首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A national-scale survey of the environment in and around mines was conducted to evaluate the status of total As contamination in agricultural soils surrounding numerous abandoned metal mines in Korea. This survey aimed to compare As concentrations in soils in relation to geology and mineralization types of mines. A total of 16,386 surface soil (0–15 cm in depth) samples were taken from agricultural lands near 343 abandoned mines (within 2 km of each mine). These samples were decomposed by aqua regia and analyzed for As by AAS with a hydride-generation (HG) device. To compare As levels in soils meaningfully with geology and mineralization types, three sub-classification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of As in all the soils was 11.6 mg kg−1 with a range of 0.01–4230 mg kg−1. Based on the mineralization types, average As concentrations (mg kg−1) in the soils decreased in the order of pegmatite (18.2) > hydrothermal replacement (14.5) > sedimentary deposits (12.4) > hydrothermal vein (10.7) > skarn (4.08). In terms of the valuable ore mineral types, the concentrations decreased in the order of Sn, W, Mo, Fe and Mn mines > Au, Ag, and base metal mines > Au and Ag mines ≈ base metal mines. For parent rock types, soils from metamorphic rocks and heterogeneous rocks exhibited enhanced As levels related to both igneous and sedimentary rocks. Therefore, it can be concluded that soils from highly altered rocks subject to metamorphic and igneous activities contained relatively high concentrations of As in the surface environment.  相似文献   

2.
Several abandoned Cu mines are located along the shore of Prince William Sound, AK, where the effect of mining-related discharge upon shoreline ecosystems is unknown. To determine the magnitude of this effect at the former Beatson mine, the largest Cu mine in the region and a Besshi-type massive sulfide ore deposit, trace metal concentration and flux were measured in surface run-off from remnant, mineralized workings and waste. Samples were collected from seepage waters; a remnant glory hole which is now a pit lake; a braided stream draining an area of mineralized rock, underground mine workings, and waste piles; and a background location upstream of the mine workings and mineralized rock. In the background stream pH averaged ∼7.3, specific conductivity (SC) was ∼40 μS/cm, and the aqueous components indicative of sulfide mineral weathering, SO4 and trace metals, were at detection limits or lower. In the braided stream below the mine workings and waste piles, pH usually varied from 6.7 to 7.1, SC varied from 40 to 120 μS/cm, SO4 had maximum concentrations of 32 mg/L, and the trace metals Cu, Ni, Pb, and Zn showed maximum total acid extractable concentrations of 186, 5.9, 6.2 and 343 μg/L, respectively.  相似文献   

3.
Soil and water samples were collected from farmsteads and provincial towns across the provinces of La Pampa and San Juan in Argentina. Inductively coupled plasma mass spectrometry was used for the determination of iodine in water following addition of TMAH to 1% v/v and soils extracted with 5% TMAH. Iodine in agricultural soils was in the range of 1.3–20.9 mg/kg in La Pampa located in central Argentina and 0.1–10.5 mg/kg in San Juan located in the northwest Andean region of Argentina, compared to a worldwide mean of 2.6 mg/kg. Mean selenium concentrations for soils from both provinces were 0.3 mg/kg, compared to a worldwide mean of 0.4 mg/kg. The majority of soils were slightly alkaline at pH 6.7 to 8.8. The organic content of soils in La Pampa was 2.5–5.9% and in San Juan 0.1–2.3%, whilst, mobile water extractable soil-iodine was 1–18% for La Pampa and 2–42% for San Juan. No simple relationship observed for pH and organic content, but mobile iodine (%) was highest when organic content was low, higher for lower total iodine concentrations and generally highest at pH > 7.5. Water drawn for drinking or irrigation of a variety of crops and pasture was found to range from 52 to 395 µg/L iodine and 0.8 to 21.3 µg/L selenium in La Pampa and 16–95 µg/L iodine and 0.6 to 8.2 µg/L selenium in San Juan. The water samples were all slightly alkaline between pH 8 and 10. Water–iodine concentrations were highest at pH 7.8 to 8.8 and in groundwaters positively correlated with conductivity. Raw water entering water treatment works in La Pampa was reduced in iodine content from approximately 50 µg/L in raw water to 1 µg/L in treated drinking water, similar to levels observed in regions experiencing iodine deficiency.  相似文献   

4.
The abandoned Hg mine in Podljubelj was in operation with interceptions from 1557 to 1902. The entire operating period yielded about 110 000 tons of ore, from which 360 tons of Hg was produced. The objective of the research project was to establish the contents and spatial distribution of Hg in soils and stream sediments in the vicinity of the mine. On an area of 88 ha the soil was sampled in a 100 × 100 m grid. Two soil horizons (0–5 cm and 20–30 cm) were sampled in order to distinguish between geogenic and anthropogenic Hg sources. It was established that on an area of about 9 ha Hg content in soil exceeds The New Dutchlist action value for Hg (10 mg/kg). Total Hg concentrations in soil samples vary between 0.17 and 719 mg/kg, with a mean of 3.0 mg/kg. Mercury contents in stream sediments range from 0.065 to 1.4 mg/kg, with a mean of 0.64 mg/kg. The highest determined value in soils was found in the area around the former roasting furnace, where the ore was processed. Increased Hg concentrations were also found on the mine waste dump (108 mg/kg). Mercury contents in soils generally decrease with soil profile depth and with the distance from the mine and from the roasting furnace location. Mercury also appears in higher concentrations along the road that runs through the valley, which results from the use of Hg-bearing ore residues in road construction. The average enrichment factor (EF) of Hg in topsoil with respect to subsoil is 3.3. Calculated enrichment factors show higher values also for Cd (3.2), Pb (2.7), Ca (2.4) and P (1.9). The average enrichment factor of Hg in topsoil with regard to the established Slovenian soil averages (EFslo) is 19. EFslo of other determined chemical elements do not exceed 3.0.  相似文献   

5.
Trace element and isotopic compositions of carbonate from ore bodies, country rock which hosts the ore bodies (H8 dolomite), a carbonatite dyke exposed in Dulahala near Bayan Obo, and rare earth element (REE)-rich dolomite in Bayan Obo have been determined to understand the genesis of the Bayan Obo Fe-Nb-REE ore deposit, the world’s largest resource of REE. The REE and trace element distribution patterns of samples from the REE-rich carbonatite dykes are identical to those of mineralized carbonate rocks, indicating a genetic linkage between the REE-rich carbonatite and mineralization in this region. By contrast, carbon and oxygen isotopes in the mineralized carbonate varied significantly, δ13C = −7.98‰ to −1.12‰, δ18O = 8.60-25.69‰, which are distinctively different from those in mantle-derived carbonatite. Abnormal isotopic fractionations between dolomite and calcite suggest that these two minerals are in disequilibrium in the carbonatite dyke, ore bodies, and H8 marble from Bayan Obo. This isotopic characteristic is also found in mineralized sedimentary marine micrite from Heinaobao, ∼25 km southeast of the Bayan Obo Fe-Nb-REE ore deposit. These facts imply that the carbonate minerals in the Bayan Obo deposit have resulted from sedimentary carbonate rocks being metasomatised by mantle-derived fluids, likely derived from a REE-enriched carbonatitic magma. The initial Nd isotope values of ore bodies and carbonatite dykes are identical, indicating that ore bodies, carbonatite dykes and veins may have a similar REE source.  相似文献   

6.
In the initial period of mining activities in the Idrija basin (the16th and the first half of the17th centuries), Hg ore processing was performed at various small-scale roasting sites in the woods surrounding Idrija, by roasting ore in earthen vessels. The recovery rate of this method was very low; about half of Hg was lost, causing soil contamination and considerable amounts of waste material that could potentially leach Hg into the surrounding environment. The main aims of present geochemical study were to determine the contents, vertical distribution and speciation of Hg in soils at the roasting site at Frbej?ene trate in order to verify the extreme pollution of ancient Hg ore roasting sites in the Idrija area and to establish their significance in the wider spatial contamination of soils and aquatic systems. Soil sampling was performed at the area of the former roasting site. The organic matter-rich surface soil layer (SOM) and underlying mineral soil were sampled at 63 sampling locations. Mercury speciation was performed using Hg thermo-desorption-AAS to distinguish cinnabar from potentially bioavailable forms. The results indicate extremely high Hg concentrations with a maximum of 37,000 mg/kg in SOM and 19,900 mg/kg in mineral soil. The established Hg median in soil was 370 mg/kg and in SOM 96.3 mg/kg. Spatial distributions of Hg in SOM and soil showed very high Hg contents in the central area and decreased rapidly with distance. The results of Hg thermo-desorption measurements indicated the presence of cinnabar (HgS) and Hg bound to organic or mineral soil matter. A significant portion (35–40%) of Hg in the investigated soil and SOM samples was comprised of non-cinnabar compounds, which are potentially bioavailable. It has been shown that soils contain high amounts of potentially transformable non-cinnabar Hg, which is available for surface leaching and runoff into the surrounding environment. Therefore, contaminated soils and roasted residues at the studied area are important for persistent Hg release into the aquatic ecosystem.  相似文献   

7.
Mercury contamination of the environment is of worldwide concern because of its global presence and its potent neurotoxicity. Mining, smelting and the electronics industry are the main sources of Hg pollution. However, few studies have been performed to investigate systemic Hg contamination in metal mining regions. In this study, concentrations of Hg in air, farmland soil, and crops were measured in a Pb-Zn mining area in the karst region of Guangxi, China. Key factors that could affect Hg distribution, such as the fate of waste ore and waste residue, were analyzed. Geo-statistical methods were adopted to analyze the characteristics of spatial structure and distribution of Hg. The results show that Hg contamination in this region is serious. The total mercury (T-Hg) content is far higher than the Level II Limit Value of Chinese Soil Standards of 0.30 mg kg−1, showing obvious directional characteristics from WNW to ESE. Highest Hg concentrations were found in the WNW portion of the study area. The contamination of paddy soil is higher than that in dry farmland soil. The vertical distribution of T-Hg and its decrease with depth suggest that the important sources are waste water irrigation and the improper disposal of the waste ore and waste rock. The T-Hg concentrations in the agricultural products examined exceed the Chinese tolerance value (0.02 mg kg−1 for rice and 0.01 mg kg−1 for vegetables), indicating the seriousness of the problem. The ecological environment and the safety of food grown in this mining area are being affected, with the result that human health is possibly being affected.  相似文献   

8.
Zinc smelting is currently regarded as one of the most important atmospheric Hg emission sources in the world. In order to assess the potential environmental impacts of Hg from Zn smelting in China, the distribution of total Hg concentration (HgT) in Zn concentrates (ZCs) from 100 Zn deposits in China was investigated. It was found that HgT varies depending on the ore types and their geneses. Zinc concentrates from sedimentary-exhalative deposits (SEDEX, geometric mean = 48.2 μg/g) have the highest HgT. The possible explanation is that the sources of mineralizing solutions for SEDEX deposits are deep formational brines in contact with sedimentary rocks, and there are much higher background Hg contents in sedimentary rocks. Zinc concentrates from volcanic hosted massive sulfide deposits (VMS, geometric mean = 11.5 μg/g) and Mississippi Valley-Type (MVT, geometric mean = 10.1 μg/g) deposits have intermediate HgT. VMS may receive most of their Hg from fluid–rock interaction and/or by direct input of gaseous Hg from a mantle source. However, the source of metals within MVTs may be the low-temperature hydrothermal solution formed by diagenetic recrystallization of the carbonates. Intrusion related deposits (IRs) have the lowest HgT (Geomean = 2.4 μg/g), and the dispersion of Hg in the IRs seems to be influenced by the temperature of ore formation and/or the nature of wall–rock alteration. Finally, it was estimated that the annual Hg emission to the atmosphere from Zn smelting in China was about 107.7 tons in 2006.  相似文献   

9.
Temporal variations in the concentration and N isotopic ratios of inorganic N (NH4– and NO3–N) as affected by the soil temperature regime together with the input of bird excreta were analyzed in a sedentary soil under a dense colony (1.6 nests/m2) of breeding Black-tailed Gulls (Laruscrassirostris: a ground-nesting seabird). Surface soil samples were taken monthly from mid-March to late July 2005 from Kabushima Island, Hachinohe, northeastern Japan. The spatial concentration of inorganic N in the soils varied considerably on all sampling dates. There may be a statistically significant trend, showing increased NH4–N content from settlement up to early June when the input of fecal N attains its maximum, and then decreases towards the end of breeding activity (early August). Abundant NO3–N was observed in all soils, particularly in the later stage of breeding (up to 3800 mg-N/kg dry soil), refuting earlier claims that nitrification is unimportant in the soils. δ15N values of NH4 in the soils showed unusually high values up to +51‰, reflecting N isotope fractionation due to volatilization of NH3 during the mineralization. Mean δ15N values of the monthly collected totals of NH4 and NO3 were not significantly different at the 5% level based on ANOVA and significant differences were observed only among the three means of NO3–N collected in mid-March (settlement of colony: δ15N = −0.2 ± 3.5‰) and late July (later stages of breeding: δ15N = +22.1 ± 7.0‰, +23.3 ± 7.8‰) at the 1% and 5% levels by t-test, respectively. Such an observation of significantly increased δ15N values for NO3–N in soils from the fledgling stage indicates the integration of denitrification coupled with nitrification under a limited supply of fecal N.  相似文献   

10.
Chloroform is a common groundwater pollutant but also a natural compound in forest ecosystems. Leaching of natural chloroform from forest soil to groundwater was followed by regular analysis of soil air and groundwater from multilevel wells at four different sites in Denmark for a period of up to 4 a. Significant seasonal variation in chloroform was observed in soil air 0.5 m below surface ranging at one site from 120 ppb by volume in summer to 20 ppb during winter. With depth, the seasonal variation diminished gradually, ranging from 30 ppb in summer to 20 ppb during winter, near the groundwater table. Chloroform in the shallowest groundwater ranged from 0.5–1.5 μg L−1 at one site to 2–5 μg L−1 at another site showing no clear correlation with season. Comparing changes in chloroform in soil air versus depth with on-site recorded meteorological data indicated that a clear relationship appears between rain events and leaching of chloroform. Chloroform in top soil air co-varied with CO2 given a delay of 3–4 weeks providing evidence for its biological origin. This was confirmed during laboratory incubation experiments which further located the fermentation layer as the most chloroform producing soil horizon. Sorption of chloroform to soils, examined using 14C–CHCl3, correlated with organic matter content, being high in the upper organic rich soils and low in the deeper more minerogenic soils. The marked decrease in chloroform in soil with depth may in part be due to microbial degradation which was shown to occur at all depths by laboratory tests using 14C–CHCl3.  相似文献   

11.
This study reports on the transfer of contaminants from waste rock dumps and mineralised ground into soils, sediments, waters and plants at the rehabilitated Mary Kathleen uranium mine in semi-arid northwest Queensland. Numerous waste rock dumps were partly covered with benign soil and the open pit mine was allowed to flood. The mineralised and waste calc-silicate rock in the open pit and dumps has major (>1 wt%) Ca, Fe and Mg, minor (>1,000 ppm) Ce, La, Mn, P and S, subminor (>100 ppm) Ba, Cu, Th and U, and trace (<100 ppm) As, Ni, Pb, Y and Zn values. Consequently, chemical and physical weathering processes have acted on waste rock and on rock faces within the open pit, mobilising many elements and leading to their dispersion into soils, stream sediments, pit water and several plant species. Chemical dispersion is initiated by sulfide mineral breakdown, generation of sulfuric acid and formation of several soluble, transient sulfate minerals as evaporative efflorescent precipitates. Radiation doses associated with the open pit average 5.65 mSv year−1; waste dumps commonly have lower values, especially where soil-covered. Surface pit water is slightly acid, with high sulfate values accompanied by levels of U, Cu and Ni close to or above Australian water guideline values for livestock. Dispersion of U and related elements into soils and stream sediments occurs by physical (erosional) processes and from chemical precipitation. Plants growing in the mine void, on waste dumps and contaminated soil display evidence of biological uptake of U, LREE, Cu and Th and to a lesser degree of As, Ni, Pb, Y and Zn, with values being up to 1–2 orders of magnitude above background sites for the same species. Although rehabilitation procedures have been partly successful in reducing dispersion of U and related elements into the surrounding environment, it is apparent that 20 years after rehabilitation, there is significant physical and chemical mobility, including transfer into plants.  相似文献   

12.
Surface soils from the Chengdu Economic Region (CER) were analyzed for sixteen United States Environment Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) to study the spatial distribution and to identify the sources of PAHs. Relatively high concentrations (more than 1500 ngg− 1) of high molecular weight PAHs were found in Chengdu Plain, in the middle of CER, while high concentrations (more than 500 ng g− 1) of low molecular weight PAHs were detected in the surrounding mountains. The concentrations of ∑16-PAHs in topsoil samples from CER (12.52–75,431.47 ngg− 1, average value was 3233.92 ngg− 1) were higher than that from the southern China (21.91–3077 ngg− 1, average value was less than 500 ngg− 1), and they were comparable to concentrations in soils from the northern China (366–254,080 ngg− 1, mean value was more than 3000 ngg− 1). The concentrations from CER were also much higher than the concentrations of some world clean regions such as Antarctic (34.9–171 ngg− 1), European high mountains (9–11,000 ngg− 1, mean value was 158 ngg− 1) and some Europe residential (736 ngg− 1) and arable soils (60–145 ngg− 1, mean value was 66 ngg− 1). The ratio of tracer compounds (BaA/(BaA + Chr), Flo/(Flo + Pyr), and IcdP/(IcdP + BghiP)) indicated that the high concentrations of PAHs in soils were mainly derived from fossil fuels combustion in mountain region and from the incomplete combustion of petroleum in developed plain area (such as Chengdu and Deyang). From the above distribution characteristics and ratios of tracer compounds, we inferred the reasons for the distribution pattern of PAHs in CER were the domestic heating, emissions, and the physicochemical properties of PAHs.  相似文献   

13.
To establish a natural background and its temporal and spatial variability for the area around Casey Station in the Windmill Islands, East Antarctica, the authors studied major and trace element concentrations and the distribution of organic matter in marine and lacustrine sediments. A wide range of natural variability in trace metal concentrations was identified between sites and within a time scale of 9 ka (e.g., Ni 5–37 mg kg−1, Cu 20–190 mg kg−1, Zn 50–300 mg kg−1, Pb 4.5–34 mg kg−1). TOC concentrations are as high as 3 wt.% at the marine sites and 20 wt.% at the lacustrine sites, and indicate highly productive ecosystems. These data provide a background upon which the extent of human impact can be established, and existing data indicate negligible levels of disturbance. Geochemical and lithological data for a lacustrine sediment core from Beall Lake confirm earlier interpretation of recent climatic changes based on diatom distribution, and the onset of deglaciation in the northern part of the Windmill Islands between 8.6 and 8.0 ka BP. The results demonstrate that geochemical and lithological data can not only be used to define natural background values, but also to assess long-term climatic changes of a specific environment. Other sites, however, preserve a completely different sedimentary record. Therefore, inferred climatic record, and differences between sites, can be ascribed to differences in elevation, distance from the shore, water depth, and local catchment features. The extreme level of spatial variability seems to be a feature of Antarctic coastal areas, and demonstrates that results obtained from a specific site cannot be easily generalized to a larger area.  相似文献   

14.
Complete hydrochemical data are rarely reported for coal-mine discharges (CMD). This report summarizes major and trace-element concentrations and loadings for CMD at 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania. Clean-sampling and low-level analytical methods were used in 1999 to collect data that could be useful to determine potential environmental effects, remediation strategies, and quantities of valuable constituents. A subset of 10 sites was resampled in 2003 to analyze both the CMD and associated ochreous precipitates; the hydrochemical data were similar in 2003 and 1999. In 1999, the flow at the 140 CMD sites ranged from 0.028 to 2210 L s−1, with a median of 18.4 L s−1. The pH ranged from 2.7 to 7.3; concentrations (range in mg/L) of dissolved (0.45-μm pore-size filter) SO4 (34–2000), Fe (0.046–512), Mn (0.019–74), and Al (0.007–108) varied widely. Predominant metalloid elements were Si (2.7–31.3 mg L−1), B (<1–260 μg L−1), Ge (<0.01–0.57 μg L−1), and As (<0.03–64 μg L−1). The most abundant trace metals, in order of median concentrations (range in μg/L), were Zn (0.6–10,000), Ni (2.6–3200), Co (0.27–3100), Ti (0.65–28), Cu (0.4–190), Cr (<0.5–72), Pb (<0.05–11) and Cd (<0.01–16). Gold was detected at concentrations greater than 0.0005 μg L−1 in 97% of the samples, with a maximum of 0.0175 μg L−1. No samples had detectable concentrations of Hg, Os or Pt, and less than half of the samples had detectable Pd, Ag, Ru, Ta, Nb, Re or Sn. Predominant rare-earth elements, in order of median concentrations (range in μg/L), were Y (0.11–530), Ce (0.01–370), Sc (1.0–36), Nd (0.006–260), La (0.005–140), Gd (0.005–110), Dy (0.002–99) and Sm (<0.005–79). Although dissolved Fe was not correlated with pH, concentrations of Al, Mn, most trace metals, and rare earths were negatively correlated with pH, consistent with solubility or sorption controls. In contrast, As was positively correlated with pH.  相似文献   

15.
An integrated framework that is comprised of field surveys of groundwater, surface water and soils, laboratory process experiments and hydrologic and geochemical modeling is used to identify the origin (anthropogenic versus geogenic sources), fate and transport of hexavalent Cr in Tertiary and Quaternary deposits of Oropos plain in Greece. Groundwater and soils were analyzed in May 2008 and exhibited considerable Cr concentrations. Mineralogical analysis and micro-XRF analysis of the heavy soil fractions (metallic components) showed Cr bearing phases like chromites, Cr-silicate phases with positive correlation between Si, Al, Fe and Cr soil concentrations. Column experiments showed the Cr(VI) desorption ability of soils, e.g. concentration of 20 μg L−1 was detected after the application of 50 mm of rain. The groundwater model simulated the variability of Cr concentrations emanating from both anthropogenic and geogenic sources, successfully using rate constants obtained from the laboratory experiments, e.g. 4.24 nM h−1 for serpentine soil and 0.77 nM h−1 for soil in alluvial deposits. The mineralogical and geochemical results support a geogenic origin for Cr in soils and groundwater of Oropos plain while modeling results suggest that contaminants transported by Asopos River have affected only the upper layers of the subsurface in the vicinity of the river. The framework can be used to establish background concentrations or clean up levels of Cr-contaminated soils and groundwater.  相似文献   

16.
Dramatic seasonal changes in water chemistry and precipitate mineralogy associated with acid-mine drainage (AMD) in the waterfall and creek sections of the Chinkuashih area, northern Taiwan were investigated. Special attention has been paid to the kinetic effects of seasonal temperature variation and waterfall aeration. Precipitation of schwertmannite associated with removal of metals and As are indicated by delicate growth microstructures on precipitate surfaces, X-ray diffraction data, and downstream reductions of metal and As concentrations. Geochemical modeling suggested a downstream increase of the degree of saturation/supersaturation with respect to schwertmannite in the waterfall section, which can be attributed to high Fe2+ oxidation rates. The waterfall section was characterized by high rates and model rate constants of Fe2+ oxidation (6.1–6.7 × 10−6 mol L−1 s−1 and 2.7–2.9 × 10−2 s−1) and Fe (schwertmannite) precipitation (1.7–2.1 × 10−6 mol L−1 s−1 and 3.5–4.1 × 10−7 mol L−1 s−1). A high As sorption rate (4.7–6.3 × 10−9 mol L−1 s−1) and low As distribution coefficient (7.9–11.8 × 10−9 mol−1 L) were observed. The creek section showed up to 1–2 orders of magnitude slower rates and lower rate constants than the waterfall section and had seasonal variations comparable to those in areas polluted by AMD elsewhere. The summer rates were 4–5 times higher than the winter rates in the creek section, and are largely attributed to a temperature effect. In contrast, the seasonal differences in rate and rate constant were small in the waterfall section. Several factors associated with the waterfall aeration in addition to elevated temperature and As concentration enhanced Fe and As attenuation in the waterfall section. The waterfall effects on Fe precipitation rate were enhanced when the flow rate was large in the winter. Despite the remarkable removal of metals and As by the rapid precipitation of As-bearing schwertmannite, large effluent loads of potentially hazardous contaminants including As, Cu and Zn discharged to the sea in the Chinkuashih area.  相似文献   

17.
A geochemical study of interstitial water and solid phase sediment using bulk concentration and geochemical partitioning was undertaken in vertical sediment profiles to trace diagenetic processes of lead (Pb) in hypersaline salt marsh sediments. In addition, we measured the stable isotopic composition of Pb in order to distinguish its input sources. Concentrations of Pb increased from low or background values in the bottommost layer (< 60 cm depth), followed by fluctuations in the middle layer (20–60 cm) and peak values in the subsurface layer (3–5 cm). Pb associated to reactive fractions (e.g. OM, Fe–Mn oxyhydroxides and carbonates) accounted for 60% of that initially deposited. Stable Pb isotope data (206Pb/207Pb and 207Pb/208Pb) suggested that most of the Pb in the upper sediments (1.204 ± 0.002 and 2.469 ± 0.007) is still derived from the leaded gasoline combustion (1.201 ± 0.006 and 2.475 ± 0.005). Profile of dissolved Pb was related to those for ammonium, phosphates and dissolve Fe and Mn, which reveals the influence of the diagenetic reactions on the Pb behavior. OM, Fe–Mn oxyhydroxides and the sulfide minerals play a significant role for mobilizing and trapping the Pb. Metal mobilization was calculated considering an advective–diffusive system. The advective process constitutes the dominant mechanism of Pb mobilization. A low diffusive outflux with respect to the Pb mobilization rate suggested that most of the released Pb is retained in the sediments. Authigenic oxides precipitated at the oxic–suboxic layers (0–4 cm depth) and authigenic sulfide minerals formed Pb in the anoxic layers (7–20 cm depth) constituting the main scavengers for Pb that is diagenetically released. This retention has significant environmental implications because it reduces the availability and toxicity of Pb to biota, including humans.  相似文献   

18.
Field experiments and laboratory studies were performed to investigate migration processes of plutonium isotopes from a near-surface radioactive waste trench to the underlying sandy aquifer at the Red Forest waste dump in the Chernobyl zone. The objectives of these experiments were to characterize the spatial distribution and possible migration mechanisms of plutonium in the aquifer. During 2002–2007 experimental investigations were carried out and spatial distributions of plutonium isotopes (239,240Pu, 238Pu), 90Sr and major ions in the aquifer in the direction of the groundwater flow were obtained. Specific activities of radionuclides in groundwater depended on the location of the piezometer and varied in the range of 1–360 mBq kg−1 for 239,240Pu, 0.5–180 mBq kg−1 for 238Pu and n–n·104 Bq kg−1 for 90Sr. It was found that the spatial features of the distributions of plutonium and strontium specific activities in the upper eolian aquifer were similar, i.e. there was a correlation between the positions of the activity maxima of the radionuclides. The Pu isotopes plume in the aquifer spreads about 15 m downstream of the radionuclides source. Characterization of the initial radionuclide composition of the waste showed that all plutonium in the aquifer originated from the trench. The ratio of plutonium isotopes (239,240Pu/238Pu) at the sampling time was the same in waste material and in groundwater samples. In situ ultrafiltration of several groundwater samples was carried out. The size fractionation data obtained suggest that a significant part of plutonium (50–98%) in the groundwater sampled close to the source from the upper part of the aquifer is associated with a very low molecular weight fraction (<1 kDa).  相似文献   

19.
Seasonal (Spring and Summer 2002) concentrations of dissolved (<0.22 μm) trace metals (Ag, Al, Co, Cu, Mn, Ni, Pb), inorganic nutrients (NO3, PO4, Si), and DOC were determined in groundwater samples from 5 wells aligned along a 30 m shore-normal transect in West Neck Bay, Long Island, NY. Results show that significant, systematic changes in groundwater trace metal and nutrient composition occur along the flowpath from land to sea. While conservative mixing between West Neck Bay water and the groundwaters explains the behavior of Si and DOC, non-conservative inputs for Co and Ni were observed (concentration increases of 10- and 2-fold, respectively) and removal of PO4 and NO3 (decreases to about half) along the transport pathway. Groundwater-associated chemical fluxes from the aquifer to the embayment calculated for constituents not exhibiting conservative behavior can vary by orders of magnitude depending on sampling location and season (e.g. Co, 3.4 × 102– 8.2 × 103 μmol d−1). Using measured values from different wells as being representative of the true groundwater endmember chemical composition also results in calculation of very different fluxes (e.g., Cu, 6.3 × 103 μmol d−1 (inland, freshwater well) vs. 2.1 × 105 μmol d−1(seaward well, S = 17 ppt)). This study suggests that seasonal variability and chemical changes occurring within the subterranean estuary must be taken into account when determining the groundwater flux of dissolved trace metals and nutrients to the coastal ocean.  相似文献   

20.
Uranium and As in deep groundwater of the volcano-sedimentary Villa de Reyes Graben around the city of San Luis Potosí in semi-arid North-Central Mexico (mean U: 7.6 μg L−1, max. 138 μg L−1; mean As: 11.4 μg L−1, max. 25.8 μg L−1) partly exhibit concentrations in excess of the WHO guideline values and thus endanger the quality of the most important drinking water source. To unravel the mechanisms for their enrichment in groundwater, the potential trace element sources, volcanic rocks and basin fill sediments, were characterized. A total of 131 solid and liquid samples were analyzed for major and trace element composition. The As/U hydrogeochemical signatures, their behavior during rock alteration and evidence from other major and trace element distributions, especially rare earth elements, strongly argue for dissolution of acid volcanic glass to be the dominating process of U and As release into groundwater. This natural baseline quality representing water–acid volcanic rock interaction is modified by additional trace element (preferentially As) mobilization from the sedimentary basin fill, representing a secondary source, in the course of decarbonatization of playa lake sediments and desorption from Fe-(hydr)oxide coated clastic material. The common behavior of both elements during magmatic differentiation and growing drift apart in sedimentary environments are important findings of this work. Comparison with recent findings in a similar environment suggests a common primary trace element source identification but significant differences in the evolution of As and U distribution. Geological and climatic similarity to numerous volcano-sedimentary basins makes the findings useful for water management purposes and transferable to other semi-arid regions facing challenges of geogenically impacted drinking water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号