrigation uses. This pattern of chemical evolution, which is also clearly reflected in the variations of groundwater ionic ratios, completely agrees with the thermodynamic simulation results obtained by an experimental evaporation essay of a water sample taken from the ER near Deir-Ezzor. Stable isotopes permit the distinction between three main evaporation processes: under high, intermediate and low humidity conditions. Radioisotopes (3H and 14C) indicate the recent age and renewability of groundwater in this aquifer and confirm that its origin is entirely belonged to the ER water, either by direct bilateral interconnection or by vertical infiltration of the irrigation water totally taken from the ER. Relationships between major ions and δ18O values of the groundwater allow to differentiate between two main enrichment processes: either evaporation only or evaporation plus dissolution, that can explain altogether the development of groundwater salinity in such a dry area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号