首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We analyze the encounters of the neutron star (pulsar) Geminga with open star clusters in the OB association Ori OB1a through the integration of epicyclic orbits into the past by taking into account the errors in the data. The open cluster ASCC21 is shown to be the most probable birthplace of either a single progenitor star for the Geminga pulsar or a binary progenitor system that subsequently broke up. Monte Carlo simulations of Geminga-ASCC21 encounters with the pulsar radial velocity V r = ?100±50 km s?1 have shown that close encounters could occur between them within ≤10 pc at about t = ?0.52 Myr. In addition, the trajectory of the neutron star Geminga passes at a distance of ≈25 pc from the center of the compact OB association λ Ori at about t = ?0.39 Myr, which is close to the age of the pulsar estimated from its timing.  相似文献   

2.
We report the analysis of the young star clusters NGC 1960, NGC 2453 and NGC 2384 observed in the J (1.12 μm), H (1.65 μm) and K′ (2.2 μm) bands. Estimates of reddening, distance and age as E(B?V)=0.25, d=1380 pc and t=31.6 to 125 Myr for NGC 1960, E(B?V)=0.47, d=3311 pc and t=40 to 200 Myr for NGC 2453 and E(B?V)=0.25, d=3162 pc and t=55 to 125 Myr for NGC 2384 have been obtained. Also, we have extended the color–magnitude diagrams of these clusters to the fainter end and thus extended the luminosity functions to fainter magnitudes. The evolution of the main sequence and luminosity functions of these clusters have been compared with themselves as well as Lyngå 2 and NGC 1582.  相似文献   

3.
4.
The dependence of the spin frequency derivative \(\dot \nu \) of accreting neutron stars with a strongmagnetic field (X-ray pulsars) on the mass accretion rate (bolometric luminosity, Lbol) has been investigated for eight transient pulsars in binary systems with Be stars. Using data from the Fermi/GBM and Swift/BAT telescopes, we have shown that for seven of the eight systems the dependence \(\dot \nu \) (Lbol) can be fitted by the model of angular momentum transfer through an accretion disk, which predicts the relation \(\dot \nu \)L6/7bol. Hysteresis in the dependence \(\dot \nu \) (Lbol) has been confirmed in the system V 0332+53 and has been detected for the first time in the systems KS 1947+300, GRO J1008-57, and 1A 0535+26. Estimates for the radius of the neutron star magnetosphere in all of the investigated systems have been obtained. We show that this quantity varies from pulsar to pulsar and depends strongly on the analytical model and the estimates for the neutron star and binary system parameters.  相似文献   

5.
We present our Hα observations of 11 isolated southern galaxies: SDIG, PGC 51659, E 222-010, E 272-025, E 137-018, IC 4662, Sag DIG, IC 5052, IC 5152, UGCA 438, and E 149-003, with distances from 1 to 7 Mpc. We have determined the total Hα fluxes from these galaxies. The star formation rates in these galaxies range from 10?1 (IC 4662) to 10?4 M yr?1 (SDIG) and the gas depletion time at the observed star formation rates lies within the range from 1/6 to 24 Hubble times H 0 ?1 .  相似文献   

6.
We have obtained new estimates of the Sun’s distance from the symmetry plane Z and the vertical disk scale height h using currently available data on stellar OB associations, Wolf–Rayet stars, HII regions, and Cepheids. Based on individual determinations, we have calculated the mean Z = ?16 ± 2 pc. Based on the model of a self-gravitating isothermal disk for the density distribution, we have found the following vertical disk scale heights: h = 40.2 ± 2.1 pc from OB associations, h = 47.8 ± 3.9 pc from Wolf–Rayet stars, h = 48.4 ± 2.5 pc from HII regions, and h = 66.2 ± 1.6 pc from Cepheids. We have estimated the surface, Σ = 6 kpc?2, and volume, D(Z ) = 50.6 kpc?3, densities from a sample of OB associations. We have found that there could be ~5000 OB associations in the Galaxy.  相似文献   

7.
An improved version of the 3D stellar reddening map in a space with a radius of 1200 pc around the Sun and within 600 pc of the Galactic midplane is presented. As in the previous 2010 and 2012 versions of the map, photometry with an accuracy better than 0.05 m in the J and Ks bands for more than 70 million stars from the 2MASS catalogue is used in the new version. However, the data reduction technique is considerably more complicated. As before, an analysis of the distribution of stars near the main-sequence turnoff on the (J ? Ks)?Ks diagram, where they form a distribution maximum, provides a basis for the method. The shift of this maximum, i.e., the mode (J ? Ks), along (J ? Ks) and Ks, given the spatial variations of the mean dereddened color (J ? Ks)0 of these stars, is interpreted as a growth of the reddening with increasing distance. The main distinction of the new method is that instead of the fixed mean absolute magnitude, dereddened color, distance, and reddening for each cell, the individual values of these quantities are calculated for each star by iterations when solving the system of equations relating them. This has allowed one to increase the random accuracy of the map to 0.01 m and its spatial resolution to 20 pc in coordinates and distance and to 1° in longitude and latitude. Comparison with other reddening estimates for the same spatial cells and Gaia DR1 TGAS stars shows that the constructed map is one of the best maps for the space under consideration. Its systematic errors have been estimated to be σ(E(J ? Ks)) = 0.025 m , or σ(E(B ? V)) = 0.04 m . The main purpose of the map is to analyze the characteristics of Galactic structures, clouds, and cloud complexes. For this purpose, the reddening map within each spatial cell has also been computed by analyzing the reddening along each line of sight.  相似文献   

8.
Low-mass galaxies are known to have played the crucial role in the hydrogen reionization in the Universe. In this paper we investigate the contribution of soft x-ray radiation (E ~ 0.1–1 keV) from dwarf galaxies to hydrogen ionization during the initial reionization stages. The only possible sources of this radiation in the process of star formation in dwarf galaxies during the epochs preceding the hydrogen reionization epoch are hot intermediate-mass stars (M ~ 5–8 M) that entered the asymptotic giant branch (AGB) stage and massive x-ray binaries. We analyze the evolution of the intergalactic gas in the neighborhood of a dwarf galaxy with a total mass of 6 × 108M formed at the redshift of z ~ 15 and having constant star-formation rate of 0.01–0.1 M yr?1 over a starburst with a duration of up to 100 Myr. We show that the radiation from AGB stars heats intergalactic gas to above 100 K and ensures its ionization xe ? 0.03 within about 4–10 kpc from the galaxy in the case of a star-formation rate of star formation 0.03–0.1 M yr?1, and that after the end of the starburst this region remains quasi-stationary over the following 200–300 Myr, i.e., until z ~ 7.5. Formation of x-ray binaries form in dwarf galaxies at z ~ 15 results in a 2–3 and 5–6 times greater size of the ionized and heated region compared to the case where ionization is produced by AGB stars exclusively, if computed with the “x-ray luminosity–star-formation rate” dependence (LX ~ fXSFR) factor fX = 0.1 and fX ~ 1, respectively. For fX ? 0.03 the effect of x-ray binaries is smaller that that of AGB star population. Lyα emission, heating, and ionization of the intergalactic gas in the neighborhood of dwarf galaxies result in the excitation of the 21 cm HI line. We found that during the period of the starburst end at z ~11.5–12.5 the brightness temperature in the neighborhood of galaxies is 15–25 mK and the region where the brightness temperature remains close to its maximum has a size of about 12–30 kpc. Hence the epoch of the starburst end is most favorable for 21 cm HI line observations of dwarf galaxies, because at that time the size of the region of maximum brightness temperature is the greatest over the entire evolution of the dwarf galaxy. In the case of the sizes corresponding to almost 0.’1 for z ~ 12 regions with maximum emission can be detected with the Square Kilometre Array, which is currently under construction.  相似文献   

9.
We present our long-term photometric and spectroscopic observations of a high-latitude B supergiant with an infrared excess—the protoplanetary nebula IRAS 18062+2410. OurU BV observations in 2000–2006 have confirmed the rapid irregular photometric variability of the star with a maximum amplitude as high as 0 . m 4 in V that we found previously. The BV and UB color indices vary with amplitudes as high as 0 . m 10 and 0 . m 25, respectively, and show no clear correlation with the brightness. Our V-band CCD observations on 11 nights in 2006 have revealed brightness trends during the night. The variability of IRAS18062+2410 is similar in pattern to the light variations in other hot post-AGB objects and some of the nuclei of young planetary nebulae. We assume that pulsations and a variable stellar wind can be responsible for the variability of these stars. In addition to the rapid variability, our 12-year-long observations have revealed a systematic decline in the mean brightness of IRAS 18062+2410. This may be related to a rise in the temperature of the star at constant luminosity as a result of its evolution. Low-resolution spectroscopic observations have shown a systematic increase in the equivalent widths of the Hα, Hβ, [NII]λ6584 Å, OI λ8446 Å, and [OII] λ7320–7330 Å emission lines. The changes in the star’s emission line spectrum are probably caused by an increase in the degree of ionization of the gas shell due to a rise in the temperature of the ionizing star. Our photometric and spectroscopic observations of IRAS 18062+2410 confirm the previously made assumptions that the star evolves very rapidly to the region of planetary nebulae.  相似文献   

10.
A Fabry-Perot spectrometer was used to map the H II region around the O star ξ Per in the Hβ emission line. The angular size of the region is \(9_.^ \circ 1 \times 6_.^ \circ 0\). The region-boundary contour drawn at the double background level is centered on the star. The accuracy of our emission intensity measurements is 0.2 rayleigh. The proximity of the nebula NGC 1499 has virtually no effect on the measured emission measure toward the star. The star excitation parameter derived from observations corresponds to the spectral type O7.5 III and is U(Sp)=56.0±8.4 pc cm?2; the mean electron density in the region is ne=3.1±0.4 cm?3.  相似文献   

11.
The Tycho-2 proper motions and five-band Tycho-2 and 2MASS photometry for approximately 2.5 million common stars have been used to select OB stars and to determine the extinction and photometric distance for each of them. We have selected 37 485 stars and calculated their reddenings based on their positions in the two-color V T -H, J-Ks diagrams relative to the zero-age main sequence and the theoretical reddening line for B5 stars. Tests confirm that the selected stars belong to the spectral types O-B with a small admixture of later types. We calculate the extinction coefficient R and its variations with Galactic longitude based on the positions of the selected stars in the two-color B T -V T , V T -Ks diagram. The interstellar extinction for each star is calculated as the product of the reddening found and the coefficient R. The extinction and its variations with Galactic longitude agree well with the extinction based on the model by Arenou et al. (1992). Calibration of the relation between the absolute magnitude and reduced proper motion V T − + 5 + 5 log μ for Hipparcos stars has allowed us to calculate the absolute magnitudes and photometric distances for the selected stars. The distances found agree with those derived from the Hipparcos parallaxes within 500 pc. The distribution of the stars and the extinction variations with distance found show that the selected stars form an almost complete sample of stars with spectral types earlier than B5 within about 750 pc of the Sun. The sample includes many noticeably reddened stars in the first and second Galactic quadrants that are absent from the Hipparcos and Tycho Spectral Types Catalogues. This slightly changes the pattern of the distribution of OB stars compared to the classical pattern based on Hipparcos. Original Russian Text ? G.A. Goncharov, 2008, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2008, Vol. 34, No. 1, pp. 10–20.  相似文献   

12.
We discuss the infrared (IR) (1.25–5 µm) photometry of eight planetary nebulae performed in 1999–2006. For all of the nebulae under study, we have firmly established IR brightness and color variations on time scales shorter than one year and up to 6–8 years. The greatest IR brightness variations were observed in IC 2149, IC 4997, and NGC 7662. Their J magnitudes varied within 0 . m 2–0 . m 25. In the remaining objects, the J magnitude variations did not exceed 0 . m 15. All of the planetary nebulae under study exhibited IR color variations. Based on the IR photometry, we have classified the central regions of the planetary nebula NGC 1514 and of the northern part of NGC 7635 seen through a 12″ aperture as a B(3–7) main-sequence star (NGC 1514) and a ~O9.5 upper-main-sequence star (NGC 7635). The nebulae IC 4997 and NGC 7027 exhibited an excess emission (with respect to the emission from a hot source) at λ > 2.5 µm.  相似文献   

13.
We have searched for the stars that either encountered in the past or will encounter in the future with the Solar system closer than 2 pc. For this purpose, we took more than 216 000 stars with the measured proper motions and trigonometric parallaxes from the Gaia DR1 catalogue and their radial velocities from the RAVE5 catalogue. We have found several stars for which encounters closer than 1 pc are possible. The star GJ 710, for which the minimum distance is d m = 0.063 ± 0.044 pc at time t m = 1385 ± 52 thousand years, is the record-holder among them. Two more stars, TYC 8088-631-1 and TYC 6528-980-1, whose encounter parameters, however, are estimated with large errors, are of interest.  相似文献   

14.
Based on the analysis of published data on exposure ages of iron meteorites determined with the 40K/K method (T K) and ages calculated using short-lived cosmogenic radionuclides (with the half-life T 1/2 < 1 Myr) in combination with stable cosmogenic isotopes of noble gases (TRS), the following results have been obtained. (1) The distribution of T RS ages (106 values) has an exponential shape, similar to that for ordinary chondrites, but different from the distribution of T K ages (80 values). The difference is most likely due to small amounts of data for meteorites with low T K ages (less than ~200–300 Myr). The latter can be ascribed to the difficulty of measurement of small concentrations of cosmogenic potassium isotopes. This circumstance makes the selection of meteorites with 40K/K ages nonrepresentative and casts doubt on the correctness of conclusions about the variations of the intensity of galactic cosmic rays (GCR) based on the analysis of distribution of these ages. (2) The magnitude of the known effect (systematic overestimation of T K ages in comparison with T RS ages) has been refined. The value k = T K/T RS = 1.51 ± 0.03 is acquired for the whole population of data. We have shown the inefficiency of the explanation of this effect on account of an exponential change in the GCR intensity (I T ) with time (T) according to the relation I T = I 0exp(–γT) over the whole range of ages of iron meteorites. (3) In order to explain the overestimation of T K ages in comparison with T RS ages, a model has been proposed, according to which the GCR intensity has exponentially increased in the interval of 0–1500 Myr governed by the relation: I T = I T = 1500 (1 + αexp(–βT)). For one of the variants of this model, the GCR intensity has exponentially increased by a factor of two only over the recent ~300 Myr, remaining approximately constant for the rest of the time. The data acquired with the use of this model indicate that the measured T K ages are close to the actual time that the meteorites existed in space; the data are in agreement with the observed exponential distribution of T RS ages.  相似文献   

15.
A family of well behaved perfect fluid balls has been derived starting with the metric potential g 44=B(1+Cr 2) n for all positive integral values of n. For n≥4, the members of this family are seen to satisfy the various physical conditions e.g. c 2 ρp≥0,dp/dr<0,/dr<0, along with the velocity of sound \((\sqrt{dp/c^{2}d\rho} )< 1\) and the adiabatic index ((p+c 2 ρ)/p)(dp/(c 2 ))>1. Also the pressure, energy density, velocity of sound and ratio of pressure and energy density are of monotonically decreasing towards the pressure free interface (r=a). The fluid balls join smoothly with the Schwarzschild exterior model at r=a. The well behaved perfect fluid balls so obtained are utilised to construct the superdense star models with their surface density 2×1014  gm/cm3. We have found that the maximum mass of the fluid balls corresponding to various values of n are decreasing with the increasing values of n. Over all maximum mass for the whole family turns out to be 4.1848M Θ and the corresponding radius as 19.4144 km while the red shift at the centre and red shift at surface as Z 0=1.6459 and Z a =0.6538 respectively this all happens for n=4. It is interesting to note that for higher values of n viz n≥170, the physical data start merging with that of Kuchowicz superdense star models and hence the family of fluid models tends to the Kuchowicz fluid models as n→∞. Consequently the maximum mass of the family of solution can not be less than 1.6096 M Θ which is the maximum mass occupied by the Kuchowicz superdense ball. Hence each member of the family for n≥4 provides the astrophysical objects like White dwarfs, Quark star, typical neutron star.  相似文献   

16.
Data on HII regions, molecular clouds, and methanol masers have been used to estimate the Sun’s distance from the symmetry plane z and the vertical disk scale height h. Kinematic distance estimates are available for all objects in these samples. The Local-arm (Orion-arm) objects are shown to affect noticeably the pattern of the z distribution. The deviations from the distribution symmetry are particularly pronounced for the sample of masers with measured trigonometric parallaxes, where the fraction of Local-arm masers is large. The situation with the sample of HII regions in the solar neighborhood is similar. We have concluded that it is better to exclude the Local arm from consideration. Based on the model of a self-gravitating isothermal disk, we have obtained the following estimates from objects located in the inner region of the Galaxy (RR 0): z = ?5.7 ± 0.5 pc and h 2 = 24.1 ± 0.9 pc from the sample of 639 methanol masers, z = ?7.6±0.4 pc and h 2 = 28.6±0.5 pc from 878HII regions, z = ?10.1 ± 0.5 pc and h 2 = 28.2 ± 0.6 pc from 538 giant molecular clouds.  相似文献   

17.
Based on the Gaia DR1 TGAS parallaxes and photometry from the Tycho-2, Gaia, 2MASS, andWISE catalogues, we have produced a sample of ~100 000 clump red giants within ~800 pc of the Sun. The systematic variations of the mode of their absolute magnitude as a function of the distance, magnitude, and other parameters have been analyzed. We show that these variations reach 0.7 mag and cannot be explained by variations in the interstellar extinction or intrinsic properties of stars and by selection. The only explanation seems to be a systematic error of the Gaia DR1 TGAS parallax dependent on the square of the observed distance in kpc: 0.18R 2 mas. Allowance for this error reduces significantly the systematic dependences of the absolute magnitude mode on all parameters. This error reaches 0.1 mas within 800 pc of the Sun and allows an upper limit for the accuracy of the TGAS parallaxes to be estimated as 0.2 mas. A careful allowance for such errors is needed to use clump red giants as “standard candles.” This eliminates all discrepancies between the theoretical and empirical estimates of the characteristics of these stars and allows us to obtain the first estimates of the modes of their absolute magnitudes from the Gaia parallaxes: mode(M H ) = ?1.49 m ± 0.04 m , mode(M Ks ) = ?1.63 m ± 0.03 m , mode(M W1) = ?1.67 m ± 0.05 m mode(M W2) = ?1.67 m ± 0.05 m , mode(M W3) = ?1.66 m ± 0.02 m , mode(M W4) = ?1.73 m ± 0.03 m , as well as the corresponding estimates of their de-reddened colors.  相似文献   

18.
Highly accurate W BV R photometric measurements of the eclipsing binary HP Aur were performed in 2002–2003 with the 48-cm AZT-14 reflector at the Tien-Shan High-Altitude Observatory to determine the rate of apsidal motion. A consistent system of physical and geometrical parameters of the components and the binary as a whole has been constructed for the first time by analyzing these new measurements together with other published data: we determined their radii (R1 = 1.05R, R2 = 0.82R) and luminosities (L1 = 1.10L, L2 = 0.46L), spectral types (G2V + G8V) and surface gravities (log g1 = 4.38, log g2 = 4.51), age (t = 9.5 × 109 yr), and the distance to the binary (d = 197 pc). We detected an ultraviolet excess in the spectra of both components, \(\Delta (W - B) \simeq - 0\mathop .\limits^m 25\), that is probably attributable to a metal deficiency in the atmospheres of these stars. In this system of two solar-type stars, we found a third body with the mass M3 sin i 3 3 = 0.17M that revolved with the period P3 = 13.7 yr around the eclipsing binary in a highly eccentric elliptical orbit: e3 = 0.70 and A3 sin i3 ? 7 AU. The orbit of the eclipsing binary itself was shown to be also elliptical, but with a low eccentricity (e = 0.0025(5)), while apsidal motion with a period Uobs > 80 yr was observed at a theoretically expected period Uth ≈ 92 yr. At least 20 to 30 more years of photoelectric measurements of this star will be required to reliably determine Uobs.  相似文献   

19.
We present new UB V observations of the symbiotic nova V 1329 Cyg. Based on all our UB V observations of a uniform system, we redetermined the orbital period of the binary and estimated the magnitudes and luminosities of its components. We show that the pre-outburst visual luminosities of the red giant and the hot star were almost equal and that the rapid irregular photographic variability of the star was caused by the nonstationary behavior of the hot component. The outburst amplitude of the hot component (subdwarf) in 1964 was found to be ~2m in the V band, which is typical of ordinary symbiotic stars. We estimated the continuum luminosity of the gaseous component that appeared after the outburst. In the V band, it was almost 1m fainter than the flared hot star. Structurally, the gaseous component is an ionized gaseous disk comparable in size to an M giant.  相似文献   

20.
Based on high-latitude molecular clouds with highly accurate distance estimates taken from the literature, we have redetermined the parameters of their spatial orientation. This systemcan be approximated by a 350 × 235 × 140 pc ellipsoid inclined by the angle i = 17° ± 2° to the Galactic plane with the longitude of the ascending node l Ω = 337° ± 1°. Based on the radial velocities of the clouds, we have found their group velocity relative to the Sun to be (u 0, v 0, w 0) = (10.6, 18.2, 6.8) ± (0.9, 1.7, 1.5) km s?1. The trajectory of the center of the molecular cloud system in the past in a time interval of ~60 Myr has been constructed. Using data on masers associated with low-mass protostars, we have calculated the space velocities of the molecular complexes in Orion, Taurus, Perseus, and Ophiuchus. Their motion in the past is shown to be not random.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号