首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mantles of the Earth and Moon are similarly depleted in V, Cr, and Mn relative to the concentrations of these elements in chondritic meteorites. The similar depletions have been used as evidence that the Moon inherited its mantle from the Earth after a giant impact event. We have conducted liquid metal-liquid silicate partitioning experiments for V, Cr, and Mn from 3 to 14 GPa and 1723 to 2573 K to understand the behavior of these elements during planetary core formation. Our experiments have included systematic studies of the effects of temperature, silicate composition, metallic S-content, metallic C-content, and pressure. Temperature has a significant effect on the partitioning of V, Cr, Mn, with all three elements increasing their partitioning into the metallic liquid with increasing temperature. In contrast, pressure is not observed to affect the partitioning behavior. The experimental results show the partitioning of Cr and Mn are hardly dependent on the silicate composition, whereas V partitions more strongly into depolymerized silicate melts. The addition of either S or C to the metallic liquid causes increased metal-silicate partition coefficients for all three elements. Parameterizing and applying the experimental data, we find that the Earth’s mantle depletions of V, Cr, and possibly Mn can be explained by core formation in a high-temperature magma ocean under oxygen fugacity conditions about two log units below the iron-wüstite buffer, though the depletion of Mn may be due entirely to its volatility. However, more oxidizing conditions proposed in recent core formation models for the Earth cannot account for any of the depletions. Additionally, because we observe no pressure effect on the partitioning behavior, the data do not require the mantle of the Moon to be derived from the Earth’s mantle, although this is not ruled out. All that is required to create depletions of V, Cr, and Mn in a mantle is a planetary body that is hot enough and reducing enough during its core formation. Such conditions could have existed on the Moon-forming impactor.  相似文献   

2.
Superliquidus metal-silicate partitioning was investigated for a number of moderately siderophile (Mo, As, Ge, W, P, Ni, Co), slightly siderophile (Zn, Ga, Mn, V, Cr) and refractory lithophile (Nb, Ta) elements. To provide independent constrains on the effects of temperature, oxygen fugacity and silicate melt composition, isobaric (3 GPa) experiments were conducted in piston cylinder apparatus at temperature between 1600 and 2600 °C, relative oxygen fugacities of IW−1.5 to IW−3.5, and for silicate melt compositions ranging from basalt to peridotite. The effect of pressure was investigated through a combination of piston cylinder and multi-anvil isothermal experiments between 0.5 and 18 GPa at 1900 °C. Oxidation states of siderophile elements in the silicate melt as well as effect of carbon saturation on partitioning are also derived from these results. For some elements (e.g. Ga, Ge, W, V, Zn) the observed temperature dependence does not define trends parallel to those modeled using metal-metal oxide free energy data. We correct partitioning data for solute interactions in the metallic liquid and provide a parameterization utilized in extrapolating these results to the P-T-X conditions proposed by various core formation models. A single-stage core formation model reproduces the mantle abundances of several siderophile elements (Ni, Co, Cr, Mn, Mo, W, Zn) for core-mantle equilibration at pressures from 32 to 42 GPa along the solidus of a deep peridotitic magma ocean (∼3000 K for this pressure range) and oxygen fugacities relevant to the FeO content of the present-day mantle. However, these P-T-fO2 conditions cannot produce the observed concentrations of Ga, Ge, V, Nb, As and P. For more reducing conditions, the P-T solution domain for single stage core formation occurs at subsolidus conditions and still cannot account for the abundances of Ge, Nb and P. Continuous core formation at the base of a magma ocean at P-T conditions constrained by the peridotite liquidus and fixed fO2 yields concentrations matching observed values for Ni, Co, Cr, Zn, Mn and W but underestimates the core/mantle partitioning observed for other elements, notably V, which can be reconciled if accretion began under reducing conditions with progressive oxidation to fO2 conditions consistent with the current concentration of FeO in the mantle as proposed by Wade and Wood (2005). However, neither oxygen fugacity path is capable of accounting for the depletions of Ga and Ge in the Earth’s mantle. To better understand core formation, we need further tests integrating the currently poorly-known effects of light elements and more complex conditions of accretion and differentiation such as giant impacts and incomplete equilibration.  相似文献   

3.
We present the results of new partitioning experiments between metal and silicate melts for a series of elements normally regarded as refractory lithophile and moderately siderophile and volatile. These include Si, Ti, Ni, Cr, Mn, Ga, Nb, Ta, Cu and Zn. Our new data obtained at 3.6 and 7.7 GPa and between 2123 and 2473 K are combined with literature data to parameterize the individual effects of oxygen fugacity, temperature, pressure and composition on partitioning. We find that Ni, Cu and Zn become less siderophile with increasing temperature. In contrast, Mn, Cr, Si, Ta, Nb, Ga and Ti become more siderophile with increasing temperature, with the highly charged cations (Nb, Ta, Si and Ti) being the most sensitive to variations of temperature. We also find that Ni, Cr, Nb, Ta and Ga become less siderophile with increasing pressure, while Mn becomes more siderophile with increasing pressure. Pressure effects on the partitioning of Si, Ti, Cu and Zn appear to be negligible, as are the effects of silicate melt composition on the partitioning of divalent cations. From the derived parameterization, we predict that the silicate Earth abundances of the elements mentioned above are best explained if core formation in a magma ocean took place under increasing conditions of oxygen fugacity, starting from moderately reduced conditions and finishing at the current mantle-core equilibrium value.  相似文献   

4.
《Geochimica et cosmochimica acta》1999,63(11-12):1853-1863
The oxidation states of Ni, Co, Mn, Cr, V and Si in magnesiowüstite have been determined in metal-oxide distribution experiments using a multi anvil apparatus at 9 and 18 GPa and 2200°C as a function of oxygen fugacity. Despite limitations to control oxygen fugacity by applying conventional buffering methods in high pressure experiments, a wide range of redox-conditions (3 log bar units) has been imposed to the metal-oxide partitioning experiments by varying the Si/O ratio of the starting material. The oxygen fugacity was calculated according to the Fe-FeO equilibrium between the run products. The ability to impose different oxygen fugacities by varying the starting material is confirmed by the large variation of element partitioning coefficients obtained at constant pressure and temperature. The calculated valences at both pressures investigated are divalent for Co, Mn, V and 4+ for Si. The results for Cr (∼2.5+) and Ni (∼1.5+) indicate non-ideal mixing of Ni and Cr in at least one of the product phases. Because the application of 1 bar activity coefficients for Ni and Cr in metal alloys does not change these valences, non-ideal mixing in magnesiowüstite or significantly larger non-ideal mixing properties of Ni and Cr in metal alloys at high pressure are likely to be responsible for the apparent valences. Omitting such non-ideal mixing properties when extrapolating high-pressure element partitioning data may be significant. The elements Cr, V and Mn become siderophile (DMmet/ox > 1) at 9–18 GPa and 2200°C at oxygen fugacities below IW-2.7 to IW-3.7. Considering, in addition, the influence of temperature, the depletion of Cr, Mn and V in the Earth’s mantle may be due, at least partly, to siderophile behavior at high pressure and temperature.  相似文献   

5.
Liquid Fe metal-liquid silicate partition coefficients for the lithophile and weakly-siderophile elements Ta, Nb, V, Cr, Si, Mn, Ga, In and Zn have been measured in multianvil experiments performed from 2 to 24 GPa, 2023-2873 K and at oxygen fugacities of −1.3 to −4.2 log units relative to the iron-wüstite buffer. Compositional effects of light elements dissolved in the metal liquid (S, C) have been examined and experiments were performed in both graphite and MgO capsules, specifically to address the effect of C solubility in Fe-metal on siderophile element partitioning. The results were used to examine whether there is categorical evidence that a significant portion of metal-silicate equilibration occurred under very high pressures during core-mantle fractionation on Earth. Although the depletion of V from the mantle due to core formation is significantly greater than that of Nb, our results indicate that both elements have similar siderophile tendencies under reducing conditions at low pressures. With increasing pressure, however, Nb becomes less siderophile than V, implying that average metal-silicate equilibration pressures of at least 10-40 GPa are required to explain the Nb/V ratio of the mantle. Similarly the moderately-siderophile, volatile element ratios Ga/Mn and In/Zn are chondritic in the mantle but both volatility and core-mantle equilibration at low pressure would render these ratios strongly sub-chondritic. Our results indicate that pressures of metal-silicate partitioning exceeding 30-60 GPa would be required to render these element ratios chondritic in the mantle. These observations strongly indicate that metal-silicate equilibration must have occurred at high pressures, and therefore support core-formation models that involve deep magma oceans. Moreover, our results allow us to exclude models that envisage primarily low-pressure (<1 GPa) equilibration in relatively small planetary bodies. We also argue that the core cannot contain significant U as this would require metal-silicate equilibration at oxygen fugacities low enough for significant amounts of Ta to have also been extracted from the mantle. Likewise, as In is more siderophile than Pb but similarly volatile and also quite chalcophile it would have been difficult for Pb to enter the core without reversing the relative depletions of these elements in the mantle unless metal-silicate equilibration occurred at high pressures >20 GPa.  相似文献   

6.
High-pressure high-temperature experiments have been carried out up to 25 GPa and 2200°C in a multianvil press on assemblages made of silicates and iron-silicon alloys. At 20 GPa, silicon is extracted from the metal phase, forming stishovite reaction rims around metal grains. The silicon content in metal has been measured by analytical electron microscopy and electron microprobe. In contrast with earlier experiments, the present data were obtained by using silicon-rich metal alloys as starting materials instead of studying incorporation of silicon in initially silicon-free metal. As in most of previous studies carried out below 25 GPa, the silicon content in liquid metal increases with increasing pressure and with decreasing oxygen fugacity. The oxygen fugacity in most experiments was calculated by using two independent buffers: iron/?stite (IW) and SiO2/Si, allowing to link consistently the Fe contents in silicates, the Si contents in metal and the temperatures of the experiments. At oxygen fugacities 4 log units below IW, silicates are in equilibrium with Si-rich metallic alloys (up to 17 wt% of Si in metal at 20 GPa and 2200°C). Extrapolation to 2 log units below IW leads to less than 0.1 wt% Si in the metal phase. Presence of several wt% of silicon in the Earth’s core thus requires highly reduced initial materials that, if equilibrated at conditions relevant to small planets, should already contain significant amount of silicon dissolved in metal.  相似文献   

7.
We have measured liquid Fe metal-liquid silicate partitioning (Di) of tellurium, selenium, and sulfur over a range of pressure, temperature, and oxygen fugacity (1-19 GPa, 2023-2693 K, fO2 −0.4 to −5.5 log units relative to the iron-wüstite buffer) to better assess the role of metallic melts in fractionating these elements during mantle melting and early Earth evolution. We find that metal-silicate partitioning of all three elements decreases with falling FeO activity in the silicate melt, and that the addition of 5-10 wt% S in the metal phase results in a 3-fold enhancement of both DTe and DSe. In general, Te, Se, and S all become more siderophile with increasing pressure, and less siderophile with increasing temperature, in agreement with previous work. In all sulfur-bearing experiments, DTe is greater than DSe or DS, with the latter two being similar over a range of P and T. Parameterized results are used to estimate metal-silicate partitioning at the base of a magma ocean which deepens as accretion progresses, with the equilibration temperature fixed at the peridotite liquidus. We show that during accretion, Te behaves like a highly siderophile element, with expected core/mantle partitioning of >105, in contrast to the observed core/mantle ratio of ∼100. Less extreme differences are observed for Se and S, which yielded core/mantle partitioning 100- to 10 times higher, respectively, than the observed value. Addition of ∼0.5 wt% of a meteorite component (H, EH or EL ordinary chondrite) is sufficient to raise mantle abundances to their current level and erase the original interelement fractionation of metal-silicate equilibrium.  相似文献   

8.
We have determined the liquid metal-liquid silicate partitioning of Ni, Co, Mo, W, V, Cr and Nb at 1.5 GPa/1923 K and 6 GPa/2123 K under conditions of constant silicate melt composition with variable amounts of Si in the Fe-rich metallic liquid. Partitioning of Ni, Co, Mo, W and V is sensitive to the Si content of the metal with, in all five cases, increasing Si tending to make the element more lithophile than for conditions where the metal is Si-free. In contrast, metal-silicate partitioning of Cr and Nb is, at constant silicate melt composition, insensitive to the Si content of the metal.The implications of our data are that if, as indicated by the Si isotopic composition of the silicate Earth ( [Georg et al., 2007] and [Fitoussi et al., 2009]), the core contains significant amounts of Si, the important siderophile elements Ni, Co, W and Mo were more lithophile during accretion and core formation than previously believed.We use our new data in conjunction with published metal-silicate partitioning results to develop a model of continuous accretion and core segregation taking explicit account of the partitioning of Si (this study) and O (from Ozawa et al., 2008) between metal and silicate and their effects on metal-silicate partitioning of siderophile elements. We find that the effect of Si on the siderophile characteristics of Ni, Co and W means that the pressures of core segregation estimated from these elements are ∼5 GPa lower than those derived from experiments in which the metal contained negligible Si (e.g., Wade and Wood, 2005). The core-mantle partitioning of Cr and Nb requires that most of Earth accretion took place under conditions which were much more reducing than those implied by the current FeO content of the mantle and that the oxidation took place late in the accretionary process. Paths of terrestrial accretion, oxidation state and partitioning which are consistent with the current mantle contents of Ni, Co, W, V, Cr and Nb lead to Si and O contents of the core of ∼4.3 wt.% and 0.15%, respectively.  相似文献   

9.
Interpretation of Re-Os isotopic systematics applied to mantle and mantle-derived rocks is currently hindered by the poorly understood behaviour of Re and Os during partial melting. Of particular interest is the incompatibility of Re and how it partitions between melt and the different mantle phases. Here, we study the partitioning behaviour of Re between the common upper mantle minerals (garnet, spinel, clinopyroxene, orthopyroxene, and olivine) and silicate melt under temperature (1275-1450 °C) and pressure (1.5-3.2 GPa) conditions relevant for basaltic magma genesis, over a range of oxygen fugacity (?O2) large enough (QFM+5.6 to QFM−2.9) to demonstrate the effects of changing the oxidation state of Re from 4+ to 6+. Rhenium crystal/silicate-melt partition coefficients vary by 4-5 orders of magnitude, from moderately compatible to highly incompatible, for pyroxenes, garnet, and spinel as the oxidation state of Re changes from 4+ to 6+, but Re in either oxidation state is incompatible in olivine. Because the changeover from the one Re oxidation state to the other occurs over the range of ?O2s pertinent to partial melting in the Earth’s mantle, bulk Re crystal/silicate-melt partition coefficients during mantle melting are also expected to vary significantly according to the oxidation state of the system. For instance, assuming QFM−0.7 and QFM+1.6 as average ?O2 for mid-ocean ridge (MORBs) and island arc (IABs) basalts, respectively, a difference of at least one order of magnitude for bulk Re partition coefficients is expected (excluding any influence from a sulphide phase). Hence, Re is probably much more incompatible during the genesis of IABs compared to MORBs. Our results also demonstrate that Re4+ has a partitioning behaviour similar to Ti4+ rather than Yb, and is accordingly not a sensitive indicator of garnet in the source. The lower concentrations of Re observed in ocean island basalts (OIBs) compared to MORBs are therefore not a result of being generated deeper in the mantle where garnet is stable, leaving the hypothesis of late-stage loss of Re from OIB lavas by degassing as the most plausible explanation.  相似文献   

10.
Near liquidus experiments on peridotite and other olivine normative compositions from 1.7 to 6 GPa confirm the applicability of exchange-based empirical models of Ni and Co partitioning between olivine and silicate liquids with compositions close to the liquidus of peridotite. Given that most estimates of lunar bulk composition are peridotitic, the partitioning models thus lend themselves to calculation of olivine compositions produced during the early stages of magma ocean crystallization. Calculation of olivine compositions produced by fractional crystallization of a model lunar magma ocean, initially 700 km deep, reveals a prominent maximum in Ni concentration versus fraction crystallized or Mg’ (molar MgO/(MgO + FeO)), but a pattern of monotonically increasing Co concentration. These patterns qualitatively match the puzzling patterns of Ni and Co concentrations observed in lunar rocks in which forsteritic olivines in magnesian suite cumulates have lower Ni and Co abundances than do less magnesian olivines from low-Ti mare basalts, and olivines from the ferroan anorthosite suite (FAS) have lower Ni, but similar Co to mare basalt olivines.The Ni and Co abundances in olivines from the magnesian suite cumulates can be reconciled in terms of fractional crystallization of a deep magma ocean which initially produces a basal dunite comprised of the hottest and most magnesian olivine overlain by an olivine-orthopyroxene (harzburgite) layer that is in turn overlain by an upper zone of plagioclase-bearing cumulates. The ultramafic portion of the cumulate pile overturns sending the denser harzburgite layer, which later becomes a portion of the green glass source region, to the bottom of the cumulate pile with Ni- and Co-rich olivine. Meanwhile, the less dense, but hottest, most magnesian olivines with much lower Ni and Co abundances are transported upward to the base of the plagioclase-bearing cumulates where subsequent heat transfer leads to melting of mixtures of primary dunite, norite, and gabbronorite with KREEP (a K-REE-P enriched component widely believed to be derived from the very latest stage magma ocean liquid). These hybrid melts have Al2O3, Ni, and Co abundances and Mg’ appropriate for parent magmas of the magnesian suite. Ni and Co abundances in the FAS are consistent with either direct crystallization from the magma ocean or crystallization of melts of primary dunite-norite mixtures without KREEP.  相似文献   

11.
The solubility of carbon in Fe and Fe-5.2 wt.% Ni melts, saturated with graphite, determined by electron microprobe analysis of quenched metal melts was 5.8 ± 0.1 wt.% at 2000 °C, 6.7 ± 0.2 wt.% at 2200 °C, and 7.4 ± 0.2 wt.% at 2410 °C at 2 GPa, conditions relevant for core/mantle differentiation in a shallow magma ocean. These solubilities are slightly lower than low-pressure literature values and significantly beneath calculated values for even higher pressures [e.g., Wood B. J. (1993) Carbon in the core. Earth Planet. Sci. Lett.117, 593-607]. The trend of C solubility versus temperature for Fe-5.2 wt.% Ni melt, within analytical uncertainties, is similar to or slightly lower (∼0.2-0.4 wt.%) than that of pure Fe. Carbon content of core melts and residual mantle silicates derived from equilibrium batch or fractional segregation of core liquids and their comparison with our solubility data and carbon content estimate of the present day mantle, respectively, constrain the partition coefficient of carbon between silicate and metallic melts, in a magma ocean. For the entire range of possible bulk Earth carbon content from chondritic to subchondritic values, of 10−4 to 1 is derived. But for ∼1000 ppm bulk Earth carbon, is between 10−2 and 1. Using the complete range of possible for a magma ocean at ∼2200 °C, we predict maximum carbon content of the Earth’s core to be ∼6-7 wt.% and a preferred value of 0.25 ± 0.15 wt.% for a bulk Earth carbon concentration of ∼1000 ppm.  相似文献   

12.
We determined the solubility limit of Pt in molten haplo-basalt (1 atm anorthite-diopside eutectic composition) in piston-cylinder and multi-anvil experiments at pressures between 0.5 and 14 GPa and temperatures from 1698 to 2223 K. Experiments were internally buffered at ∼IW + 1. Pt concentrations in quenched-glass samples were measured by laser-ablation inductively coupled-plasma mass spectrometry (LA-ICPMS). This technique allows detection of small-scale heterogeneities in the run products while supplying three-dimensional information about the distribution of Pt in the glass samples. Analytical variations in 195Pt indicate that all experiments contain Pt nanonuggets after quenching. Averages of multiple, time-integrated spot analyses (corresponding to bulk analyses) typically have large standard deviations, and calculated Pt solubilities in silicate melt exhibit no statistically significant covariance with temperature or pressure. In contrast, averages of minimum 195Pt signal levels show less inter-spot variation, and solubility shows significant covariance with pressure and temperature. We interpret these results to mean that nanonuggets are not quench particles, that is, they were not dissolved in the silicate melt, but were part of the equilibrium metal assemblage at run conditions. We assume that the average of minimum measured Pt abundances in multiple probe spots is representative of the actual solubility. The metal/silicate partition coefficients (Dmet/sil) is the inverse of solubility, and we parameterize Dmet/sil in the data set by multivariate regression. The statistically robust regression shows that increasing both pressure and temperature causes Dmet/silto decrease, that is, Pt becomes more soluble in silicate melt. Dmet/sil decreases by less than an order of magnitude at constant temperature from 1 to 14 GPa, whereas isobaric increase in temperature produces a more dramatic effect, with Dmet/sil decreasing by more than one order of magnitude between 1623 and 2223 K. The Pt abundance in the Earth’s mantle requires that Dmet/sil is ∼1000 assuming core-mantle equilibration. Geochemical models for core formation in Earth based on moderately and slightly siderophile elements are generally consistent with equilibrium metal segregation at conditions generally in the range of 20-60 GPa and 2000-4000 K. Model extrapolations to these conditions show that the Pt abundance of the mantle can only be matched if oxygen fugacity is high (∼IW) and if Pt mixes ideally in molten iron, both very unlikely conditions. For more realistic values of oxygen fugacity (∼IW − 2) and experimentally-based constraints on non-ideal mixing, models show that Dmet/sil would be several orders of magnitude too high even at the most favorable conditions of pressure and temperature. These results suggest that the mantle Pt budget, and by implication other highly siderophile elements, was added by late addition of a ‘late veneer’ phase to the accreting proto-Earth.  相似文献   

13.
The 182Hf-182W systematics of meteoritic and planetary samples provide firm constraints on the chronology of the accretion and earliest evolution of asteroids and terrestrial planets and lead to the following succession and duration of events in the earliest solar system. Formation of Ca,Al-rich inclusions (CAIs) at 4568.3 ± 0.7 Ma was followed by the accretion and differentiation of the parent bodies of some magmatic iron meteorites within less than ∼1 Myr. Chondrules from H chondrites formed 1.7 ± 0.7 Myr after CAIs, about contemporaneously with chondrules from L and LL chondrites as shown by their 26Al-26Mg ages. Some magmatism on the parent bodies of angrites, eucrites, and mesosiderites started as soon as ∼3 Myr after CAI formation and may have continued until ∼10 Myr. A similar timescale is obtained for the high-temperature metamorphic evolution of the H chondrite parent body. Thermal modeling combined with these age constraints reveals that the different thermal histories of meteorite parent bodies primarily reflect their initial abundance of 26Al, which is determined by their accretion age. Impact-related processes were important in the subsequent evolution of asteroids but do not appear to have induced large-scale melting. For instance, Hf-W ages for eucrite metals postdate CAI formation by ∼20 Myr and may reflect impact-triggered thermal metamorphism in the crust of the eucrite parent body. Likewise, the Hf-W systematics of some non-magmatic iron meteorites were modified by impact-related processes but the timing of this event(s) remains poorly constrained.The strong fractionation of lithophile Hf from siderophile W during core formation makes the Hf-W system an ideal chronometer for this major differentiation event. However, for larger planets such as the terrestrial planets the calculated Hf-W ages are particularly sensitive to the occurrence of large impacts, the degree to which impactor cores re-equilibrated with the target mantle during large collisions, and changes in the metal-silicate partition coefficients of W due to changing fO2 in differentiating planetary bodies. Calculated core formation ages for Mars range from 0 to 20 Myr after CAI formation and currently cannot distinguish between scenarios where Mars formed by runaway growth and where its formation was more protracted. Tungsten model ages for core formation in Earth range from ∼30 Myr to >100 Myr after CAIs and hence do not provide a unique age for the formation of Earth. However, the identical 182W/184W ratios of the lunar and terrestrial mantles provide powerful evidence that the Moon-forming giant impact and the final stage of Earth’s core formation occurred after extinction of 182Hf (i.e., more than ∼50 Myr after CAIs), unless the Hf/W ratios of the bulk silicate Moon and Earth are identical to within less than ∼10%. Furthermore, the identical 182W/184W of the lunar and terrestrial mantles is difficult to explain unless either the Moon consists predominantly of terrestrial material or the W in the proto-lunar magma disk isotopically equilibrated with the Earth’s mantle.Hafnium-tungsten chronometry also provides constraints on the duration of magma ocean solidification in terrestrial planets. Variations in the 182W/184W ratios of martian meteorites reflect an early differentiation of the martian mantle during the effective lifetime of 182Hf. In contrast, no 182W variations exist in the lunar mantle, demonstrating magma ocean solidification later than ∼60 Myr, in agreement with 147Sm-143Nd ages for ferroan anorthosites. The Moon-forming giant impact most likely erased any evidence of a prior differentiation of Earth’s mantle, consistent with a 146Sm-142Nd age of 50-200 Myr for the earliest differentiation of Earth’s mantle. However, the Hf-W chronology of the formation of Earth’s core and the Moon-forming impact is difficult to reconcile with the preservation of 146Sm-142Nd evidence for an early (<30 Myr after CAIs) differentiation of a chondritic Earth’s mantle. Instead, the combined 182W-142Nd evidence suggests that bulk Earth may have superchondritic Sm/Nd and Hf/W ratios, in which case formation of its core must have terminated more than ∼42 Myr after formation of CAIs, consistent with the Hf-W age for the formation of the Moon.  相似文献   

14.
月球的化学演化   总被引:2,自引:0,他引:2  
月球是一个发生了化学分异的星球,它由月壳、月幔±一个小的金属月核组成。大量观察事实显示月球曾经有过岩浆洋,岩浆洋的结晶分异主导了月球的化学演化。目前主流观点认为,月球是在太阳系演化的早期,至少45亿年前,一个火星大小的星球,与即将完成原始吸积的地球胚胎发生偏心撞击,造成地球的熔融,形成岩浆洋,飞溅出来的物质迅速吸积形成绕地球运动的月球,并且在月球上形成了全球规模的岩浆洋,进而发生了结晶分异。,由于月球上没有海洋和板块俯冲,岩浆洋分异是其化学演化的主要途径。月球岩浆洋的80%~85%在大撞击后的100Ma内已经固化,这可能是由于月球体积小、表面没有大气包裹所致。月球极贫水,因此在岩浆结晶过程中斜长石首先结晶。斜长石由于密度小于玄武质岩浆而漂浮在岩浆洋的表层,橄榄石等密度大的矿物则堆积在岩浆洋的底部。随着结晶分异的进行,残余岩浆不断富集不相容元素,包括K、U等放射性元素;与此同时,密度较大的钛铁矿开始结晶,造成高钛堆晶岩密度大于其下的橄榄石堆晶岩的不稳定结构,进而发生月幔翻转,引发一系列岩浆活动,进而形成月球上特有的镁质系列、碱质系列等岩石。由于月球氧逸度较低,Eu主要以+2价形式存在,因此斜长石高度富集Eu,相应地除高地斜长岩外,其他岩石均表现为Eu高度亏损的特点。与此同时,Re在低氧逸度下表现为强亲铁元素的特点,Re/Os在月球岩浆过程中不发生分异。月球的体积远小于地球,因而其演化时间远远短于地球,很多原始的分异被完整地保留下来。因此月球的化学演化是类地行星早期演化过程的“化石”,尽管与现代的地球存在较大差异,但是对于认识地球早期演化具有借鉴意义。  相似文献   

15.
We have performed six experiments in which we equilibrated monosulfide solid solution (mss) with sulfide melt in evacuated silica capsules containing solid buffers to fix oxygen and sulfur fugacity, at temperatures of 950°C, 1000°C and 1050°C at bulk concentrations of ∼50 ppm for each of the PGE and Au, 5% Ni, and 7% Cu. Concentrations of O, S, Fe, Ni and Cu were determined by electron microprobe, whereas precious metal concentrations were determined by laser-ablation inductively-coupled mass spectrometry. Partition coefficients of all elements studied show minimal dependences on oxygen fugacity from the IW to the QFM buffers when sulfur fugacity is fixed at the Pt-PtS buffer. Cu, Pt, Pd and Au are strongly incompatible and Ru remains moderately to strongly compatible under all conditions studied. At all oxygen fugacities, at the Pt-PtS sulfur buffer, Ir and Rh remain highly compatible in mss. In the single run at both low oxygen and low sulfur fugacity Ir and Rh were found to be strongly incompatible in mss. At QFM and Pt-PtS the partition coefficient for Ni shows weak temperature dependence, ranging from 0.66 at 1050°C to 0.94 at 950°C. At lower oxygen and sulfur fugacity Ni showed much more incompatible behavior. Comparison with the compositions of sulfide ores from the Lindsley deposit of Sudbury suggests that the sulfide magma evolved under conditions close to the QFM and Pt-PtS buffers. The compatible behavior observed for Ni, Ir and Rh at Lindsley and most other magmatic sulfide deposits hosted by mafic rocks requires equilibration of mss and sulfide liquid at moderately high sulfur fugacity and low temperatures near to the solidus of the sulfide magma. We argue that this constraint requires that the sulfide magma must have evolved by equilibrium crystallization, rather than fractional segregation of mss as is commonly supposed.  相似文献   

16.
The role of the oxygen fugacity on the incorporation of nitrogen in basaltic magmas has been investigated using one atmosphere high temperature equilibration of tholeiitic-like compositions under controlled nitrogen and oxygen partial pressures in the [C-N-O] system. Nitrogen was extracted with a CO2 laser under high vacuum and analyzed by static mass spectrometry. Over a redox range of 18 oxygen fugacity log units, this study shows that the incorporation of nitrogen in silicate melts follows two different behaviors. For log fO2 values between −0.7 and −10.7 (the latter corresponding to IW − 1.3), nitrogen dissolves as a N2 molecule into cavities of the silicate network (physical solubility). Nitrogen presents a constant solubility (Henry’s) coefficient of 2.21 ± 0.53 × 10−9 mol g−1 atm−1 at 1425°C, identical within uncertainties to the solubility of argon. Further decrease in the oxygen fugacity (log fO2 between −10.7 and −18 corresponding to the range from IW − 1.3 to IW − 8.3) results in a drastic increase of the solubility of nitrogen by up to 5 orders of magnitude as nitrogen becomes chemically bounded with atoms of the silicate melt network (chemical solubility). The present results strongly suggest that under reducing conditions nitrogen dissolves in silicate melts as N3− species rather than as CN cyanide radicals. The nitrogen content of a tholeiitic magma equilibrated with N2 is computed from thermochemical processing of our data set as
  相似文献   

17.
Understanding the geochemical behavior of chalcophile elements in magmatic processes is hindered by the limited partition coefficients between sulfide phases and silicate melt, in particular at conditions relevant to partial melting of the hydrated, metasomatized upper mantle. In this study, the partitioning of elements Co, Ni, Cu, Zn, As, Mo, Ag, and Pb between sulfide liquid, monosulfide solid solution (MSS), and hydrous mantle melt has been investigated at 1200 °C/1.5 GPa and oxygen fugacity ranging from FMQ−2 to FMQ+1 in a piston-cylinder apparatus. The determined partition coefficients between sulfide liquid and hydrous mantle melt are: 750–1500 for Cu; 600–1200 for Ni; 35–42 for Co; 35–53 for Pb; and 1–2 for Zn, As, and Mo. The partition coefficients between MSS and hydrous mantle melt are: 380–500 for Cu; 520–750 for Ni; ∼50 for Co; <0.5 for Zn; 0.3–6 for Pb; 0.1–2 for As; 1–2 for Mo; and >34 for Ag. The variation of the data is primarily due to differences in oxygen fugacity. These partitioning data in conjunction with previous data are applied to partial melting of the upper mantle and the formation of magmatic-hydrothermal Cu–Au deposits and magmatic sulfide deposits.I show that the metasomatized arc mantle may no longer contain sulfide after >10–14% melt extraction but is still capable of producing the Cu concentrations in the primitive arc basalts, and that the comparable Cu concentrations in primitive arc basalts and in MORB do not necessarily imply similar oxidation states in their source regions.Previous models proposed for producing Cu- and/or Au-rich magmas have been reassessed, with the conclusions summarized as follows. (1) Partial melting of the oxidized (fO2 > FMQ), metasomatized arc mantle with sulfide exhaustion at degrees >10–14% may not generate Cu-rich, primitive arc basalts. (2) Partial melting of sulfide-bearing cumulates in the root of thickened lower continental crust or lithospheric mantle does not typically generate Cu- and/or Au-rich magmas, but they do have equivalent potential as normal arc magmas in forming magmatic-hydrothermal Cu–Au deposits in terms of their Cu–Au contents. (3) It is not clear whether partial melting of subducting metabasalts generates Cu-rich adakitic magmas, however adakitic magmas may extract Cu and Au via interaction with mantle peridotite. Furthermore, partial melting of sulfide-bearing cumulates in the deep oceanic crust may be able to generate Cu- and Au-rich magmas. (4) The stabilization of MSS during partial melting may explain the genetic link between Au-Cu mineralization and the metasomatized lithospheric mantle.The chalcophile element tonnage, ratio, and distribution in magmatic sulfide deposits depend on a series of factors. This study reveals that oxygen fugacity also plays an important role in controlling Cu and Ni tonnage and Cu/Ni ratio in magmatic sulfide deposits. Cobalt, Zn, As, Sn, Sb, Mo, Ag, Pb, and Bi concentrations and their ratios in sulfide, due to their different partitioning behavior between sulfide liquid and MSS, can be useful indices for the distribution of platinum-group elements and Au in magmatic sulfide deposits.  相似文献   

18.
Major and trace element mineral/melt partition coefficients are presented for phases on the liquidus of fertile peridotite at 23-23.5 GPa and 2300 °C. Partitioning models, based on lattice-strain theory, are developed for cations in the ‘8-fold’ sites of majorite and Mg-perovskite. Composition-dependant partitioning models are made for cations in the 12-fold site of Ca-perovskite based on previously published data. Dmin/melt is extremely variable for many elements in Ca-perovskite and highly correlated with certain melt compositional parameters (e.g. CaO and Al2O3 contents). The 8-fold sites in Mg-perovskite and majorite generally have ideal site radii between 0.8 and 0.9 Å for trivalent cations, such that among rare-earth-elements (REE) Dmin/melt is maximum for Lu. Lighter REE become increasingly incompatible with increasing ionic radii. The 12-fold site in Ca-perovskite is larger and has an ideal trivalent site radius of ∼1.05 Å, such that the middle REE has the maximum Dmin/melt. Trivalent cations are generally compatible to highly compatible in Ca-perovskite giving it considerable leverage in crystallization models. Geochemical models based on these phase relations and partitioning results are used to test for evidence in mantle peridotite of preserved signals of crystal differentiation in a deep, Hadean magma ocean.Model compositions for bulk silicate Earth and convecting mantle are constructed and evaluated. The model compositions for primitive convecting mantle yield superchondritic Mg/Si and Ca/Al ratios, although many refractory lithophile element ratios are near chondritic. Major element mass balance calculations effectively preclude a CI-chondritic bulk silicate Earth composition, and the super-chondritic Mg/Si ratio of the mantle is apparently a primary feature. Mass balance calculations indicate that 10-15% crystal fractionation of an assemblage dominated by Mg-perovskite, but with minor amounts of Ca-perovskite and ferropericlase, from a magma ocean with model peridotite-based bulk silicate Earth composition produces a residual magma that resembles closely the convecting mantle.Partition coefficient based crystal fractionation models are developed that track changes in refractory lithophile major and trace element ratios in the residual magma (e.g. convecting mantle). Monomineralic crystallization of majorite or Mg-perovskite is limited to less than 5% before certain ratios fractionate beyond convecting mantle values. Only trace amounts of Ca-perovskite can be tolerated in isolation due to its remarkable ability to fractionate lithophile elements. Indeed, Ca-perovskite is limited to only a few percent in a deep mantle crystal assemblage. Removal from a magma ocean of approximately 13% of a deep mantle assemblage comprised of Mg-perovskite, Ca-perovskite and ferropericlase in the proportions 93:3:4 produces a residual magma with a superchondritic Ca/Al ratio matching that of the model convecting mantle. This amount of crystal separation generates fractionations in other refractory lithophile elements ratios that generally mimic those observed in the convecting mantle. Further, the residual magma is expected to have subchondritic Sm/Nd and Lu/Hf ratios. Modeling shows that up to 15% crystal separation of the deep mantle assemblage from an early magma ocean could have yielded a convecting mantle reservoir with 143Nd/144Nd and 176Hf/177Hf isotopic compositions that remain internal to the array observed for modern oceanic volcanic rocks. If kept in isolation, the residual magma and deep crystal piles would grow model isotopic compositions that are akin to enriched mantle 1 (EM1) and HIMU reservoirs, respectively, in Nd-Hf isotopic space.  相似文献   

19.
The origin of the observed niobium deficit in the bulk silicate Earth (BSE) compared to chondritic meteorites constitutes a long-standing problem in geochemistry. The deficit requires a large-scale process fractionating niobium from tantalum, and a super-chondritic Nb/Ta reservoir hidden in the deep silicate Earth and/or in the metallic core. The only voluminous super-chondritic Nb/Ta silicate reservoir analysed to date is found in lunar basalts that assimilated highly evolved Fe-rich rocks associated with anorthosites in the lunar crust. These Fe-rich rocks, enriched in incompatible elements, are thought to represent the last fractions of melt remaining at the end of lunar magma ocean crystallization. Here we report high-precision Nb-Ta data for a Fe-rich, late-stage rock suite associated with a terrestrial anorthosite from the Proterozoic Bolangir complex in India. The geochemical characteristics of this rock suite resemble those expected for late-stage residual melts from a terrestrial magma ocean. Samples show extreme, super-chondritic Nb/Ta up to 31.1 and highly elevated Nb concentrations up to 338 ppm. We argue that formation of an early enriched crustal reservoir (EECR) with these characteristics (high Fe, high Nb, superchondritic Nb/Ta) is likely in the course of Hadean late-stage terrestrial magma ocean solidification. Subduction and subsequent permanent deep mantle storage in the D′′ layer of a minor amount (∼0.5% of the BSE mass) of this EECR can readily explain the terrestrial Nb deficit, without the need to invoke core Nb storage. Our model is consistent with short-lived 142Nd and long-lived 176Hf-143Nd isotope models for early differentiation of the Earth’s crust. In addition, the inferred Lu/Hf of this EECR implies that this reservoir can also balance the offset of terrestrial Hf isotope ratios compared to the chondritic reservoir. As such, late-stage magma ocean residual melts may constitute the enigmatic parental reservoir of Hadean zircons with low time-integrated Hf isotope compositions.  相似文献   

20.
The terrestrial mantle has a well defined Sb depletion of ∼7 ± 1 (Jochum and Hofmann, 1997), and the lunar mantle is depleted relative to the Earth by a factor of ∼50 ± 5 (Wolf and Anders, 1980). Despite these well defined depletions, there are few data upon which to evaluate their origin—whether due to volatility or core formation. We have carried out a series of experiments to isolate several variables such as oxygen fugacity, temperature, pressure, and silicate and metallic melt compositions, on the magnitude of . The activity of Sb in FeNi metal is strongly composition dependent such that solubility of Sb as a function of fO2 must be corrected for the metal composition. When the correction is applied, Sb solubility is consistent with 3+ valence. Temperature series (at 1.5 GPa) shows that decreases by a factor of 100 over 400 °C, and a pressure series exhibits an additional decrease between ambient pressure (100 MPa) and 13 GPa. A strong dependence upon silicate melt composition is evident from a factor of 100 decrease in between nbo/t values of 0.3 and 1.7. Consideration of all these variables indicates that the small Sb depletion for the Earth’s mantle can be explained by high PT equilibrium partitioning between metal and silicate melt . The relatively large lunar Sb depletion can also be explained by segregation of a small metallic core, at lower pressure conditions where is much higher (2500).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号