首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-series data of the vertical structure of the Soya Warm Current (SWC) were obtained by a bottom-mounted acoustic Doppler current profiler (ADCP) in the middle of the Soya Strait from September 2006 to July 2008. The site of the ADCP measurement was within the coverage of the ocean-radar measurement around the strait. The volume transport of the SWC through the strait is estimated on the basis of both the vertical structure observed by the ADCP and the horizontal structure observed by the radars for the first time. The annual transport estimates are 0.62–0.67 Sv (1 Sv = 106 m3s−1). They are somewhat smaller than the difference between the previous estimates of the inflow and outflow through other straits in the Sea of Japan, and smaller than those obtained in the region downstream of the strait during 2004–05 (0.94–1.04 Sv). The difference in the two periods may be attributed to interannual variability of the SWC and/or the different measurement locations.  相似文献   

2.
ADCP, CTD and XBT observations were conducted to investigate the current structure and temperature, salinity and density distributions in the Soya Warm Current (SWC) in August, 1998 and July, 2000. The ADCP observations clearly revealed the SWC along the Hokkaido coast, with a width of 30–35 km and an axis of maximum speed of 1.0 to 1.3 ms−1, located at 20–25 km from the coast. The current speed gradually increased from the coast to a maximum and steeply decreased in the offshore direction. The SWC consisted of both barotropic and baroclinic components, and the existence of the baroclinic component was confirmed by both the density front near the current axis and vertical shear of the alongshore current. The baroclinic component strengthened the barotropic component in the upper layer near the axis of the SWC. The volume transport of the SWC was 1.2–1.3 SV in August, 1998 and about 1.5 SV and July, 2000, respectively. Of the total transport, 13 to 15% was taken up by the baroclinic component. A weak southeastward current was found off the SWC. It had barotropic characteristics, and is surmised to be a part of the East Sakhalin Current.  相似文献   

3.
Three High Frequency (HF) ocean radar stations were installed around the Soya/La Perouse Strait in the Sea of Okhotsk in order to monitor the Soya Warm Current (SWC). The frequency of the HF radar is 13.9 MHz, and the range and azimuth resolutions are 3 km and 5 deg., respectively. The radar covers a range of approximately 70 km from the coast. The surface current velocity observed by the HF radars was compared with data from drifting buoys and shipboard Acoustic Doppler Current Profilers (ADCPs). The current velocity derived from the HF radars shows good agreement with that observed using the drifting buoys. The root-mean-square (rms) differences were found to be less than 20 cm s−1 for the zonal and meridional components in the buoy comparison. The observed current velocity was also found to exhibit reasonable agreement with the shipboard ADCP data. It was shown that the HF radars clearly capture seasonal and short-term variations of the SWC. The velocity of the Soya Warm Current reaches its maximum, approximately 1 m s−1, in summer and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 40 km. The surface transport by the SWC shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records at Wakkanai and Abashiri. Deceased.  相似文献   

4.
A mooring observation of current velocity, temperature and bottom pressure was carried out approximately 30 km off the coast of Monbetsu, between August 7 and September 2, 2005, to investigate the characteristics of bottom boundary layer (BBL) off the Soya Warm Current (SWC). We succeeded in measuring the Ekman veering and bottom Ekman transport in the BBL. On comparing the observed current velocity with that represented by the classical theoretical equation, the observed alongshore current velocity in BBL disagreed with that represented by the classical theoretical equation, but the cross-shore one agreed well. However after applying a linear extrapolation for the alongshore current velocity to estimate the alongshore geostrophic current velocity above the bottom, we could explain the alongshore current velocity by that represented in the classical theoretical equation. Consequently, our observations strongly support one of the proposed formation mechanisms of the cold-water belt observed off the SWC, that is, the convergence of bottom Ekman transport. The volume transport of vertical pumping velocity was estimated to be (0.12–0.25) Sv. In addition, the vertical profile of average temperature in all observation periods shows that slightly warmer water lies beneath the homogenous temperature layer, in the BBL. The result is considered to imply that the down-slope advection due to bottom Ekman transport supplies the SWC water in BBL and the eddy diffusivity of order of 10−3 m2s−1 maintains the oceanic structure in the bottom mixed layer.  相似文献   

5.
The seasonal variation in the structure and volume transport of the Tsushima Warm Current through the Tsushima Straits is studied using the acoustic Doppler current profiler (ADCP) data obtained by the ferryboat Camellia between Hakata, Japan and Pusan, Korea from February 1997 to February 2007. A robust estimation method to eliminate the effects of aliasing and tidal signals more accurately leads to a significant increase in the volume transport in winter time compared to the previously reported one by Takikawa et al. (2005) who analyzed this ADCP dataset for the first 5.5 years. The 10 years average of volume transport through the Tsushima Straits is 2.65 Sv, and those through the channels east (CE) and west (CW) of the Tsushima Islands are 1.20 Sv and 1.45 Sv, respectively, which represent a 13% increase and an 8% decrease from those of Takikawa et al. (2005). The transport through the CE increases rapidly from winter to spring and then decreases gradually as winter approaches. On the other hand, the transport through the CW increases gradually from winter to autumn and then decreases rapidly as winter approaches. The transport through the CE is larger than that of through the CW from February to April. The contribution of the Ekman transport near the sea surface, which is not measured with the ADCP, to the seasonal volume transport variation across our ADCP section is not significant.  相似文献   

6.
By using Acoustic Doppler Current Profiler (ADCP) measurements with the four round-trips method to remove diurnal/semidiurnal tidal currents, the detailed current structure and volume transport of the Tsushima Warm Current (TWC) along the northwestern Japanese coast in the northeastern Japan Sea were examined in the period September–October 2000. The volume transport of the First Branch of the TWC (FBTWC) east of the Noto Peninsula was estimated as approximately 1.0 Sv (106 m3/s), and the FBTWC continued to flow along the Honshu Island to the south of the Oga Peninsula. To the north of the Oga Peninsula, the Second Branch of Tsushima Warm Current and the eastward current established by the subarctic front were recombined with the FBTWC and the total volume transport increased to 1.9 Sv. The water properties at each ADCP line strongly suggested that most of the upper portion of the TWC with high temperature and low salinity flowed out to the North Pacific as the Tsugaru Warm Current. In the north of the Tsugaru Strait, the volume transport of the northward current was observed to be as almost 1 Sv. However, the component of the TWC water was small (approximately 0.3 Sv).  相似文献   

7.
8.
Direct measurements using a free-falling micro-profiler were conducted on the northeast coast of Hokkaido in the summer of 2007 to clarify the mixing process in the Soya Warm Current (SWC) region in terms of microstructure. The distribution of the Turner angle (Tu) showed that these regions have a high potential for double diffusive convection, but direct measurements of the turbulent dissipation rate (ε) and dissipation of temperature variance ( $ \chi_{T} $ ) did not necessarily correspond to each other in the SWC region, especially in the offshore front of SWC and farther offshore. The mixing efficiency indicated that, even though the Turner angle (Tu) indicated a high potential for double diffusive convection, turbulent mixing was the main contributor to the mixing process in this region, and double-diffusive convection only contributed partially and sparsely, especially in the boundary off SWC water. The bottom mixed layer (BML) is known to thicken off the SWC. The vertical diffusivity coefficient was enhanced near the bottom (10?4–10?3 m2 s?1) off the SWC, and these results support that turbulence near the bottom off the SWC contributed to the thickening of the BML.  相似文献   

9.
The distribution and circulation of water masses in the region between 6°W and 3°E and between the Antarctic continental shelf and 60°S are analyzed using hydrographic and shipboard acoustic Doppler current profiler (ADCP) data taken during austral summer 2005/2006 and austral winter 2006. In both seasons two gateways are apparent where Warm Deep Water (WDW) and other water masses enter the Weddell Gyre through the Lazarev Sea: (a) a probably topographically trapped westward, then southwestward circulation around the northwestern edge of Maud Rise with maximum velocities of about 20 cm s−1 and (b) the Antarctic Coastal Current (AntCC), which is confined to the Antarctic continental shelf slope and is associated with maximum velocities of about 25 cm s−1.Along two meridional sections that run close to the top of Maud Rise along 3°E, geostrophic velocity shears were calculated from CTD measurements and referenced to velocity profiles recorded by an ADCP in the upper 300 m. The mean accuracy of the absolute geostrophic velocity is estimated at ±2 cm s−1. The net baroclinic transport across the 3°E section amounts to 20 and 17 Sv westward for the summer and winter season, respectively. The majority of the baroclinic transport, which accounts for ∼60% of the total baroclinic transport during both surveys, occurs north of Maud Rise between 65° and 60°S.However, the comparison between geostrophic estimates and direct velocity measurements shows that the circulation within the study area has a strong barotropic component, so that calculations based on the dynamic method underestimate the transport considerably. Estimation of the net absolute volume transports across 3°E suggests a westward flow of 23.9±19.9 Sv in austral summer and 93.6±20.1 Sv in austral winter. Part of this large seasonal transport variation can be explained by differences in the gyre-scale forcing through wind stress curl.  相似文献   

10.
Mass fluxes in the Canary Basin   总被引:1,自引:1,他引:0  
  相似文献   

11.
High-resolution data collected southeast of the Canary Islands during late winter 2006 are analyzed to describe the hydrography and three-dimensional circulation in the coastal transition zone off NW Africa. The data are optimally interpolated over a regular grid, the geostrophic velocity field is calculated and the Q-vector formulation of the omega equation is used to compute the quasi-geostrophic (QG) mesoscale vertical velocity. The coastal transition zone is divided into upwelling, frontal and offshore regions with distinct physical and dynamic characteristics. The upwelling region is characterized by cold and weakly stratified waters flowing towards the equator, with a poleward undercurrent of approximately 0.05 m s−1 over the continental slope. The frontal region exhibits a southwestward baroclinic jet associated with cross-shore raising isopycnals; the jet transport is close to 1 Sv, with maximum velocities of 0.18 m s−1 at surface decreasing to 0.05 m s−1 at 300 db. Vertical sections across the frontal region show the presence of deep eddies probably generated by the topographic blocking of the islands to the southward current, as well as much shallower eddies that likely have arisen as instabilities of the baroclinic upwelling jet. The QG mesoscale vertical velocity field is patchy, estimated to range from −18 to 12 m day−1, with the largest absolute values corresponding to an anticyclonic eddy located south of Fuerteventura Island. These values are significantly larger than estimates for other vertical velocities: diapycnal vertical velocities associated with mixing in the frontal region (a few meters per day), and wind-induced vertical velocities (non-linear Ekman pumping arising from the interaction between the wind stress and the background vorticity, maximum values of a few meters per day; linear Ekman pumping due to the divergence of Ekman transport, a fraction of a meter per day; or the coastal constraint in the upwelling region, about 0.7 m day−1). However, the patchiness in both the QG mesoscale vertical velocity and the non-linear Ekman pumping velocity cause their integrated vertical transports to be one order of magnitude smaller than either coastal Ekman transport (0.08 Sv), integrated linear Ekman pumping (−0.05 Sv) or diapycnal transfer (about 0.1–0.2 Sv). The pattern of the near-surface fluorescence field is a good indicator of these different contributions, with large homogeneous values in the coastal upwelling region and a patchy structure associated with the offshore mesoscale structures.  相似文献   

12.
In order to clarify detailed current structures over the continental shelf margin in the East China Sea, ADCP measurements were carried out in summers in 1991 and 1994 by the quadrireciprocal method (Katoh, 1988) for removing diurnal and semidiurnal tidal flows from observed flows, together with CTD measurements. We discussed the process of the Tsushima Current formation in the East China Sea. The Tsushima Current with a volume transport of 2 Sv (1 Sv=106 m3s–1) was found north of 31°N. A current with a volume transport of 0.4 Sv was clearly found along the 100 m isobath. Between the Kuroshio and the current along the 100 m isobath, southeastward component of velocity was dominant compared to northwestward one. Four eastward to southeastward currents were found over the sea bed shallower than 90 m depth. Total volume transport of these four currents was 1 Sv, and they seemed to be originated from the Taiwan Strait. Intrusion of offshore water into the inner shelf northwest of Amami Oshima was estimated to have a volume transport of 0.6 Sv. It is concluded that the Tsushima Current is the confluence of these currents over the continental shelf margin with the offshore water intruding northwest of Amami Oshima.  相似文献   

13.
2012年南海西北陆架冬季水文特征的观测分析   总被引:1,自引:0,他引:1  
本文基于2012年12月南海西北部陆架海区的温盐和流速实测资料,分析了粤西和琼东陆架海区冬季三维温、盐结构和流场特征,给出沿陆架和跨陆架方向的水体和热盐通量。结果表明:(1)在50m以浅,粤西和琼东海区温度均由近岸向外海递增,深层则相反;冬季近岸海区混合层较深,外海密度跃层位于60—120m深度且层结较强,浮力频率大于10–2/s;(2)海流大致沿等深线向西南流动,30m以深流速大小在0.03—0.40m/s之间,且随着深度增加而略有减小;琼东海区100m等深线附近在60m以浅水层观测到水体辐聚并有明显温度锋面存在;(3)沿陆架方向的水体和热盐输送均大于跨陆架方向,其中粤西单位面积沿/跨陆架水体通量平均值为0.13×10–6/0.03×10–6Sv/m2,低于琼东海区的0.91×10–6/0.56×10–6Sv/m2。  相似文献   

14.
CTD, vessel-mounted ADCP and LADCP measurements in the Caribbean passages south of Guadeloupe (three repeats) and along 16°N (five repeats) were carried out between December 2000 and July 2004. The CTD data were used to calculate the contribution of South Atlantic water (SAW) in the upper 1200 m between the isopycnals σθ=24.5 and 27.6. Northern and southern source water masses are defined and an isopycnal mixing approach is applied. The SAW fractions are then combined with the ADCP flow field to calculate the transport of SAW into the Caribbean and across 16°N. The SAW inflow into the Caribbean through the passages south of Guadeloupe ranges from 7.6 to 11.6 Sv, which is 50–75% of the total inflow. The mean (9.1±2.2 Sv) is in the range of previous estimates. Ambiguities in the northern and southern source water masses of the salinity maximum water permitted us only to calculate the contribution of SAW from the eastern source in this water mass. We estimated the additional SAW transport by the western source to be of the order of 1.9±0.7 Sv. The calculation of the SAW transport across 16°N was hampered by the presence of several anticyclonic rings from the North Brazil Current (NBC) retroflection region, some of the rings were subsurface intensified. Provided that the rings observed at 16°N are typical rings and that all rings which are annually produced in the NBC retroflection area (6.5–8.5 per year) reach 16°N, the SAW ring transport across 16°N is calculated to 5.3±0.7 Sv. From the 5 repeats at 16°N, only two showed a net northward flow, suggesting that the mean northward SAW transport is dominated by ring advection. The joint SAW transports of the Caribbean inflow (9.1 Sv) and the flow across 16°N (5.3 Sv) sum up to 14.4 Sv. The transport increases to 16.3 Sv if the additional SAW transport from the western source of SMW (1.9±0.7 Sv) is included. These transport estimates and the following implications depend strongly on the assumption that the surface water in the Caribbean inflow is of South Atlantic origin. The transport estimates are, however, in the range of the inverse model calculations for the net cross-hemispheric flow. About 30–40% of this transport is intermediate water from the South Atlantic, presumably supporting studies which found the contributions of intermediate and upper warm water to be of a comparable magnitude. For the upper warm water (σθ<27.1), the Caribbean inflow seems to be the major path (7.9±1.6 Sv), the ring induced transport across 16°N is about 30% of that value. The intermediate water transport across 16°N was calculated to be 2.3–3.6 Sv, the inflow into the Caribbean is slightly smaller (1.5–2.4 Sv).  相似文献   

15.
In order to examine the formation, distribution and synoptic scale circulation structure of North Pacific Intermediate Water (NPIW), 21 subsurface floats were deployed in the sea east of Japan. A Eulerian image of the intermediate layer (density range: 26.6–27.0σθ) circulation in the northwestern North Pacific was obtained by the combined analysis of the movements of the subsurface floats in the period from May 1998 to November 2002 and historical hydrographic observations. The intermediate flow field derived from the floats showed stronger flow speeds in general than that of geostrophic flow field calculated from historical hydrographic observations. In the intermediate layer, 8 Sv (1 Sv ≡ 106 m3s−1) Oyashio and Kuroshio waters are found flowing into the sea east of Japan. Three strong eastward flows are seen in the region from 150°E to 170°E, the first two flows are considered as the Subarctic Current and the Kuroshio Extension or the North Pacific Current. Both volume transports are estimated as 5.5 Sv. The third one flows along the Subarctic Boundary with a volume transport of 5 Sv. Water mass analysis indicates that the intermediate flow of the Subarctic Current consists of 4 Sv Oyashio water and 1.5 Sv Kuroshio water. The intermediate North Pacific Current consists of 2 Sv Oyashio water and 3.5 Sv Kuroshio water. The intermediate flow along the Subarctic Boundary contains 2 Sv Oyashio water and 3 Sv Kuroshio water. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Hydrographic, current meter and ADCP data collected during two recent cruises in the South Indian Ocean (RRS Discovery cruise 200 in February 1993 and RRS Discovery cruise 207 in February 1994) are used to investigate the current structure within the Princess Elizabeth Trough (PET), near the Antarctic continent at 85°E, 63–66°S. This gap in topography between the Kerguelen Plateau and the Antarctic continent, with sill depth 3750 m, provides a route for the exchange of Antarctic Bottom Water between the Australian–Antarctic Basin and the Weddell–Enderby Basin. Shears derived from ADCP and hydrographic data are used to deduce the barotropic component of the velocity field, and thus the volume transports of the water masses. Both the Southern Antarctic Circumpolar Current Front (SACCF) and the Southern Boundary of the Antarctic Circumpolar Current (SB) pass through the northern PET (latitudes 63 to 64.5°S) associated with eastward transports. These are deep-reaching fronts with associated bottom velocities of several cm s-1. Antarctic Bottom water (AABW) from the Weddell–Enderby Basin is transported eastwards in the jets associated with these fronts. The transport of water with potential temperatures less than 0°C is 3 (±1) Sv. The SB is shown to meander in the PET, caused by the cyclonic gyre immediately west of the PET in Prydz Bay. The AABW therefore also meanders before continuing eastwards. In the southern PET (latitudes 64.5 to 66°S) a bottom intensified flow of AABW is observed flowing west. This AABW has most likely formed not far from the PET, along the Antarctic continental shelf and slope to the east. Current meters show that speeds in this flow have an annual scalar mean of 10 cm s-1. The transport of water with potential temperatures less than 0°C is 20 (±3) Sv. The southern PET features westward flow throughout the water column, since the shallower depths are dominated by the flow associated with the Antarctic Slope Front. Including the westward flow of bottom water, the total westward transport of the whole water column in the southern PET is 45 (±6) Sv.  相似文献   

17.
An inverse calculation using hydrographic section data collected from October to December 2000 yields velocity structure and transports of the Kuroshio in the Okinawa Trough region of the East China Sea (ECS) and south of central Japan, and of the Ryukyu Current (RC) southeast of the Ryukyu Islands. The results show the Kuroshio flowing from the ECS, through the Tokara Strait (TK), with a subsurface maximum velocity of 89 cm s−1 at 460 dbar. In a section (TI) southeast of Kyushu, a subsurface maximum velocity of 92 cm s−1 at 250 dbar is found. The results also show the RC flowing over the continental slope from the region southeast of Okinawa (OS) to the region east of Amami-Ohshima (AE) with a subsurface maximum velocity of 67 cm s−1 at 400 dbar, before joining the Kuroshio southeast of Kyushu (TI). The volume transport around the subsurface velocity maximum southeast of Kyushu (TI) balances well with the sum of those in TK and AE. The temperature-salinity relationships found around these velocity cores are very similar, indicating that the same water mass is involved. These results help demonstrate the joining of the RC with the Kuroshio southeast of Kyushu. The net volume transport of the Kuroshio south of central Japan is estimated to be 64∼79 Sv (1 Sv ≡ 106 m3s−1), of which 27 Sv are supplied by the Kuroshio from the ECS and 13 Sv are supplied by the RC from OS. The balance (about 24∼39 Sv) is presumably supplied by the Kuroshio recirculation south of Shikoku, Japan.  相似文献   

18.
We have examined wind-induced circulation in the Sea of Okhotsk using a barotropic model that contains realistic topography with a resolution of 9.25 km. The monthly wind stress field calculated from daily European Centre for Medium-Range Weather Forecasting (ECMWF) Re-Analysis data is used as the forcing, and the integration is carried out for 20 days until the circulation attains an almost steady state. In the case of November (a representative for the winter season from October to March), southward currents of velocity 0.1–0.3 m s−1 occur along the bottom contours off the east of Sakhalin Island. The currents are mostly confined to the shelf (shallower than 200 m) and extend as far south as the Hokkaido coast. In the July case (a representative for the summer season from April to September), significant currents do not occur, even in the shallow shelves. The simulated southward current over the east Sakhalin shelf appears to correspond to the near-shore branch of the East Sakhalin Current (ESC), which was observed with the surface drifters. These seasonal variations simulated in our experiments are consistent with the observations of the ESC. Dynamically, the simulated ESC is interpreted as the arrested topographic wave (ATW), which is the coastally trapped flow driven by steady alongshore wind stress. The volume transport of the simulated ESC over the shelf reaches about 1.0 Sv (1 Sv = 106 m3s−1) in the winter season, which is determined by the integrated onshore Ekman transport in the direction from which shelf waves propagate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We discussed the detailed current structures in the Eastern Channel of the Tsushima Strait, using four sets of acoustic Doppler current profiler (ADCP) data, which were taken by the quadrireciprocal method (Katoh, 1988), for removing tidal currents, in summers of 1987–1989. In the Eastern Channel, diurnally averaged currents balanced almost geostrophically. In the upper layer of the deepest part of the Eastern Channel, there existed a current core which corresponded to one branch of the Tsushima Current. The current direction in this core was between NE and ENE in all observations but the magnitude of velocity in 1987 differed largely from that in 1988. Another current core with lower velocities was found near the north coast of Kyushu. Near the bottom at the deepest part of the Eastern Channel, the velocity was more or less 0.3 kt (15 cm s–1). Along the east coast of Tsushima and in waters northeast of it, countercurrents were observed. The continuity of these countercurrents was interpreted as follows: A part of the current flowing from the Western Channel of the Tsushima Strait into the Japan Sea turns clockwise in waters northeast of Tsushima, and flows southwestward along the east coast of Tsushima. The southwestward current along Tsushima was correlated with the northeastward current in the central part of the Eastern Channel. The transport through the Eastern Channel was between 0.59 and 1.30 Sv (1 Sv=106 m3s–1). The baroclinic component, which was defined as the transport based on calculations of geostrophic current with assuming zero velocity near the bottom, was very small.  相似文献   

20.
Subinertial and seasonal variations in the Soya Warm Current (SWC) are investigated using data obtained by high frequency (HF) ocean radars, coastal tide gauges, and a bottom-mounted acoustic Doppler current profiler (ADCP). The HF radars clearly captured the seasonal variations in the surface current fields of the SWC. Almost the same seasonal cycle was repeated in the period from August 2003 to March 2007, although interannual variations were also discernible. In addition to the annual and interannual variations, the SWC exhibited subinertial variations with a period of 5–20 days. The surface transport by the SWC was significantly correlated with the sea level difference between the Sea of Japan and Sea of Okhotsk for both the seasonal and subinertial variations, indicating that the SWC is driven by the sea level difference between the two seas. The generation mechanism of the subinertial variation is discussed using wind data from the European Centre for Medium-range Weather Forecasts (ECMWF) analyses. The subinertial variations in the SWC were significantly correlated with the meridional wind stress component over the region. The subinertial variations in the sea level difference and surface current delay from the meridional wind stress variations by one or two days. Sea level difference through the strait caused by wind-generated coastally trapped waves (CTWs) along the east coast of Sakhalin and west coast of Hokkaido is considered to be a possible mechanism causing the subinertial variations in the SWC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号