首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Geochimica et cosmochimica acta》1999,63(23-24):4013-4035
The effect of organic matter during soil/water interaction is still a debated issue on the controls of chemical weathering in a tropical environment. In order to study this effect in detail, we focused on the weathering processes occurring in a small tropical watershed (Nsimi-Zoetélé, South Cameroon). This site offers an unique opportunity to study weathering mechanisms in a lateritic system within a small basin by coupling soil and water chemistry.The lateritic cover in this site can reach up to 40 m in depth and show two pedological distinct zones: unsaturated slope soils on the hills and/or elevated areas; and water-saturated soils in the swamp zone which represent 20% of the basin surface. The study present chemical analysis performed on water samples collected monthly from different localities between 1994–1997 and on soil samples taken during a well drilling in December 1997. The results suggest the existence of chemical and spatial heterogeneities of waters in the basin: colored waters flooding the swamp zone have much higher concentrations of both organic matter (i.e., DOC) and inorganic ions (e.g., Ca, Mg, Al, Fe, Th, Zr) than those from springs and groundwater from the hills. Nevertheless, these organic-rich waters present cation concentrations (Na, Ca, Mg, K) which are among the lowest compared to that of most world rivers. The main minerals in the soils are secondary kaolinite, iron oxi-hydroxides, quartz, and accessory minerals (e.g., zircon, rutile). We mainly focused on the mineralogical and geochemical study of the swamp zone soils and showed through SEM observations the textural characterization of weathered minerals such as kaolinite, zircon, rutile, and the secondary recrystallization of kaolinite microcrystals within the soil profile. Water chemistry and mineralogical observations suggest that hydromorphic soils of the swamp zone are responsible for almost all chemical weathering in the basin. Thus, in order to explain the increase of element concentration in the organic-rich waters, we suggest that organic acids enhance dissolution of minerals such as kaolinite, goethite, and zircon and also favors the transport of insoluble elements such as Al, Fe, Ti, Zr, and REE by chemical complexation. SiO2(aq) concentrations in these waters are above saturation with respect to quartz. Dissolution of phytholithes (amorphous silica) may be responsible for this relatively high SiO2(aq.) concentration. Al/Mg ratios obtained for the soil and the Mengong river waters show that a significant amount of Al does not leave the system due to kaolinite recrystallisation in the swamp zone soils. Geochemical data obtained for this watershed show the important contribution of vegetation and organic matter on chemical weathering in the swamp zone. Quantitatively we propose that the increasing amount in total dissolved solid (TDS) due to organic matter and vegetation effect is about 35%. In summary, this interaction between soils and waters occurs mostly in soils that are very depleted in soluble elements. Thus, the low concentration of major elements in these water is a direct consequence of the depleted nature of the soils.  相似文献   

2.
The Albany-Fraser Orogen (AFO), southeast Western Australia, is an underexplored, deeply weathered regolith-dominated terrain that has undergone complex weathering associated with various superimposed climatic events. For effective geochemical exploration in the AFO, integrating landscape evolution with mineralogical and geochemical variations of regolith and bedrock provides fundamental understanding of mechanical and hydromorphic dispersion of ore and pathfinder elements associated with the different weathering processes.In the Neale tenement, northeast of the AFO, a residual weathering profile that is 20-55 m thick was developed under warm and humid climatic conditions over undulating Proterozoic sheared granitoids, gneisses, schists and Au-bearing mafic rocks. From the base, the typical weathering profile consists of saprock, lower ferruginous saprolite, upper kaolinitic saprolite and discontinuous silcrete duricrust or its laterally coeval lateritic residuum. These types of duricrusts change laterally into areas of poorly-cemented kaolinitic grits or loose lateritic pisoliths and nodules.Lateritic residuum probably formed on remnant plateaus and was transported mechanically under arid climatic conditions over short distances, filling valleys to the southeast. Erosion of lateritic residuum exposes the underlying saprolite and, together with dilution by aeolian sands, constitutes the transported overburden (2-25 m thick). The reworked lateritic materials cover the preserved silcrete duricrusts in valleys. The lower ferruginous saprolite and lateritic residuum are well developed over mafic and sulphide-bearing bedrocks, where weathering of ferromagnesian minerals and sulphides led to enrichment of Fe, Cu, Ni, Cr, Co, V and Zn in these units. Kaolinitic saprolite and the overlying pedogenic silcrete are best developed over alkali granites and quartzofeldspathic gneisses, which are barren in Au and transition elements, and enriched in silica, alumina, rare earth and high field strength elements.A residual Au anomaly is formed in the lower ferruginous saprolite above a Au -bearing mafic intrusion at the Hercules prospect, south of the Neale tenement, without any expression in the overlying soil (< 20 cm). Conversely, a Au anomaly is recorded in the transported cover, particularly in the uppermost 3 m at the Atlantis prospect, 5 km southwest of the Hercules prospect. No anomalies have been detected in soils using five different size fractions (> 2,000 μm, 2,000-250 μm, 250-53 μm, 53-2 μm and < 2 μm). Therefore, soil cannot be efficiently applied as a reliable sampling medium to target mineralization at the Neale tenement. This is because mechanical weathering was interrupted by seasonal periods of intensive leaching under the present-day surface conditions and/or dilution by recently deposited aeolian sediments which obscure any signature of a potential Au anomaly in soils. Therefore, surface soil sampling should extend deeper than 20 cm to avoid dilution by aeolian sands and seasonal leaching processes. Regolith mapping and the distinction between the residual and transported weathering products are extremely significant to follow the distal or proximal mineralization.  相似文献   

3.
This paper presents a hydrogeochemical modeling code HYDROS, which combines the multi-component transport model with equilibrium speciation module MINTEQA2. The processes of adsorption, aqueous speciation and mineral precipitation/dissolution are represented in the model. The numerical model uses a sequential iterative approach for solving the solute transport and the equilibrium geochemistry modules. Further the transport part is solved using an operator split approach wherein a finite volume method is used for solving the advective equations while a classical finite difference method is employed for solving the dispersive equations. The model performance is evaluated by comparing it with MINTOX for a literature problem. HYDROS is then applied to the case study of the transfer of transition metals with organic colloids in the swamp groundwater system of the experimental Nsimi watershed, representative of the humid tropical ecosystem of the South Cameroon Plateau. Field observations at the site swamp system suggest that the carbon is mainly transferred as organic colloids (i.e., dissolved organic carbon) produced by the slow biodegradation of the swamp organic matter. Using HYDROS, the behaviour of Al(III) and Fe(III) elements in the base flow system is simulated during inter rain events of a short rainy season (May–June 1996). The elemental time-series for Al, Fe, Cl, pH compare well with the simulation results. The colloids are found to have a strong impact on the mobilization and transfer of Al(III) and Fe(III), which are considered to have low mobility in weathering environment.  相似文献   

4.
The knowledge of the biogeochemical cycle of chlorine (Cl)is important since this element is used as a tracer of geochemical and hydrological processes in oceanic or continental environments. More specifically, Cl can be used to correct surface water composition from atmospheric contribution in order to calculate precise chemical weathering rates in watersheds. Beyond the problem of potential Cl sources in a given watershed, which is directly related to the lithology, vegetation, and industrial activities, the Cl normalization is based on the assumption that this element behaves conservatively during surface processes (e.g., chemical weathering, adsorption/desorption processes).The purpose of the present study is to forecast the geochemical behavior of Cl in a forested ecosystem located under humid tropical environment.For this reason, we have analyzed the Cl (and also Ca and Na) concentrations ofsurface waters (rainwater, groundwater, river water) over a two-year period in the Nsimi–Zoetele watershed (Cameroon).The Cl mass balance for the watershed appears to be equilibrated over the studied period (1995–1996) but Cl behavior in Mengong River draining the watershed suggests a non-conservative behavior. Indeed, Cl concentrationsin the Mengong River are low during dry seasons and high during wet seasons, which is the reverse tendency to what is usually observed taking into account dilution and evaporation processes. As Cl concentrations in the Mengong River are lower than those measured in all the feeding reservoirs, Cl should be adsorbed onto the soils of the watershed. However, as the Cl mass balance is equilibrated over the whole-year, Cl should be adsorbed and releasedat a seasonal scale. The results we obtained for this small watershed were not generalized for a larger studied basin (i.e., Nyong River basin). Even if these results should be followed by further investigations, this study suggests that Cl normalization should be used with caution to avoid under- or over-estimation of chemical weathering rates.  相似文献   

5.
Chemical and physical weathering of primary minerals during the formation of laterite profiles in the Darling Range has formed distinct secondary mineral and morphological zones in the regolith. Erosion and human activity such as mining have exposed large areas of lateritic regolith, and its classification is important for land management, especially for mine rehabilitation. Preserved rock fabrics within regolith may enable the identification of parent rock type and degree of weathering, thus providing explanations for variations in important physical properties such as the strength and water retention of regolith. Feldspar, quartz, biotite and muscovite in porphyritic and fine-grained monzogranite in lateritic profiles have weathered via a series of gradational changes to form saprolite and pedolith consisting of kaolin, quartz, iron oxides, muscovite and gibbsite. Local reorganisation in the upper regolith or pedoplasmation zone has included illuviation of kaolin, which may be iron oxide-stained and which has disrupted the preserved rock fabric of saprock and saprolite. Quartz grain- or matrix-supported fabrics have developed, with greater pedoplasmation resulting in a quartz-grain-supported fabric. The recognition of these processes enables the use of gibbsite grainsize and distribution in regolith to infer original feldspar grainsize. Muscovite-rich or muscovite-deficient kaolin matrix indicates where plagioclase or alkali feldspar, respectively, was present in the parent rock. In some regolith, cementing by iron oxides has faithfully preserved rock fabric. The recognition of these various regolith types provides a basis for identifying the parent materials of lateritic regolith developed from granitic and doleritic rocks. Rock fabric is sometimes preserved in iron oxide-cemented bauxite mine floor regolith (Zh) due to the pseudomorphic gibbsite grains and iron oxide cement which forms a porous, rigid fabric. Plagioclase-rich granitoid is more likely to have weathered to dense clay-rich regolith (Zp), whereas albite and alkali feldspar have weathered to quartz-rich regolith (Zm) with the random orientation of quartz grains indicating that substantial reorganisation of rock fabric has occurred. It is possible to predict the response of regolith materials exposed in mine floors to management practices including ripping and re-vegetation, thus allowing targeted use of deep-ripping and planting density based on regolith type.  相似文献   

6.
Gold, a principal ore commodity, is sought in third world countries, which are situated mainly in the tropics, where extensive lateritic terrains exist. The high value of gold on the international market and balance of payment problems cause gold to be especially important. Present intensive propecting for gold in the Third World countries are, for those reasons, in lateritic terrains. Laterites, formed during the Tertiary and the Recent in inner tropical morphoclimatic zones covered by dense rain forests, in places such as the Amazon region and West Africa, are presently undergoing strong weathering and erosion that truncates lateritic profiles. Consequently, the thick soils still forming today cover in different places, different parts of truncated profiles. Samples of thick soils taken from the surface down, may begin not at the original top of the laterite but somewhere along the profile. Inasmuch as elements in lateritic profiles are not homogeneously distributed, problems in interpretation can result. Gold distribution in non-truncated laterites tends to be sigmoidal in distribution. Two convexities (highest contents) can be distinguished: one in surficial iron crusts or equivalents, the other at the base of saprolite. The sigmoidal curve can be cut off, strongly modified, or concealed by tropical weathering. The intense weathering can diminish concentrations, i.e., elements can be dispersed. Geochemical exploration becomes difficult, because interpretations of the geochemical anomalies based on high concentrations becomes unreliable. If the amount of truncation of lateritic profiles can be assessed, weak or even negative anomalies can become as good or better than strong anomalies.  相似文献   

7.
Sr isotope data from soils, water, and atmospheric inputs in a small tropical granitoid watershed in the Luquillo Mountains of Puerto Rico constrain soil mineral development, weathering fluxes, and atmospheric deposition. This study provides new information on pedogenic processes and geochemical fluxes that is not apparent in watershed mass balances based on major elements alone. 87Sr/86Sr data reveal that Saharan mineral aerosol dust contributes significantly to atmospheric inputs. Watershed-scale Sr isotope mass balance calculations indicate that the dust deposition flux for the watershed is 2100 ± 700 mg cm−2 ka−1. Nd isotope analyses of soil and saprolite samples provide independent evidence for the presence of Saharan dust in the regolith. Watershed-scale Sr isotope mass balance calculations are used to calculate the overall short-term chemical denudation velocity for the watershed, which agrees well with previous denudation rate estimates based on major element chemistry and cosmogenic nuclides. The dissolved streamwater Sr flux is dominated by weathering of plagioclase and hornblende and partial weathering of biotite in the saprock zone. A steep gradient in regolith porewater 87Sr/86Sr ratio with depth, from 0.70635 to as high as 0.71395, reflects the transition from primary mineral-derived Sr to a combination of residual biotite-derived Sr and atmospherically-derived Sr near the surface, and allows multiple origins of kaolinite to be identified.  相似文献   

8.
Thick, commonly lateritic, regoliths are widespread in inter-tropical regions of the world and present particular challenges in exploration. These are best tackled through a sound understanding of the evolution of the landscapes in which they occur. The regoliths formed under humid, warm to tropical conditions and, although they may have been modified by later climatic changes, i.e., to more humid or more arid conditions, many chemical and mineralogical characteristics are retained. These include the geochemical expressions of concealed mineralization. Erosional and depositional processes control the preservation and occurrence of specific regolith units that may be used as sample media and, in turn, target size, element associations and contrast, thereby influencing sampling procedures, analysis and data interpretation. These parameters are best summarized in terms geochemical dispersion models based on the degree of preservation of the pre-existing lateritic regolith. Regolith–landform mapping permits an assessment of the terrain in terms of such models. In relict regolith–landform regimes, in which the lateritic regolith is largely preserved, broad multi-element anomalies in the upper ferruginous horizons (lateritic residuum) can be detected using sample intervals of 1 km or more. In contrast, in erosional regimes, where this material is absent, anomalies in upper saprolite, and the soil and lag derived from it, are more restricted in area and closer sampling intervals, (200×40 m or less) may be necessary. Lag and soil are, generally, ineffective in depositional areas, except where the sediments are very thin (e.g.,<2 m) or overburden provenance can be established. Stratigraphic drilling is necessary to establish whether the overburden overlies a buried lateritic horizon or an erosion surface cut in saprolite. Lateritic residuum remains an excellent sample medium if present, again with widespread haloes, but where it is absent, leaching and the restricted haloes in upper saprolite present formidable problems. Ferruginous saprolite or composites across the unconformity may be effective, but otherwise carefully targeted drilling and sampling through saprolite and saprock may be necessary. Partial extraction analyses have yet to demonstrate significant results except in very specific environments. In arid regions, pedogenic carbonate (calcrete, caliche) may be a valuable sample medium for Au exploration, principally in erosional regimes, and in depositional areas where the overburden is shallow. Sample intervals range from 1 km for regional surveys, through to 100×20 m in prospect evaluation. Saprolite is an essential sample medium in all landform environments, but the restricted halos and possibility of leaching requires that drilling and sampling should be at close intervals.  相似文献   

9.
The lateritic weathering crusts exposed in mainland Greece were developed on ophiolitic ultramafic lithologies during lower Cretaceous times. The lateritic profile consists of four zones: bedrock, saprolite clay (nontronite) and goethitic. The profiles show large variations in thickness, continuity, mineralogy and chemical characteristics. They are broadly similar to clay nickel laterite deposits. The uppermost gravelly ferruginous sector was eroded and the material reworked and redeposited partly on the lateritic crust. Silcrete layers, characteristic of groundwater silcretes, were formed into the clay and goethitic zones. Significant supergene nickel enrichments occur in the clay and saprolite zones, indicating that water moved downward to a very low water table. The structure and mineralogy of the weathering crusts indicates that environmental conditions were likely to have been dominated by alternating wet and dry periods.  相似文献   

10.
Chemical, mineralogical, and petrographic data from the Los Pijiguaos bauxite deposit, together with the water chemistry of the streams draining the area, were used to study the problem of lateritic bauxite formation at this location. The Los Pijiguaos bauxite, located at the northwestern edge of the Guayana Shield in Venezuela, is a lateritic bauxite developed on a Precambrian Rapakivi Granite Batholith, the Parguaza Granite. This deposit is situated on a planation surface at elevations between 600 and 700 m; it is believed to have originated during an erosional event that took place during Late Cretaceous-early Tertiary times.The weathering profile is composed of an upper bauxite zone, followed by a saprolite, and merging gradually to the fresh granite. The upper bauxitic zone contains gibbsite, quartz, hematite, and goethite. The saprolite contains kaolinite, quartz, and goethite and is characterized by a relict granitic texture that indicates little bulk volume change associated with the weathering process. The upper bauxitic zone has lost any textural resemblance with the parent granite, consistent with extensive volume loss.Bauxite and saprolite are separated by a transition zone where gibbsite and kaolinite coexist. Textures indicating the replacement of kaolinite by gibbsite point to the dynamic nature of the weathering profile, characterized by advancing reaction fronts.The chemical composition of the deposit defines trends that can be traced back to the composition of the parent granite and shows enrichment of Al2O3, Fe2O3, and TiO2, and depletion of SiO2, relative to the parent granite. The uppermost part of the profile is characterized by a further enrichment of Fe2O3 with respect to the other components of the bauxite. Important volume and mass losses in the bauxite have also been calculated, based on chemical composition and density measurements. The calculated losses are consistent with the textural observations in the bauxite.The chemical composition of the waters of streams draining the area shows strong seasonal patterns, consistent with the seasonal nature of the local climate (one dry and one rainy season per year, both about six months long). The balance between dissolved and suspended loads in these streams indicates that the magnitudes of chemical and physical denudation are similar, leading to approximately constant thicknesses of the weathering profiles. These observations are consistent with model calculations based on current climatic conditions and suggest that the bauxitization process is still active.  相似文献   

11.
文章选择深圳市的亚热带典型小流域作为研究对象,通过定期采集流域内降水、泉水、岩石及风化残积土样品,分析所有样品的常量元素和微量元素,探讨流域水体的化学成分组成和主要成分来源以及岩石化学风化程度和风化趋势,结合流域水文气象数据估算了花岗岩化学风化速率及CO2消耗速率.结果表明,研究区地下水化学类型为HCO3-Na型,主要...  相似文献   

12.
The Igarapé Bahia, situated in the Carajás Mineral Province, is a world-class example of a lateritic gold deposit. It has developed under tropical weathering conditions since at least the Eocene and resulted in a regolith cover of at least 100 m thickness. The regolith is dominated by ~ 80 m thick ferruginous saprolite containing gossan bodies that constitute the main Au ore. Above saprolite the regolith stratigraphy has been established considering two distinct domains. One composed of residual materials and the other transported materials deposited over palaeochannels. In the residual domain the ferruginous saprolite grades upwards into a fragmental duricrust, interpreted as a collapsed zone, and then into different types of ferruginous duricrusts. Over palaeochannel the ferruginous saprolite is truncated by poorly sorted ferruginous sediment of variable composition that grades upwards into the ferruginous duricrusts formed over transported materials. Lateritization took place during a marked period that transformed the colluvium of the residual domain, and the transported materials accumulated in the channel depressions, into the ferruginous duricrust units. A later bauxitization event has overprinted all duricrust types but has mostly affected the duricrusts over the palaeochannel forming gibbsitic nodules. All duricrusts were finally covered by a transported layer of latosol which flattened the whole landscape in the Carajás region. Gold shows a depletion trend across the regolith but is enriched in the fragmental duricrust below the ferruginous duricrust from which gold is leached. Gold is also chemically dispersed laterally into the fragmental duricrust, but lateral Au dispersion in the ferruginous duricrusts of the residual domain is probably also influenced by colluvial transport. Metals associated with Au mineralization (Cu, U, Mo, Pb, Ag, LREE, Sn, W, Bi, Sb and P) are generally depleted in the saprolite but most of them are still anomalous. The fragmental and ferruginous duricrusts are more leached but the tests performed to estimate the dispersion potential of metals contained in the ferruginous duricrust show that some metals are still significantly anomalous especially Au, Ag and Cu. However, if ferruginous duricrusts are used as an exploration sample media their environment of formation must be considered. Metal depletion is generally more advanced in the ferruginous duricrusts developed in the vicinities of palaeochannels as oppose to those developed in residual domain. On the contrary, Au over palaeochannel areas is enriched in the upper bauxitized ferruginous duricrusts and in their gibbsitic nodules as a result of lateral chemical transport that is more widespread than in the colluvium over residual domain. The latosol is highly depleted in most metals due to its transported nature. However, the nodular fractions of the latosol show the greatest dispersion potential especially for Au, Ag, W, U, Bi and Sn. It can incorporate magnetic nodules that bring a rich suit of metals associated to the magnetic gossans, and non-magnetic nodules, classified as concretion and pisolites, which bring metals enriched or dispersed in the ferruginous duricrusts. This suggests that Lag constitutes a promising sample medium for geochemical exploration in the lateritic terrains of the Carajás region.  相似文献   

13.
Weathering and landslide occurrences in parts of Western Ghats,Kerala   总被引:2,自引:0,他引:2  
The climatic condition of Western Ghats has influenced the process of weathering and landslides in this mountainous tract along the southwest coast of India. During the monsoon period, landslides are a common in the Western Ghats, and its intensity depends upon the thickness of the loose unconsolidated soil formed by the process of weathering. Debris landslides with a combination of saprock, saprolite and soil, indicate the role of weathering in landslide occurrences. This paper reports on how the weathering in the windward slope of Western Ghats influences the occurrence of landslides and the factors which accelerate the weathering process. Rock and soil samples were collected from the weathering profile of hornblende gniess and granite gneiss. The chemical analysis and the calculated Chemical Index of Alteration (CIA) indicate the significant weathering and its possible influence on landslide occurrences in the study area. Mainly, the CIA value of lateritic soil and forest loam indicated the extent of high chemical weathering in this region. Rainfall is the dominant parameter influencing the chemical weathering process. In addition, deforestation, land use practices and soil erosion are some of the other important factors accelerating the weathering process and landslide occurrences in the region. The locations of the previous landslides superimposed on geology and soil show that most of the landslide occurrences are associated with the highly weathered zone, particularly lateritic soil and the ‘severe’ (rock outcrop) erodability zone.  相似文献   

14.
Chemical weathering of silicate minerals has long been known as a sink for atmospheric CO2, and feedbacks between weathering and climate are believed to affect global climate. While warmer temperatures are believed to increase rates of weathering, weathering in cool climates can be accelerated by increased mineral exposure due to mechanical weathering by ice. In this study, chemical weathering of silicate minerals is investigated in a small temperate watershed. The Jamieson Creek watershed is covered by mature coniferous forest and receives high annual precipitation (4000 mm), mostly in the form of rainfall, and is underlain by quartz diorite bedrock and glacial till. Analysis of pore water concentration gradients indicates that weathering in hydraulically unsaturated ablation till is dominated by dissolution of plagioclase and hornblende. However, a watershed scale solute mass balance indicates high relative fluxes of K and Ca, indicating preferential leaching of these solutes possibly from the relatively unweathered lodgement till. Weathering rates for plagioclase and hornblende calculated from a watershed scale solute mass balance are similar in magnitude to rates determined using pore water concentration gradients.When compared to the Rio Icacos basin in Puerto Rico, a pristine tropical watershed with similar annual precipitation and bedrock, but with dissimilar regolith properties, fluxes of weathering products in stream discharge from the warmer site are 1.8 to 16.2-fold higher, respectively, and regolith profile-averaged plagioclase weathering rates are 3.8 to 9.0-fold higher. This suggests that the Arrhenius effect, which predicts a 3.5- to 9-fold increase in the dissolution rate of plagioclase as temperature is increased from 3.4° to 22 °C, may explain the greater weathering fluxes and rates at the Rio Icacos site. However, more modest differences in K and Ca fluxes between the two sites are attributed to accelerated leaching of those solutes from glacial till at Jamieson Creek. Our findings suggest that under conditions of high rainfall and favorable topography, weathering rates of silicate minerals in warm tropical systems will tend to be higher than in cool temperate systems, even if the temperate system is has been perturbed by an episode of glaciation that deposits regolith high in fresh mineral surface area.  相似文献   

15.
Quantifying long-term rates of chemical weathering and physical erosion is important for understanding the long-term evolution of soils, landscapes, and Earth's climate. Here we describe how long-term chemical weathering rates can be measured for actively eroding landscapes using cosmogenic nuclides together with a geochemical mass balance of weathered soil and parent rock. We tested this approach in the Rio Icacos watershed, Puerto Rico, where independent studies have estimated weathering rates over both short and long timescales. Results from the cosmogenic/mass balance method are consistent with three independent sets of weathering rate estimates, thus confirming that this approach yields realistic measurements of long-term weathering rates. This approach can separately quantify weathering rates from saprolite and from overlying soil as components of the total. At Rio Icacos, nearly 50% of Si weathering occurs as rock is converted to saprolite; in contrast, nearly 100% of Al weathering occurs in the soil. Physical erosion rates are measured as part of our mass balance approach, making it particularly useful for studying interrelationships between chemical weathering and physical erosion. Our data show that chemical weathering rates are tightly coupled with physical erosion rates, such that the relationship between climate and chemical weathering rates may be obscured by site-to-site differences in the rate that minerals are supplied to soil by physical erosion of rock. One can normalize for variations in physical erosion rates using the “chemical depletion fraction,” which measures the fraction of total denudation that is accounted for by chemical weathering. This measure of chemical weathering intensity increases with increasing average temperature and precipitation in data from climatically diverse granitic sites, including tropical Rio Icacos and six temperate sites in the Sierra Nevada, California. Hence, across a wide range of climate regimes, analysis of chemical depletion fractions appears to effectively account for site-to-site differences in physical erosion rates, which would otherwise obscure climatic effects on chemical weathering rates. Our results show that by quantifying rates of physical erosion and chemical weathering together, our mass balance approach can be used to determine the relative importance of climatic and nonclimatic factors in regulating long-term chemical weathering rates.  相似文献   

16.
The intra- and epicontinental basins in north-east Africa (Egypt, Sudan) bear ample evidence of weathering processes repeatedly having contributed to the formation of mineral deposits throughout the Phanerozoic.The relict primary weathering mantle of Pan-African basement rocks consists of kaolinitic saprolite, laterite (in places bauxitic) and iron oxide crust. On the continent, the reaccumulation of eroded weathering-derived clay minerals (mainly kaolinite) occurred predominantly in fluvio-lacustrine environments, and floodplain and coastal plain deposits. Iron oxides, delivered from ferricretes, accumulated as oolitic ironstones in continental and marine sediments. Elements leached from weathering profiles accumulated in continental basins forming silcrete and alunite or in the marine environment contributing to the formation of attapulgite/saprolite and phosphorites.The Early Paleozoic Tawiga bauxitic laterite of northern Sudan gives a unique testimony of high latitude lateritic weathering under global greenhouse conditions. It formed in close spatial and temporal vicinity to the Late Ordovician glaciation in north Africa. The record of weathering products is essentially complete for the Late Cretaceous/Early Tertiary. From the continental sources in the south to the marine sinks in the north, an almost complete line of lateritic and laterite-derived deposits of bauxitic kaolin, kaolin, iron oxides and phosphates is well documented.  相似文献   

17.
湖北蛇屋山金矿床含金碳酸盐岩风化成矿过程   总被引:1,自引:0,他引:1  
高帮飞 《地质与勘探》2011,47(3):361-369
为阐述含金碳酸盐岩的风化成土过程,以湖北蛇屋山红土型金矿床为例,系统开展了元素地球化学和矿物学研究.研究发现,从风化壳腐泥层→杂色粘土带,碱金属、FeO、MnO、有机碳(Morg)、稀土元素(REE)和高场强元素(HFSE)等元素,以及钾长石、斜长石和黄铁矿等矿物的含量逐渐降低.质量平衡计算表明,风化过程中Si、Fe、...  相似文献   

18.
《Geochimica et cosmochimica acta》1999,63(23-24):3939-3957
A simple geochemical balance of lateritization processes governing the development of several tens of meters of weathering profiles overlain by ferricretes is estimated on the basis of detailed mineralogical and geochemical data. The lateritic weathering mantle of the “Haut–Mbomou” area in Central Africa is composed of different weathering layers described from the base to the top of vertical profiles as a saprolite, a mottled clay layer, a soft nodular layer, a soft ferricrete, and a ferricrete in which kaolinite, gibbsite, goethite, and hematite occur in various quantities. Incongruent dissolution of kaolinite leads to the formation of gibbsite in the upper saprolite, whereas the hematite does not clearly replace the kaolinite according to an epigene process in the upper ferruginous layers of the profiles. Instead, that kaolinite is also transformed into gibbsite according to an incongruent dissolution under hydrated and reducing conditions induced by a relatively humid climatic pattern. The respective relations of the silica, iron, and aluminum balances and the Al substitution rate of the hematite on the one hand, and of RHG [RHG = 100 (hematite/hematite + goethite)] and the kaolinite on the other hand, to the consumption or the release of protons H+ permit differentiation of aggrading ferruginization and degradation processes operating in the different lateritic weathering profiles. The Al substitution rate of the Fe–oxyhydroxides varies according to the nature of lateritization processes, e.g., saprolitic weathering and aggrading ferruginization vs. degradation. The observations and results indicate that the ferruginization process of the weathering materials of parent rocks is not a simple ongoing process as often thought. This suggests that the actual lateritic weathering mantle of the Haut–Mbomou area may result from different stages of weathering and erosion during climatic changes.  相似文献   

19.
铝土矿是化学风化作用的细粒终极产物,与强烈的化学风化作用密切相关。根据母岩的类别及作用过程,风化作用进一步分为铝硅酸盐岩强化学风化形成的红土化作用和碳酸盐岩强化学风化形成的钙红土化作用。在强烈的化学风化过程中,地表的原始沉积物(母岩)的原生矿物发生溶蚀、水解、水化、碳酸化、氧化,破坏原始的矿物结构,形成新的细粒矿物(主要是黏土质矿物)。在适合的地质条件下,持续的强烈化学风化作用会造成大部分活动的元素(如K、Na、Ca、Mg、Si)的流失与Al的残留富集从而形成铝土矿。现在观察到的沉积型铝土矿,虽然与古风化壳具有密切联系,但沉积型铝土矿多数是由沉积过程搬运到沉积盆地中所形成的强化学风化产物的沉积层,与古风化壳的残坡积层具有显著差别,只有少数工业价值不大(品位低、品质差)的残坡积相铝土矿。铝土矿含矿岩系的沉积环境与铝土矿(尤其是高品位、高品质的铝土矿)的成矿环境不尽相同。铝土矿主要形成于暴露于大气中的陆表环境(而非水下环境),由地下水淋滤作用形成(在渗流带由活动元素流失、Al等稳定元素残留富集而成)。本研究在铝土矿成矿作用分析等基础上,提出了以铝土矿沉积物等物源和沉积、成矿作用为依据的中国铝土矿床分类方案,包括原地或准原地残坡积物成因的红土型和喀斯特型,和异地物源沉积成因的沉积型。  相似文献   

20.
Bauxite is the ultimate fine-grained products of chemical weathering,and thus it is closely linked with the intense chemical weathering. Based on variations of parent rock and weathering processes,the weathering products can be subdivided into laterite and terra rossa,of which the former is formed by weathering of aluminosilicates and the latter is produced by the weathering of carbonates. During the intense chemical weathering,minerals in original subaerial sediments(parent rocks)would suffer a series of processes(dissolution,hydrolyzation,hydration,carbonation,and oxidation)and be destroyed or transformed,leading to formation of new minerals. In the favorable environment,continuously intense chemical weathering would cause the loss of most mobile elements(e.g., K,Na,Ca,Mg,Si)and the enrichment of Al,resulting in the formation of bauxite. Although sedimentary bauxites are closely linked with the weathering curst,they show obvious differences in formation processes. Sedimentary bauxites are composed of intense chemical weathering products that are transported from outside of the basin and re-deposited in the basin,while most weathering crusts are transformed from saprolite and/or deluvium in-situ,and they can only form low-grade bauxites. Sedimentary environments also differ in bauxite ore layers and bauxitic claystone layers. Bauxite ore layers are formed in the subaerial environment and controlled by the leaching process of groundwater in the vadose zone. Based on the analysis of bauxitization,this study proposes to use multiple parameters,such as provenance,sedimentation and mineralization,to build the new classification of Chinese bauxite deposits. In this classification,lateritic and karstic types of bauxite deposits are autochthonous or parautochthonous saprolite and/or deluvium,while sedimentary type is dominated by heterochthonous provenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号