首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In this paper we analyse the observational data obtained by the Chinese-made PZT in the two periods 1979 Feb – 1980 May and 1981 Dec – 1983 March. The internal accuracy of single star is found to be mu = ±13.0 ms, mφ = ±0. “144 for the first period, and mu = ±14.6 ms, mφ = ±0.” 152 for the second. Correction of star position is found by the chain method. The systematic error caused by the sealed window of the evacuated chamber and the temperature effect of the plate scale are investigated. Monthly means of time and latitude are given.  相似文献   

2.
It has been proposed that propagation of cosmic-rays at extreme-energy may be sensitive to Lorentz-violating metric fluctuations (“foam”). We investigate the changes in interaction thresholds for cosmic-rays and gamma-rays interacting on the CMB and IR backgrounds, for a class of stochastic models of space–time foam. The strength of the foam is characterized by the factor (E/MP)a, where a is a phenomenological suppression parameter. We find that there exists a critical value of a (dependent on the particular reaction: acrit3 for cosmic-rays, 1 for gamma-rays), below which the threshold energy can only be lowered, and above which the threshold energy may be raised, but at most by a factor of two. Thus, it does not appear possible in this class of models to extend cosmic-ray spectra significantly beyond their classical absorption energies. However, the lower thresholds resulting from foam may have signatures in the cosmic-ray spectrum. In the context of this foam model, we find that cosmic-ray energies cannot exceed the fundamental Planck scale, and so set a lower bound of 108 TeV for the scale of gravity. We also find that suppression of p→pπ0 and γ→ee+ “decays” favors values aacrit. Finally, we comment on the apparent non-conservation of particle energy–momentum, and speculate on its re-emergence as dark energy in the foamy vacuum.  相似文献   

3.
Charged boson stars and vacuum instabilities   总被引:1,自引:0,他引:1  
We consider charged boson stars and study their effect on the structure of the vacuum. For very compact particle like “stars”, with constituent mass m* close to the Planck mass mPl, i.e. m2* = O(m2Pl), we argue that there is electric charge Zc, which, primarily, is due to the formation of a pion condensate (Zc 0.5−1e, where is the fine structure constant and e is the electric charge of the positron). If the charge of the “star” is larger than Zc we find numerical evidence for a complete screening indicating a limiting charge for a very compact object. There is also a less efficient competing charge screening mechanism due to spontaneous electron-positron pair creation in which case Zc −1e. Astrophysical and cosmological abundances of charged compact boson stars are briefly discussed in terms of dark matter.  相似文献   

4.
We calculate the event rates induced by a 51Cr νe source and by a 90Sr---90Y source in BOREXINO through elastic scattering on electrons, assuming a nonzero neutrino magnetic moment μν. We consider a source activity of about 2 MCi and estimate the solar ν (“source-off”) background for various oscillation scenarios. It is shown that values of μν as low as 0.5 × 10−10μB ( 0.2 × 10−10μB) can be proved with the 51Cr source (90Sr source) in about 100 days of data taking.  相似文献   

5.
The evolution of the cosmic ray primary composition in the energy range 106–107 GeV (i.e. the “knee” region) is studied by means of the e.m. and muon data of the Extensive Air Shower EAS-TOP array (Campo Imperatore, National Gran Sasso Laboratories). The measurement is performed through: (a) the correlated muon number (Nμ) and shower size (Ne) spectra, and (b) the evolution of the average muon numbers and their distributions as a function of the shower size. From analysis (a) the dominance of helium primaries at the knee, and therefore the possibility that the knee itself is due to a break in their energy spectrum (at EkHe=(3.5±0.3)×106 GeV) are deduced. Concerning analysis (b), the measurement accuracies allow the classification in terms of three mass groups: light (p,He), intermediate (CNO), and heavy (Fe). At primary energies E0≈106 GeV the results are consistent with the extrapolations of the data from direct experiments. In the knee region the obtained evolution of the energy spectra leads to: (i) an average steep spectrum of the light mass group (γp,He>3.1), (ii) a spectrum of the intermediate mass group harder than the one of the light component (γCNO2.75, possibly bending at EkCNO≈(6–7)×106 GeV), (iii) a constant slope for the spectrum of the heavy primaries (γFe2.3–2.7) consistent with the direct measurements. In the investigated energy range, the average primary mass increases from lnA=1.6–1.9 at E01.5×106 GeV to lnA=2.8–3.1 at E01.5×107 GeV. The result supports the standard acceleration and propagation models of galactic cosmic rays that predict rigidity dependent cut-offs for the primary spectra of the different nuclei. The uncertainties connected to the hadronic interaction model (QGSJET in CORSIKA) used for the interpretation are discussed.  相似文献   

6.
Measurements of the density at the F2 peak (NmF2) were obtained by the Boulder, Colorado, ionosonde as part of the SUNDIAL-86 campaign. The measurements were made during a period of low to moderate geomagnetic activity following a “disturbed” day. These measurements were then used to estimate the height of the F2 peak (hmF2). A three-dimensional time-dependent model of Earth's ionosphere was used to calculate NmF2 and hmF2 using the vertical plasma drift as a free parameter. Since the plasmasphere-ionosphere exchange flux can remain upward during the night for these conditions, different feasible flux scenarios were inputed to the ionospheric model. These different flux scenarios had a large effect on the “induced” vertical plasma drifts required to match the measurements (i.e. at times greater than a factor of 2 in speed or a difference in direction). Futhermore, uncertainty in the O+---O collision frequency changes the required vertical plasma drift at night. Despite knowledge of hmF2, interpretation of the vertical plasma drifts as meridional neutral winds is compromised by a lack of knowledge of the plasmasphere-ionosphere exchange flux following disturbed days.  相似文献   

7.
The POLAR 5 sounding rocket, launched from Andøya, Norway on 1 February, 1976 was of a “mother-daughter” configuration. An electron accelerator, mounted on the “daughter,” produced a pulsed electron beam with currents up to 130 mA and electron energies up to 10 keV. The waves, artificially stimulated by the injected electron beam, was studied using wave receivers, mounted on the “mother.” The receivers covered the frequency range from 0.1 kHz to 5 MHz.

In addition to the stimulated waves observed during beam injection, enhanced wave emissions were observed 10–20 ms after the end of beam injection. This emission seemed to be relatively independent of whether the electron beam is launched up or down along the geomagnetic field.

The high frequency emission observed after beam injection is found to be correlated with the passage through an auroral arc. In particular this emission is closely correlated with the flux of 4–5 keV auroral electrons.

The low frequency emissions observed after beam injection are concentrated in two bands below the lower hybrid frequency.

Different mechanisms for explaining the observed time delays between the beam injection and the observation of the emissions are discussed.  相似文献   


8.
《Astroparticle Physics》2002,17(4):1083-475
Using data from the HEGRA air shower array, taken in the period from April 1998 to March 2000, upper limits on the ratio Iγ/ICR of the diffuse photon flux Iγ to the hadronic cosmic ray flux ICR are determined for the energy region 20–100 TeV. The analysis uses a gamma–hadron discrimination which is based on differences in the development of photon- and hadron-induced air showers after the shower maximum. A method which is sensitive only to the non-isotropic component of the diffuse photon flux yields an upper limit of Iγ/ICR (at 54 TeV) <2.0×10−3 (at the 90% confidence level) for a sky region near the inner galaxy (20°< galactic longitude <60° and |galactic latitude |<5°). A method which is sensitive to both the isotropic and the non-isotropic component yields global upper limits of Iγ/ICR (at 31 TeV) <1.2×10−2 and Iγ/ICR (at 53 TeV) <1.4×10−2 (at the 90% confidence level).  相似文献   

9.
N. Hiotelis   《New Astronomy》2002,7(8):531-539
We present density profiles, that are solutions of the spherical Jeans equation, derived under the following two assumptions: (i) the coarse grained phase-density follows a power-law of radius, ρ/σ3r, and (ii) the velocity anisotropy parameter is given by the relation βa(r)=β1+2β2 (r/r*)/[1+(r/r*)2] where β1, β2 are parameters and r* equals twice the virial radius, rvir, of the system. These assumptions are well motivated by the results of N-body simulations. Density profiles have increasing logarithmic slopes γ, defined by γ=−d ln ρ/d ln r. The values of γ at r=10−2.5rvir, a distance where the systems could be resolved by large N-body simulations, lie in the range 1.0–1.6. These inner values of γ increase for increasing β1 and for increasing concentration of the system. On the other hand, slopes at r=rvir lie in the range 2.42–3.82. A model density profile that fits well the results at radial distances between 10−3rvir and rvir and connects kinematic and structural characteristics of spherical systems is described.  相似文献   

10.
In this paper the question is examined of how the v.l.f. radio-waves are guided along the magnetic field. Energy passes through the magnetic field under two sets of conditions. Corresponding to the “nose-whistlers” explained by Helliwell, the first one occurs when the wave-normal itself is in the direction of the magnetic field. This does not happen in the second case when the remarkable property is also shown that all frequencies are propagated at the same velocity V0 = cƒH/2ƒ0H gyrofrequency, ƒ0 frequency of the plasma). Considerations of energy point out that, if such a propagation is not easily observable in the case of an isotropic emission, it is not the same thing for an emission produced by erenkov effect, which is able to produce all energy by this mode of propagation, provided the particle's velocity has a low fixed value (˜ 10,000 km/sec in the exosphere). All frequencies being emitted at the same time and following the same path wtih the same velocity, we can explain the broadband noise observed during the reception of whistlers. The required velocity of particles is exactly the velocity V0. This coincidence is explained in an appendix, and extended to other anisotropic media.  相似文献   

11.
Using extensive N-body simulations we estimate redshift space power spectra of clusters of galaxies for different cosmological models (SCDM, TCDM, CHDM, ΛCDM, OCDM, BSI, τCDM) and compare the results with observational data for Abell–ACO clusters. Our mock samples of galaxy clusters have the same geometry and selection functions as the observational sample which contains 417 clusters of galaxies in a double cone of galactic latitude |b|>30° up to a depth of 240 h−1 Mpc. The power spectrum has been estimated for wave numbers k in the range 0.03k0.2 h Mpc−1. For k>kmax0.05 h Mpc−1 the power spectrum of the Abell–ACO clusters has a power-law shape, P(k)∝kn, with n≈−1.9, while it changes sharply to a positive slope at k<kmax. By comparison with the mock catalogues SCDM, TCDM (n=0.9), and also OCDM with Ω0=0.35 are rejected. Better agreement with observation can be found for the ΛCDM model with Ω0=0.35 and h=0.7 and the CHDM model with two degenerate neutrinos and ΩHDM=0.2 as well as for a CDM model with broken scale invariance (BSI) and the τCDM model. As for the peak in the Abell–ACO cluster power spectrum, we find that it does not represent a very unusual finding within the set of mock samples extracted from our simulations.  相似文献   

12.
A conductive ionosphere and a totally non-conductive layer of the atmosphere close to the surface of the planet form a quasispherical concentric resonator. This provides in principle for the possibility of the existence of global resonances of an electromagnetic field generated by thunderstorm activity or by hydromagnetic waves excited in an upper ionosphere and transformed into ordinary electromagnetic waves while penetrating the resonator. We have obtained an estimate of resonance frequencies of a Martian resonator: ƒ1 13–14 Hz,ƒ2 24–26 Hz, ƒ3 35–38 Hz, etc. for two essentially different models of electron density distribution in the low ionosphere of Mars. The corresponding estimated quality values are low: Qn 2–4. A relatively wide range of the quality variation depending on a model of averaged altitudinal electron density distribution in the low ionosphere of Mars yields the criterion for an adequate model.  相似文献   

13.
When the local solar zenith angle, χL, is < 105° the 6300 A line is much stronger than expected on the basis of F region ionic recombination alone. Between 95 and 105° the additional intensity is quantitatively explained by production of O(1D) from photolysis of O2 in the Schumann-Runge continuum, (λλ 1300–1750 A) using current values for solar flux, atmospheric composition and quenching of O(1D) by N2. The Schumann-Runge (SR) component exhibits a large seasonal variation with a maximum in summer. We interpret this variation as implying a seasonal change in thermospheric O2 abundance; the change seems largely to reflect a variation in O2 density at the base of the diffusive regime although some contribution may come from changes in thermospheric temperature structure. Large changes in the SR component exist from day to day and with a 27 day period following a major magnetic storm. The photodissociation source becomes inadequate when xl < 95°; at 90° more than half of the intensity comes from still another source which we identify as local photoelectron excitation of O atoms.  相似文献   

14.
Small-scale spatially periodic distortions of auroral forms have been studied utilizing low-light level television observations made at various locations in the Northern and Southern Hemispheres. The most commonly observed features were folds and vortex-like curl formations. The curls, identified here with the Kelvin-Helmholtz instability due to fluid shear, invariably had a counterclockwise rotational shape and motion when viewed in a direction anti-parallel to the Earth's magnetic field. The typical measured wavelength (5 km) and measured growth rate (4.2 sec−1) were used to evaluate the Kelvin-Helmholtz dispersion relation for the apparent shear ωs = ∂ νx/ ∂y (28 sec−1). The apparent horizontal velocities of both folds (0–5 km/sec) and curls (0–22 km/sec) were invariably observed to be counterclockwise with respect to the multiple arc centre when viewed antiparallel to B. Consistent agreement between rotational shape and rotational motion suggests that the apparent growth rate and the apparent horizontal velocities closely approximate the actual values. If the shear results from E×B drifts in a space charge field, the calculated value for ωs, implies an unneutralized electron density 0–1 cm−3 and a ΔE across the arc element 500mV/m. The velocity measurements indicate that the ΔE values for individual elements can combine to produce transient electric fields at the edges of multiple arcs as high as 1000 mV/m.  相似文献   

15.
We propose a mixed analytical and numerical method as a practical means of solving the perturbation equations based on Vinti's intermediate orbit. Hori's averaging method is used to define mean elements σ* and short-period perturbations Δσs. Δσs accurate to the third-orbit, are found by Fourier analysis, and dσ*/dt, accurate to the fourth order, from numerical averaging. The present procedure can be used to reduce satellite laser observations with a high precision.  相似文献   

16.
A method of joint estimation of the parameters and the variance σ2 in the linear model is presented in this paper. The M-estimators with finite rejection points are adopted for estimating the parameters. In order to estimate the variance σ2, the Grubbs statistics and the Kurtosis test statistics are adopted to test the residual sequence {;ri};. And the sample variance of {;ri}; after discarding the outliers is taken as the estimation of σ2. This method of estimating σ2 is less computational demanding and more accurate, compared with the well-known method which takes 1.483 medi |ri| as the estimation of σ. The breakdown point of the above estimation of σ2 is more than 20%, while the brekdown point is less than 10%, if only the Grubbs statistics is used.  相似文献   

17.
We compute the big bang nucleosynthesis limit on the number of light neutrino degrees of freedom in a model-independent likelihood analysis based on the abundances of 4He and 7Li. We use the two-dimensional likelihood functions to simultaneously constrain the baryon-to-photon ratio and the number of light neutrinos for a range of 4He abundances Yp = 0.225–0.250, as well as a range in primordial 7Li abundances from (1.6 to 4.1) ×10−10. For (7Li/H)p = 1.6 × 10−10, as can be inferred from the 7Li data from Population II halo stars, the upper limit to Nν based on the current best estimate of the primordial 4He abundance of Yp = 0.238 is Nν < 4.3 and varies from Nν < 3.3 (at 95% C.L.) when Yp = 0.225 to Nν < 5.3 when Yp = 0.250. If 7Li is depleted in these stars the upper limit to Nν is relaxed. Taking (7Li/H)p = 4.1 × 10−10, the limit varies from Nν < 3.9 when Yp = 0.225 to Nν 6 when Yp = 0.250. We also consider the consequences on the upper limit to Nν if recent observations of deuterium in high-redshift quasar absorption-line systems are confirmed.  相似文献   

18.
This paper summarizes ion meaurements in the energy range 0.1–30keV observed during the campaigns “Substorm Phenomena” and “Porcupine”. For a clear survey of the physical processes during extraordinary events, sometimes ion meaurements of higher energies are also taken into account. Generally, the pitch angle distributions were isotropic during all flights except some remarkable events. In general the ion and electron flux intensities correlated, but sometimes revealed a spectral anti-correlation.

Acceleration of the ions by an electrostatic field aligned parallel to the magnetic field could be identified accompanied by intense electron precipitation. On the other hand deceleration of the ions was observed in other field-aligned current sheets which are indicated by the electron and magnetic field measurements. Temporal successive monoenergetic ion variations pointed to energy dispersion and to the location of the source region at 9 RE. Furthermore, ion fluxes higher than those of the electrons were measured at pitch angles parallel to the magnetic field. Each of the examples was observed during different flights. The integral down-going number and energy flux of the ions contributed to the total particle or energy influx between 65% and less than 7% and did not clearly characterize the geophysical launch conditions or auroral activities.  相似文献   


19.
We compare the tau neutrino flux arising from the galaxy and the earth atmosphere for 103E/GeV1011. The intrinsic and oscillated tau neutrino fluxes from both sources are calculated. The intrinsic galactic ντ flux (E103 GeV) is calculated by considering the interactions of high-energy cosmic-rays with the matter present in our galaxy, whereas the oscillated galactic ντ flux is coming from the oscillation of the galactic νμ flux. For the intrinsic atmospheric ντ flux, we extend the validity of a previous calculation from E106 GeV up to E1011 GeV. The oscillated atmospheric ντ flux is, on the other hand, rather suppressed. We find that, for 103E/GeV5×107, the oscillated ντ flux along the galactic plane dominates over the maximal intrinsic atmospheric ντ flux, i.e., the flux along the horizontal direction. We also briefly mention the presently envisaged prospects for observing these high-energy tau neutrinos.  相似文献   

20.
The existence of sidereal semidiurnal variation of cosmic-ray intensity in a rigidity region 102-103 GV has been reported by many researchers, but there is no consensus of opinion on its origin. In this paper, using the observed semidiurnal variations in a rigidity range (300–600 GV) with 10 directional muon telescopes at Sakashita underground station (geog. lat. = 36°, long. = 138°E, DEPTH = 80 m.w.e.), the authors determine the magnitudes (η1, η2) and directions (a1, a2) of the first- and second-order anisotropies in the following galactic cosmic-ray intensity distribution (j)
jdp = j0{1 + η1P1(cos χ1) + η2P2(cos χ2)}dp
, where Pnis the nth order spherical function and χn is the pitch angle of cosmic rays with respect to an. For the determination, the influence of cosmic-ray's heliomagnetospheric modulation, geomagnetic deflection and nuclear interaction with the terrestrial material and also of the geometric configuration of the telescopes are taken into account. Usually, the semidiurnal variation is produced by the second-order anisotropy. The present observation, however, requires also the first-order anisotropy which usually produces only the diurnal variation, but can produce also the semidiurnal variation as a result of the heliospheric modulation. The first- and second-order anisotropies are characterized with η1) > 0 and η2 < 0 have almost the same direction (a1 a2) specified by the right ascension ( 0.75 h) and declination (δ 50°S) and, therefore, they can be expressed, as a whole, by an axis-symmetric anisotropy of loss-cone type (i.e. deficit intensities in a cone). It is noteworthy that this anisotropy approximately coincides with that inferred from the air shower observation at Mt Norikura in the rigidity region 104 GV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号