首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Some peculiarities in the behaviour of a model self-gravitating system described by hydrodynamical equations and isothermal equation of state connected with the presence of thermodynamical fluctuations in real systems were investigated in numerical experiment. The values of density and velocity , , respectively, were computed by numerical code perturbed on each time-step and in each computational cell by random values , for modeling such fluctuations. Perturbed values i = i + i ,v i = i + v i were used to initiate the next step of computations. This procedure is equivalent to an introduction into original hydrodynamical equations of Langevin sources which are random functions. It is shown that these small fluctuations (= v =0,2 =v 2 = 10–8) grow many times in marginally-stable state.  相似文献   

3.
A semi-continuous hierarchy, (i.e., one in which there are galaxies outside clusters, clusters outside superclusters etc.), is examined using an expression of the field equations of general relativity in a form due to Podurets, Misner and Sharp. It is shown (a) that for a sufficiently populous hierarchy, the thinning factor( i+1/ i [r i /r i+1] is approximately equal to the exponentN in a continuous density law (=aR –N) provided (r i /r i+1)3-1; (b) that a hierarchical Universe will not look decidedly asymmetric to an observer like a human being because such salient observers live close to the densest elements of the hierarchy (viz stars), the probability of the Universe looking spherically symmetric (dipole anisotropy0.1 to such an observer being of order unity; (c) the existence of a semi-continuous or continuous hierarchy (Peebles) requires that 2 if galaxies, not presently bound to clusters were once members of such systems; (d) there are now in existence no less than ten arguments for believing 2, though recent number counts by Sandageet al. seem to be in contradiction to such a value; (e) Hubble's law, withH independent of distance, can be proved approximately in a relativistic hierarchy provided (i)N=2, (ii)2GM(R)/c 2 R1; (iii)Rc (iv)M0 in a system of massM, sizeR (f) Hubble's law holds also in a hierarchy with density jumps; (g)H100 km s–1 Mpc–1; (h) objects forming the stellar level of the hierarchy (in a cosmology of the Wilson type) must once have had 2GM/c 2 R1; (i) there is a finite pressurep=2Ga in all astrophysical systems (a=R N ,N2); (j) for the Galaxy, theory predictsp G7×10–12 dyn cm–2, observation givesp G5×10–12 dyn cm–2; (k) if the mass-defect (or excess binding energy) hypothesis is taken as a postulate, all non-collapsed astrophysical systems must be non-static, and any non-static, p0 systems must in any case be losing mass; (1) the predicted mass-loss rate from the Sun is 1012 g s–1, compared to 1011 g s–1 in the observed solar wind; (m) the mass-loss rates known by observation imply timescales of 5×109 years for the Sun and 1010 years for other astrophysical systems; (n) degenerate superdense objects composed of fermions must haveN-2 if they were ever at their Schwarzschild radii and comprised a finite numberN B of baryons; (o)N B1057N for degenerate fermion and boson systems; (p)285-4; (q) the metric coefficients for superdense bodies give equations of motion that imply equal maximum luminosities for all evolving superdense bodies (L max1059 erg s–1); (r) larger bodies have longer time-scales of energy radiation atL max (10–5 s for stars,1 h for QSO's) (s) expansion velocities are c soon after the initial loss of equilibrium in a superdense object; (t) if the density parametera(t) in aR –N isa=a (non-atomic constants of physicsc, G, A), andA, thenN=2; (u) N2 is necessary to giveMM at the stellar level of the hierarchy;(v) systems larger than, and including, galaxies must have formed by clumping of smaller systems and not (as advocated by Wertz and others) in a multiple big bang.  相似文献   

4.
The reported correlation between the absorption-line of emission-line redshifts of quasars is shown to be due to selection effects and thus to favour neither the intrinsic nor intervening hypotheses for the origin of quasar absorption lines.  相似文献   

5.
6.
, -, , .
On the classification of motion in the generalized two-dimensional problem of three fixed centres
A qualitative analysis and classification of forms of motion in the problem under consideration have been carried out using a method (applicable to any case of integrability) due to Liouville. All the forms of the two-dimensional motions for any masses (negative and complex as well) at fixed centres corresponding to the real potential have been considered.
  相似文献   

7.
The probable connection between cosmic rays and the electromagnetic state of the interplanetary medium was recognized by Hannes Alfvén as early as 1949 (Alfvén, 1949, 1950); he pointed out that the properties of cosmic rays necessitate a mechanism, external to Earth but within the solar system, capable of accelerating particles to extremely high energies. In advocating the view of local origin for part of the cosmic-ray spectrum, Alfvén and his colleagues developed a very general type of acceleration mechanism called magnetic pumping. The unique data set of the two Voyagers extends over an entire decade (1977–1987) and is most suitable to explore the problem of acceleration of charged particles in the heliosphere. The energy coverage of the Low Energy Charged Particle (LECP) experiment covers the range 30 keV to several hundred MeV for ions and 22 keV to several MeV for electrons. Selected observations of interplanetary acceleration events from 1 to 25 AU are presented and reviewed. These show frequent acceleration of ions to several tens of MeV in association with shocks; highest energies (220 MeV oxygen) were measured in the near-perpendicular ( Bn 87.5°) shock of January 5, 1978 at 1.9 AU, where electron acceleration was also observed. Examples of ion acceleration in association with corotating interaction regions are presented and discussed. It is shown that shock structures have profound effects on high-energy (70 MeV) cosmic rays, especially during solar minimum, when a negative latitudinal gradient was observed after early 1985 at all energies from 70 MeV down to 30 keV. By early 1987, most shock acceleration activity in the outer heliosphere (25 to 30 AU) had ceased both in the ecliptic (Voyager-2) and at higher (30°) ecliptic latitudes (Voyager-1). The totality of observations demonstrate that local acceleration to a few hundred MeV, and as high as a few GeV is continually present throughout the heliosphere. It should be noted that in 1954 when Alfvén suggested local acceleration and containment of cosmic rays within the solar system, no one treated his suggestion seriously, at any energy. The observations reviewed in this paper illustrate once more Alfvén's remarkable prescience and demonstrate how unwise it is to dismiss his ideas.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

8.
The results of the observations to search gamma-ray sources with the energy greater than 2×1012 eV, which were made in Crimean Astrophysical Observatory during the years 1969–73 are presented. A technique of the detection of the EAS Cerenkov flashes was used.The quality of the data obtained is analysed. The criteria for the selection of the data free from meteorological variations are considered.It was shown that two objects, namely, Cyg X-3 and Cas -1, may be the sources of high-energy gamma quanta. It is probable that the object with the coordinates =05h15m, =+1° is the source of gamma-rays as well. An unidentified object Cas -1 is variable: gamma-ray flux was observed twice — in Sepember–October 1971 and in December 1972. It is possible that the flux from Cyg X-3 has a period of 4.8 hr.
I I , I I , - >2.1012 . I . I , I I, I ., - -1 Cyg -3- -I . , =0515 ·=+1° -.I -1 I: I J I- - 1971 1972 . Cyg -3, , - T=4.8 .
  相似文献   

9.
10.
Résumé Une formulation exponentielle de la loi empirique de Titus-Bode a été proposée par Basano et Hugues. Ces auteurs introduisent l'hypothèse de trois planètes manquantes ou trous. Toutes les planètes obéissent à la relation a n = n qui donne les demi-grands axes a des planètes pour des valeurs entières de n.Nous proposons une nouvelle méthode qui permet de retrouver la relation de Basano et Hugues pour le système solaire. Nous appliquons cette méthode aux systèmes de satellites de Jupiter, Saturne et Uranus en introduisant des trous pour combler les lacunes dans les séquences de satellites. Nous en tirons trois relations exponentielles de distance, analogues à la relation de Basano et Hugues. Nous constatons que les coefficients sont semblables pour les systèmes solaire, jovien et uranien alors que le coefficient du système de Saturne vaut approximativement la racine carrée des trois autres .Nous expliquons cet espacement exponentiel grâce à un modèle simple d'une nébuleuse gazeuse initiale soumise à de petites perturbations qui engendrent des oscillations dans la distribution de densité. Les minima de la densité perturbée sont donnés par les zéros des fonctions de Bessel décrivant la propagation de la perturbation. Les positions des maxima correspondent aux sites d'accrétion.Tous les trous introduits dans les parties intérieures des systèmes de satellites sont comblés par les anneaux et petits satellites. Dans le système d'Uranus, il reste deux trous vacants qui pourraient être occupés par des petits satellites non encore découverts.
Exponential distance laws for satellite systems
A revised Titius-Bode law for the Solar system was proposed by Basano and Hugues, by introducing three missing planets. This law can be written a n = n (with = 0.2853 AU and = 1.5226), which gives the distances a n of the nth planet for successive integers n.We propose a new method to find this Basano-Hugues law for the Solar system. Based upon the comparison of the ratios of successive distances, this method can be applied to the satellite systems of the three giants planets Jupiter, Saturn and Uranus by introducing missing satellites to fill the gaps in satellites sequences. We find three exponential distance relations, similar to that of Basano-Hugues. We note that the coefficients for the Solar, Jovian and Uranian systems are almost equal while the Saturnian system's coefficient is nearly the square root of that of the three others.We explain that exponential spacing by a simple model of an initial gaseous nebula subject to small perturbations generating oscillations in the density distribution. The minima of the perturbed density are given by the zeros of Bessel functions describing the perturbation propagation. The maxima positions correspond to accretion sites.All the empty places in the inside parts of satellite systems are occupied by rings and small satellites. In the Uranian system, there are two empty places which could be filled by new undiscovered small satellites.
  相似文献   

11.
12.
13.
14.
uvby photometry has been done for early-type stars in the surroundings of the shell star Ori. The reddening maps show the presence of irregularly distributed absorbing material.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

15.
16.
Pulsar nebulae     
Several of the exotic supernova remnants are re-interpreted as pulsar-illuminated former windzones. The class of supernova remnants thus splits into (i) (the usual) shell remnants and (ii) pulsar nebulae in which a (fairly young) pulsar blows its relativistic wind into its low-density environs.  相似文献   

17.
18.
The general conception of the critical inclinations and eccentricities for theN-planet problem is introduced. The connection of this conception with the existence and stability of particular solutions is established. In the restricted circular problem of three bodies the existence of the critical inclinations is proved for any values of the ratio of semiaxes . The asymptotic behaviour of the critical inclinations as 1 is investigated.
. . . 1.
  相似文献   

19.
20.
u , . , .. (1.10), (1.2) ( (1.2)) . (1964) . (1.10), , , , (1.13). , , S iq ,R iglm ,K iqlm (1.10) . , . . , (1.3), (2.3); (2.8)–(2.10). , , , , z (2.20), .. , , (. (2.15)). (K e, 0 ) . S , ( (2.24)). (2.24a) S ±/4. , , (K e, o<0). L, — , , ; , . .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号