首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Microchemical analyses of rare earth element (REE) concentrations and Sr and S isotope ratios of anhydrite are used to identify sub-seafloor processes governing the formation of hydrothermal fluids in the convergent margin Manus Basin, Papua New Guinea. Samples comprise drill-core vein anhydrite and seafloor massive anhydrite from the PACMANUS (Roman Ruins, Snowcap and Fenway) and SuSu Knolls (North Su) active hydrothermal fields. Chondrite-normalized REE patterns in anhydrite show remarkable heterogeneity on the scale of individual grains, different from the near uniform REEN patterns measured in anhydrite from mid-ocean ridge deposits. The REEN patterns in anhydrite are correlated with REE distributions measured in hydrothermal fluids venting at the seafloor at these vent fields and are interpreted to record episodes of hydrothermal fluid formation affected by magmatic volatile degassing. 87Sr/86Sr ratios vary dramatically within individual grains between that of contemporary seawater and that of endmember hydrothermal fluid. Anhydrite was precipitated from a highly variable mixture of the two. The intra-grain heterogeneity implies that anhydrite preserves periods of contrasting hydrothermal versus seawater dominant near-seafloor fluid circulation. Most sulfate δ34S values of anhydrite cluster around that of contemporary seawater, consistent with anhydrite precipitating from hydrothermal fluid mixed with locally entrained seawater. Sulfate δ34S isotope ratios in some anhydrites are, however, lighter than that of seawater, which are interpreted as recording a source of sulfate derived from magmatic SO2 degassed from underlying felsic magmas in the Manus Basin. The range of elemental and isotopic signatures observed in anhydrite records a range of sub-seafloor processes including high-temperature hydrothermal fluid circulation, varying extents of magmatic volatile degassing, seawater entrainment and fluid mixing. The chemical and isotopic heterogeneity recorded in anhydrite at the inter- and intra-grain scale captures the dynamics of hydrothermal fluid formation and sub-seafloor circulation that is highly variable both spatially and temporally on timescales over which hydrothermal deposits are formed. Microchemical analysis of hydrothermal minerals can provide information about the temporal history of submarine hydrothermal systems that are variable over time and cannot necessarily be inferred only from the study of vent fluids.  相似文献   

2.
Ocean Drilling Program (ODP) leg 193 successfully drilled four deep holes (126 to 386 m) into basement underlying the active dacite-hosted Pacmanus hydrothermal field in the eastern Manus Basin. Anhydrite is abundant in the drill core material, filling veins and vesicles, cementing breccias, and occasionally replacing igneous material. We report rare-earth element (REE) contents of anhydrite from a site of diffuse venting (Site 1188) which show extreme variability, in terms of both absolute concentrations (e.g., 0.08–28.3 ppm Nd) and pattern shape (LaN/SmN=0.08–3.78, SmN/YbN=0.48–23.1, Eu/Eu*=0.59–6.1). The range of REE patterns in anhydrite includes enrichments in the middle and heavy REEs and variable Eu anomalies. The patterns differ markedly from those of anhydrite recovered during ODP Leg 158 from the TAG hydrothermal system at the Mid-Atlantic Ridge which display uniform LREE-enriched patterns with positive Eu anomalies, very similar to TAG vent fluid patterns. As the system is active, the host-rock composition is uniform, and the anhydrite veins appear to relate to the same hydrothermal stage, we can rule out predominant host-rock and transport control. Instead, we propose that the variation in REE content reflects waxing and waning input of magmatic volatiles (HF, SO2) and variable complexation of REEs in the fluids. REE speciation calculations suggest that increased fluoride and possibly sulfate concentrations at Pacmanus may affect REE complexation in fluids, whereas at TAG only chloride and hydroxide complexes play a significant role. The majority of the anhydrites do not show positive Eu anomalies, suggesting that the fluids were more oxidizing than in typical mid-ocean ridge hydrothermal systems. We use other hydrothermal fluids from the Manus Basin (Vienna Woods and Desmos), which bracket the Pacmanus fluids in terms of acidity and ligand concentrations, to examine the dependence of REE complexation on fluid composition. Geochemical modeling reveals that under the prevailing conditions at Pacmanus (pH~3.5, T=250–300 °C), Eu oxidation state and the relative importance of fluoride versus chloride complexing are very sensitive to small variations in oxygen fugacity, temperature, and pH. Patterns with extreme mid-REE enrichment may reflect speciation effects (free-ion abundance) coupled with crystal chemical control. We conclude that the great variability in REE concentrations and pattern shape is likely due to variable fluid composition and REE complexation in the fluids. Editorial handling: L. Meinert  相似文献   

3.
Abstract. Cathodoluminescence (CL) color, rare earth element (REE) content, sulfur and oxygen isotopes and fluid inclusions of anhydrite, which frequently filled in hydrothermal veins in the Kakkonda geothermal system, were investigated to elucidate the spatial, temporal and genetical evolution of fluids in the deep reservoir. The anhydrite samples studied are classified into four types based on CL colors and REE contents: type-N (no color), type-G (green color), type-T (tan color) and type-S (tan color with a high REE content). In the shallow reservoir, only type-N anhydrite is observed. In the deep reservoir, type-G anhydrite occurs in vertical veins whereas type-T and -N in lateral veins. Type-S anhydrite occurs in the heat-source Kakkonda Granite. The CL textures revealed that type-G anhydrite deposited earlier than type-T in the deep reservoir, implying that fracture system was changed from predominantly vertical to lateral.
Studies of fluid inclusions and δ34S and δ18O values of the samples indicate that type-N anhydrite deposited from diluted fluids derived from meteoric water, whereas type-G, -T and -S anhydrites deposited from magmatic brines derived from the Kakkonda Granite with the exception of some of type-G with recrystallization texture and no primary fluid inclusion, which deposited from fossil seawater preserved in the sedimentary rocks. Type-G, -T and -S anhydrites exhibit remarkably different chondrite-normalized REE patterns with a positive Eu anomaly, with a convex shape (peak at Sm or Eu) and with a negative Eu anomaly, respectively. The difference in the patterns might result from the different extent of hydrothermal alteration of the reservoir rocks and contribution of the magmatic fluids.  相似文献   

4.
A hydrothermal experiment involving peridotite and a coexisting aqueous fluid was conducted to assess the role of dissolved Cl and redox on REE mobility at 400°C, 500 bars. Data show that the onset of reducing conditions enhances the stability of soluble Eu+2 species. Moreover, Eu+2 forms strong aqueous complexes with dissolved Cl at virtually all redox conditions. Thus, high Cl concentrations and reducing conditions can combine to reinforce Eu mobility. Except for La, trivalent REE are not greatly affected by fluid speciation under the chemical and physical condition considered, suggesting control by secondary mineral-fluid partitioning. LREE enrichment and positive Eu anomalies observed in fluids from the experiment are remarkably similar to patterns of REE mobility in vent fluids issuing from basalt- and peridotite-hosted hydrothermal systems. This suggests that the chondrite normalized REE patterns are influenced greatly by fluid speciation effects and secondary mineral formation processes. Accordingly, caution must be exercised when using REE in hydrothermal vent fluids to infer REE sources in subseafloor reaction zones from which the fluids are derived. Although vent fluid patterns having LREE enrichment and positive Eu anomalies are typically interpreted to suggest plagioclase recrystallization reactions, this need not always be the case.  相似文献   

5.
Samples of Fe-oxide-rich hydrothermal sediments were collected from active and inactive portions of the TransAtlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge. Clays separated from TAG metalliferous sediments in this study all consist of Al-poor nontronite. Oxygen isotope thermometry of the clays yields formation temperatures of 54-67°C for samples from the inactive Alvin mound compared with 81-96°C for samples from the active TAG site. The latter are the highest recorded temperatures for authigenic hydrothermal clays. Sr isotope analysis of the clays from the active mound suggests that they precipitated from seawater-dominated fluids, containing less than 15% hydrothermal end-member fluid. In contrast, nontronite from the inactive Alvin mound has 87Sr/86Sr values that closely resemble that of detrital North Atlantic clays, suggesting a dominantly continental source for the Sr. Rare earth element data are consistent with a significant detrital input to the inactive site but also demonstrate the extent of hydrothermal input to the low temperature fluid. Crystallographic fractionation of the trivalent REE is apparent in the heavy REE enrichments for all nontronite samples. The inferred formation-mechanism for nontronite-rich Fe-oxyhydroxide deposits at the surface of the active mound is by direct precipitation from low temperature fluids. At the inactive Alvin site, in contrast, the deposits form during alteration of pelagic sediments by diffuse fluids and replacement of biogenic carbonate with nontronite and Fe-oxyhydroxide. These two modes of formation are both important in seafloor hydrothermal settings where clay minerals are a significant component of the hydrothermal deposit.  相似文献   

6.
Rare earth element and yttrium (REE+Y) concentrations were determined in 49 Late Devonian reefal carbonates from the Lennard Shelf, Canning Basin, Western Australia. Shale-normalized (SN) REE+Y patterns of the Late Devonian samples display features consistent with the geochemistry of well-oxygenated, shallow seawater. A variety of different ancient limestone components, including microbialites, some skeletal carbonates (stromatoporoids), and cements, record seawater-like REE+Y signatures. Contamination associated with phosphate, Fe-oxides and shale was tested quantitatively, and can be discounted as the source of the REE+Y patterns. Co-occurring carbonate components that presumably precipitated from the same seawater have different relative REE concentrations, but consistent REE+Y patterns. Clean Devonian early marine cements (n = 3) display REE+Y signatures most like that of modern open ocean seawater and the highest Y/Ho ratios (e.g., 59) and greatest light REE (LREE) depletion (average NdSN/YbSN = 0.413, SD = 0.076). However, synsedimentary cements have the lowest REE concentrations (e.g., 405 ppb). Non-contaminated Devonian microbialite samples containing a mixture of the calcimicrobe Renalcis and micritic thrombolite aggregates in early marine cement (n = 11) have the highest relative REE concentrations of tested carbonates (average total REE = 11.3 ppm). Stromatoporoid skeletons, unlike modern corals, algae and molluscs, also contain well-developed, seawater-like REE patterns. Samples from an estuarine fringing reef have very different REE+Y patterns with LREE enrichment (NdSN/YbSN > 1), possibly reflecting inclusion of estuarine colloidal material that contained preferentially scavenged LREE from a nearby riverine input source. Hence, Devonian limestones provide a proxy for marine REE geochemistry and allow the differentiation of co-occurring water masses on the ancient Lennard Shelf. Although appropriate partition coefficients for quantification of Devonian seawater REE concentrations from out data are unknown, hypothetical Devonian Canning Basin seawater REE patterns were obtained with coefficients derived from modern natural proxies and experimental values. Resulting Devonian seawater patterns are slightly enriched in LREE compared to most modern seawaters and suggest higher overall REE concentrations, but are very similar to seawaters from regions with high terrigenous inputs. Our results suggest that most limestones should record important aspects of the REE geochemistry of the waters in which they precipitated, provided they are relatively free of terrigenous contamination and major diagenetic alteration from fluids with high, non-seawater-like REE contents. Hence, we expect that many other ancient limestones will serve as seawater REE proxies, and thereby provide information on paleoceanography, paleogeography and geochemical evolution of the oceans.  相似文献   

7.
Two submarine hydrothermal vent fields at 5°S, Mid-Atlantic Ridge (MAR) - Turtle Pits and Comfortless Cove - emanate vapor-phase fluids at conditions close to the critical point of seawater (407 °C, 298 bars). In this study, the concentration and distribution of rare earth element (REE) and yttrium (Y) has been investigated. Independent of the major element composition, the fluids display a strong temporal variability of their REE + Y concentrations and relative distributions at different time scales of minutes to years. Chondrite-normalized distributions range from common fluid patterns with light REE enrichment relative to the heavy REE, accompanied by positive Eu anomalies (type I), to strongly REE + Y enriched patterns with a concave-downward distribution with a maximum enrichment of Sm and weakly positive or even negative Eu anomalies (type II). The larger the sum of REE, the smaller CeCN/YbCN and Eu/Eu∗. We also observed a strong variability in fluid flow and changing fluid temperatures, correlating with the compositional variability.As evident by the positive correlation of total REE, Ca, and Sr concentrations in Turtle Pits and Comfortless Cove fluids, precipitation/dissolution of hydrothermal anhydrite controls the variability in REE concentrations and distributions in these fluids and the transformation of one fluid type to the other. The variable distribution of REE can be explained by the accumulation of particulate anhydrite (with concave-downward REE distribution and negative Eu anomaly) into a fluid with common REE distribution (type I), followed by the modification of the REE fluid signature due to dissolution of incorporated anhydrite. A second model, in which the type II fluids represent a primary REE reaction zone fluid pattern, which is variably modified by precipitation of anhydrite, can also explain the observed correlations of total REE, fractionation of LREE/HREE and size of Eu anomaly as well as Ca, Sr. The emanation of such a fluid may be favored in a young hydrothermal system in its high-activity phase with short migration paths and limited exchange with secondary minerals. However, this model is not as well constrained as the other and requires further investigations.The strongly variable REE fluid signature is restricted to the very hot, actively phase-separating hydrothermal systems Turtle Pits and Comfortless Cove at 5°S and has not been observed at the neighboring Red Lion vent field, which continuously emanates 350 °C hot fluid and displays a stable REE distribution (type I).  相似文献   

8.
《China Geology》2018,1(2):225-235
For the first time, we present the rare earth element (REE) and sulfur isotopic composition of hydrothermal precipitates recovered from the Tangyin hydrothermal field (THF), Okinawa Trough at a water depth of 1206 m. The natural sulfur samples exhibit the lowest ΣREE concentrations (ΣREE= 0.65×10–6–4.580×10–6) followed by metal sulfides (ΣREE=1.71×10–6–11.63×10–6). By contrast, the natural sulfur-sediment samples have maximum ΣREE concentrations (ΣREE=11.54×10–6–33.06×10–6), significantly lower than those of the volcanic and sediment samples. Nevertheless, the δEu, δCe, (La/Yb)N, La/Sm, (Gd/Yb)N and normalized patterns of the natural sulfur and metal sulfide show the most similarity to the sediment. Most hydrothermal precipitate samples are characterized by enrichments of LREE (LREE/HREE=10.09–24.53) and slightly negative Eu anomalies or no anomaly (δEu=0.48–0.99), which are different from the hydrothermal fluid from sediment-free mid-oceanic ridges and back-arc basins, but identical to the sulfides from the Jade hydrothermal field. The lower temperature and more oxidizing conditions produced by the mixing between seawater and hydrothermal fluids further attenuate the leaching ability of hydrothermal fluid, inducing lower REE concentrations for natural sulfur compared with metal sulfide; meanwhile, the negative Eu anomaly is also weakened or almost absent. The sulfur isotopic compositions of the natural sulfur (δ34S=3.20‰–5.01‰, mean 4.23‰) and metal sulfide samples (δ34S=0.82‰–0.89‰, mean 0.85‰) reveal that the sulfur of the chimney is sourced from magmatic degassing.  相似文献   

9.
This paper reports the results of numerical simulation for the behavior of rare earth elements (REE) during decompression degassing of H2O- and Cl-bearing granite melts at pressures decreasing from 3 to 0.5–0.3 kbar under near isothermal conditions (800 ± 25°C). Fluid phase in equilibrium with the melt contains mainly chloride REE complexes, and their behavior during magma degassing is, therefore, intimately related to the behavior of chlorine. It was shown that the contents and distribution patterns of REE in the aqueous chloride fluid phase formed during decompression vary considerably depending on (1) the contents of volatiles (Cl and H2O) in the initial melt, (2) the redox state of the magma, and (3) the dynamics of fluid phase separation from magmas during their ascent toward the Earth’s surface. During decompressiondriven degassing, the contents of both Cl and REE in the fluid decrease, especially dramatically under opensystem conditions. The REE patterns of the fluid phase compared with those of the melt are characterized by a higher degree of light to heavy REE fractionation. A weak negative Eu anomaly may be present in the REE patterns of Cl-rich fluids formed during the early stages of degassing at relatively high pressures. At a further decrease in pressure and Cl content in the fluid, it is transformed into a positive Eu anomaly increasing during decompression degassing. Such an anomalous behavior of Eu during degassing is related to its occurrence in magmatic melts in two valence states, Eu3+ and Eu2+, whereas the other REE occur in melts mainly as (REE)3+. The Eu3+/Eu2+ ratio of melt is controlled by the redox state of the magmatic system. The higher the degree of melt reduction, the more pronounced the anomalous behavior of Eu during decompression degassing. The amount of REE extracted by fluid from melt during various stages of degassing does not significantly influence the content and distribution patterns of REE in the melt.  相似文献   

10.
The Woxi W–Sb–Au deposit in Hunan, South China, is hosted by Proterozoic metasedimentary rocks, a turbiditic sequence of slightly metamorphosed (greenschist facies), gray-green and purplish red graywacke, siltstone, sandy slate, and slate. The mineralization occurs predominantly (> 70%) as stratabound/stratiform ore layers and subordinately as stringer stockworks. The former consists of rhythmically interbedded, banded to finely laminated stibnite, scheelite, quartz, pyrite and silty clays, whereas the latter occurs immediately beneath the stratabound ore layers and is characterized by numerous quartz + pyrite + gold + scheelite stringer veins or veinlets that are typically either subparallel or subvertical to the overlying stratabound ore layers. The deposit has been the subject of continued debate in regard to its genesis. Rare earth element geochemistry is used here to support a sedimentary exhalative (sedex) origin for the Woxi deposit. The REE signatures of the metasedimentary rocks and associated ores from the Woxi W–Sb–Au deposit remained unchanged during post-depositional processes and were mainly controlled by their provenance. The original ore-forming hydrothermal fluids, as demonstrated by fluid inclusions in quartz from the banded ores, are characterized by variable total REE concentrations (3.5 to 136 ppm), marked LREE enrichment (LaN/YbN = 28–248, ∑LREE/∑HREE = 16 to 34) and no significant Eu-anomalies (Eu/Eu = 0.83 to 1.18). They were most probably derived from evolved seawater that circulated in the clastic sediment pile and subsequently erupted on the seafloor. The bulk banded ores are enriched in HREE (LaN/YbN = 4.6–11.4, ∑LREE/∑HREE = 3 to 14) and slightly depleted in Eu (Eu/Eu = 0.63 to 1.14) relative to their parent fluids. This is interpreted as indicating the influence of seawater rather than a crystallographic control on REE content of the ores. Within a single ore layer, the degree of HREE enrichment tends to increase upward while the total REE concentrations decrease, reflecting greater influence and dilution of seawater. There is a broad similarity in chondrite-normalized REE patterns and the amount of REE fractionation of the banded ores in this study and exhalites from other sedex-type polymetallic ore deposits, suggesting a similar genesis for these deposits. This conclusion is in agreement with geologic evidence supporting a syngenetic (sedex) model for the Woxi deposit.  相似文献   

11.
In this study we analyzed the chemical composition of hydrothermally altered dacite and basalt from the Kuroko mining area, northeastern Honshu, Japan, by REE (rare earth element). Features of rare earth element analyses include: (1) altered footwall dacite exhibits a negative Eu anomaly compared with fresh dacite, suggesting preferential removal of Eu2+ from the altered dacite via hydrothermal solutions, (2) altered hangingwall dacite and basalt and dacite and basalt adjacent to ore deposits exhibit positive Eu anomalies compared with fresh dacite and basalt, suggesting addition of Eu2+ from hydrothermal solutions, (3) LREE ratio (∑LREE/∑REE) from altered dacite of chlorite–sericite zone and K-feldspar zone show a negative relationship with δ18O, and La/Sm ratios show a positive correlation with the K2O index. These trends indicate the addition of light rare earth elements such as La to the altered dacite from hydrothermal solution and/or leaching of heavy rare earth elements such as Sm and Yb, (4) Principal component analysis (PCA) indicates that light rare earth elements enrichment is related to the formation of sericite zone near the Kuroko deposits but not to the formations of chlorite and K-feldspar zones, and (5) The correlations among REE features (LREE ratio, MREE ratio, HREE ratio, Eu/Eu?), δ18O and K2O index are not found for montmorillonite zone, mixed layer clay mineral zone and mordenite zone. Therefore, it is inferred that sericite, chlorite and K-feldspar alterations are related to the Kuroko and vein-type mineralization, but montmorillonite and mordenite alterations are not related to the mineralizations, and probably they formed at the post-mineralization stage.  相似文献   

12.
Behaviour of rare earth elements in geothermal systems of New Zealand   总被引:2,自引:0,他引:2  
Rare earth element (REE) patterns of hydrothermally altered rhyolite from geothermal systems located in the Taupo Volcanic Zone in the North Island of New Zealand provide evidence of REE mobility. REE trends of unaltered rhyolites are characterised by moderate LREE enrichment ((La/Lu)cn = 3.84 to 5.62) and pronounced negative Eu anomalies. In contrast, REE patterns of hydrothermally altered rhyolites commonly exhibit different signatures and may be placed into four chemically and petrographically distinct categories. Rocks with clay + quartz + feldspar + calcite (±zeolites, epidote, sphene, chlorite, opaque minerals) assemblages typically display patterns subparallel to fresh rock, whereas, samples which contain quartz + chlorite, or quartz + clay + zeolite assemblages have flat patterns without Eu anomalies, and highly silicified samples are characterised by depleted, bowed REE trends. These patterns may be produced by interaction with alkaline or acid fluids. A fourth group of very intensely altered samples, affected by interaction with acid fluids, exhibits unusual REE trends with highly enriched HREE and depleted LREE, or depleted HREE.These results indicate that some of the REE released by the breakdown of primary phases during alteration are transported away in the fluid. In addition, the degree of depletion is positively correlated with alteration intensity and the fluid/rock ratio. The similarity of REE patterns resulting from alteration by alkaline and acid fluids suggests that the shape of the REE trends is controlled principally by fluid/rock ratios and secondarily by mineralogy. The REE are retained in rocks with a diverse alteration mineralogy, whereas in samples with only one dominant alteration phase (e.g. quartz) it is more probable that not all REE liberated during alteration can be accommodated in the altered rock. Eu commonly behaves differently from the other REE, possibly due to the dominance of Eu2+.  相似文献   

13.
Talc, kerolite–smectite, smectite, chlorite–smectite and chlorite samples from sediments, chimneys and massive sulfides from six seafloor hydrothermal areas have been analyzed for mineralogy, chemistry and oxygen isotopes. Samples are from both peridotite- and basalt-hosted hydrothermal systems, and basaltic systems include sediment-free and sediment-covered sites. Mg-phyllosilicates at seafloor hydrothermal sites have previously been described as talc, stevensite or saponite. In contrast, new data show tri-octahedral Mg-phyllosilicates ranging from pure talc and Fe-rich talc, through kerolite-rich kerolite–smectite to smectite-rich kerolite–smectite and tri-octahedral smectite. The most common occurrence is mixed-layer kerolite–smectite, which shows an almost complete interstratification series with 5 to 85% smectitic layers. The smectite interstratified with kerolite is mostly tri-octahedral. The degree of crystal perfection of the clay sequence decreases generally from talc to kerolite–smectite with lower crystalline perfection as the proportion of smectite layers in kerolite–smectite increases.Our studies do not support any dependence of the precipitated minerals on the type/subtype of hydrothermal system. Oxygen isotope geothermometry demonstrates that talc and kerolite–smectite precipitated in chimneys, massive sulfide mounds, at the sediment surface and in open cracks in the sediment near seafloor are high-temperature (> 250 °C) phases that are most probably the result of focused fluid discharge. The other end-member of this tri-octahedral Mg-phyllosilicate sequence, smectite, is a moderate-temperature (200–250 °C) phase forming deep within the sediment (~ 0.8 m). Chlorite and chlorite–smectite, which constitute the alteration sediment matrix around the hydrothermal mounds, are lower-temperature (150–200 °C) phases produced by diffuse fluid discharge through the sediment around the hydrothermal conduits. In addition to temperature, other two controls on the precipitation of this sequence are the silica activity and Mg/Al ratio (i.e. the degree of mixing of seawater with hydrothermal fluid). Higher silica activity favors the formation of talc relative to tri-octahedral smectite. Vent structures and sedimentary cover preclude complete mixing of hydrothermal fluid and ambient seawater, resulting in lower Mg/Al ratios in the interior parts of the chimneys and deeper in the sediment which leads to the precipitation of phyllosilicates with lower Mg contents. Talc and kerolite–smectite have very low trace- and rare earth element contents. Some exhibit a negative or flat Eu anomaly, which suggests Eu depletion in the original hydrothermal fluid. Such Eu depletion could be caused by precipitation of anhydrite or barite (sinks for Eu2+) deeper in the system. REE abundances and distribution patterns indicate that chlorite and chlorite–smectite are hydrothermal alteration products of the background turbiditic sediment.  相似文献   

14.
The rhyolitic dome in the Rangan area has been subjected to hydrothermal alterations by two different systems, (1) A fossil magmatic–hydrothermal system with a powerful thermal engine of a deep monzodioritic magma, (2) An active hydrothermal system dominated by meteoric water. Based on mineralogical and geochemical studies, three different alteration facies have been identified (phyllic, advanced argillic and silicic) with notable differences in REE and other trace elements behaviour. In the phyllic alteration zone with assemblage minerals such as sericite, pyrite, quartz, kaolinite, LREE are relatively depleted whereas HREE are enriched. The advanced argillic zone is identified by the presence of alunite–jarosite and pyrophyllite as well as immobility of LREE and depletion in HREE. In the silicic zone, most of LREE are depleted but HREE patterns are unchanged compared to their fresh rock equivalents. All the REE fractionation ratios (La/Yb)cn, (La/Sm)cn, (Tb/Yb)cn, (Ce/Ce1)cn and (Eu/Eu1)cn are low in the phyllic altered facies. (Eu/Eu1)cn in both advanced and silicic facies is low too. In all alteration zones, high field strength elements (HFSE) (e.g. Ti, Zr, Nb) are depleted whereas transition elements (e.g. V, Cr, Co, Ni, Fe) are enriched. Geochemically speaking, trace and rare earth elements behave highly selective in different facies.  相似文献   

15.
ODP drilling of the active TAG hydrothermal mound at 26°N on the Mid-Atlantic Ridge provided the first insights into the third dimension of a volcanic-hosted massive sulfide (VMS) deposit on a sediment-free mid-ocean ridge. Sulfide precipitation at this site started at least 20,000 years ago and resulted in the formation of a distinctly circular, 200-m diameter, 50-m-high pyritic mound and a silicified stockwork complex containing approximately 3.9 million tonnes of sulfide-bearing material with an average of 2.1 wt% Cu and 0.6 wt% Zn in 95 samples collected from 1–125 m below the seafloor. The periodic release of high-temperature hydrothermal fluids at the same location for several thousand years with intermittent periods of hydrothermal quiesence is the dominating process in the formation of the TAG hydrothermal mound. Distinct geochemical, mineralogical and isotopic zonation as well as a complex assemblage of sulfide-anhydrite-quartz bearing breccias can be related to this process. Geochemical depth profiles indicate extremely low base and trace element concentrations for the interior of the mound, which clearly contrasts with published analyses of samples collected from the surface of the TAG mound. This is explained by continued zone refining during which metals were mobilized from the interior of the mound by upwelling, hot (>350 °C) hydrothermal fluids. Mixing of these fluids with infiltrating ambient seawater subsequently caused redeposition of metals close to the mound-seawater interface. The sulfur isotopic composition of bulk sulfides (+4.4 to +8.2‰δ34S; average +6.5‰) is unusually heavy when compared to other sediment-free mid-ocean ridge deposits and implies the introduction of heavy seawater sulfur to the hydrothermal fluid. The slight increase in sulfur isotope ratios with depth and distinct variations between early, disseminated sulfides related to wallrock alteration, and massive as well as late vein sulfides indicates widespread entrainment of seawater deep into the system. Fluid inclusion measurements in quartz and anhydrite reveal high formation temperatures throughout the TAG mound (up to 390 °C) at one time with an overall increase in trapping temperatures with depth. Lower formation temperatures close to the paleo-seafloor indicate local entrainment of seawater into the mound. Formation temperatures for a central anhydrite-bearing zone range from 340–360 °C and are slightly lower than the exit temperature of hydrothermal fluids presently venting at the Black Smoker Complex (360–369 °C). Fluid inclusions in quartz and anhydrite from the stockwork zone are characterized by formation temperatures higher than 375 °C, indicating conductive cooling of the hydrothermal fluids or mixing with ambient seawater prior to venting. Formation temperatures for quartz from an area of extremely low heat flow at the western side of the mound reach up to 390 °C, implying that this area was once part of a high-temperature hydrothermal upflow zone. The low heat flow and the absence of anhydrite within this part of the mound are strong indications that the recent pulse of high-temperature hydrothermal activity is not affecting this area and provides evidence for significant changes in the fluid flow regime underneath the deposit between hydrothermal cycles. Received: 16 November 1998 / Accepted: 19 August 1999  相似文献   

16.
Fluorite can be used as a probe for the source of Sr and REE, as well as for the Sr and Nd isotope systematics of mineralizing solutions, allowing characterization of the composition, oxidation state and sources of the fluids. The 87Sr / 86Sr ratios in vein fluorite from the Santa Catarina Fluorite District, southern Brazil, are low (0.720 to 0.745) relative to those of the majority of host granites at the time of mineralization (90 Ma), but are similar to those of less abundant and less evolved Sr- and Ca-rich granites and plagioclases of the heterogeneous Pedras Grandes granite association. Major contributions of Sr from the unradiogenic Parana Basin rocks (87Sr / 86Sr90 Ma = 0.705 to 0.718) are unlikely, considering the radiogenic character of the lower 87Sr / 86Sr end-member in fluorite mixing lines. Estimated fluorite fluid partition coefficients (KdSr-Ca = 0.019 and DSr ≈ 600) indicate a Sr / Ca ratio in the fluorite-forming solution of 0.012, and Sr contents of 0.05 to 0.25 ppm, which are similar to those of present-day granitic geothermal waters. Initial Nd isotopic compositions of the vein fluorites (0.5120 to 0.512) are similar to those of the Pedras Grandes granites. The 143Nd / 144Nd90 Ma of the evolved granites of the Tabuleiro granite association, their accessory fluorites and the Parana Basin rocks are considerably more radiogenic (0.5120 to 0.5127) and these are thus considered to be unlikely sources of the fluids. The REE patterns of vein fluorites, normalized to upper continental crust, show a range of LREE-depleted patterns, with highly variable positive and negative Eu anomalies. The host Pedras Grandes granites show flat to slightly depleted UCC normalized LREE patterns with strong negative Eu anomalies. Depletion of the LREE in fluorites resulted from the mobility of HREE fluoride complexes during fluid migration. A REE fractionation model based on ionic potential ratios indicates that Eu3+ was stable during fluid migration and fluorite precipitation. The coexistence of pyrite and Eu3+ in the mineralizing fluids is consistent with low pH and oxygen fugacities near the hematite-magnetite buffer.  相似文献   

17.
Rare earth element (REE) abundances were measured by neutron activation analysis in anhydrite (CaSO4), barite (BaSO4), siderite (FeCO3) and galena (PbS). A simple crystal-chemical model qualitatively describes the relative affinities for REE substitution in anhydrite, barite, and siderite. When normalized to ‘crustal’ abundances (as an approximation to the hydrothermal fluid REE pattern), log REE abundance is a surprisingly linear function of (ionic radius of major cation—ionic radius of REE)2 for the three hydrothermal minerals, individually and collectively. An important exception, however, is Eu, which is anomalously enriched in barite and depleted in siderite relative to REE of neighboring atomic number and trivalent ionic radius. In principle, REE analyses of suitable pairs of co-existing hydrothermal minerals, combined with appropriate experimental data, could yield both the REE content and the temperature of the parental hydrothermal fluid.The REE have only very weak chalcophilic tendencies, and this is reflected by the very low abundances in galena—La, 0.6 ppb; Sm, 0.06 ppb; the remainder are below detection limits.  相似文献   

18.
Scheelite is a widespread accessory mineral in hydrothermal gold deposits, and its rare earth element (REE) patterns and Nd and Sr isotopic compositions can be used to constrain the path and origin of the mineralising fluids and the age of the hydrothermal activity. Micro-analyses by laser ablation high resolution inductively coupled mass spectroscopy and cathodoluminescence imaging reveal a very inhomogeneous distribution of the REE in single scheelite grains from the Mt. Charlotte and Drysdale Archaean gold deposits in Western Australia. Two end-member REE patterns are distinguished: type I is middle REE (MREE)-enriched, with no or minor positive Eu-anomaly, whereas type II is flat or MREE-depleted with a strong positive Eu-anomaly. The chemical inhomogeneity of these scheelites is related to oscillatory zoning involving type I and type II patterns, with zone widths varying from below 1 to 200 μm. Intra-sectorial growth discontinuities, syn-crystallisation brittle deformation, and variations in the relative growth velocities of crystallographically equivalent faces suggest a complex crystallisation history under dynamic hydraulic conditions. The co-existence of MREE-enriched and MREE-depleted patterns within single scheelite crystals can be explained by the precipitation of a mineral which strongly partitions MREE relative to light and heavy REE. Scheelite itself has such characteristics, as does fluorapatite, which is locally abundant and has REE contents similar to that of scheelite. In this context, the systematic increase of the Eu-anomaly between type I and type II patterns is produced by the difference between the partition coefficients of Eu2+ and Eu3+, and not by fluid mixing or redox reactions. Consequently, the high positive Eu-anomaly typical of scheelite from gold ores may not necessarily be inherited from the hydrothermal fluid, but may reflect processes occurring during ore deposition. This case study demonstrates that in hydrothermal systems characterised by low REE concentrations in the fluid, and by the precipitation of a REE-rich mineral which strongly fractionates the REE, the REE patterns of such a mineral will be highly sensitive to the dynamics of the hydrothermal system. Received: 1 November 1999 / Accepted: 4 February 2000  相似文献   

19.
The rare-earth element (REE) concentrations of representative granite samples from the southeast of the Obudu Plateau, Nigeria, were analyzed with an attempt to determine the signatures of their source, evolutionary history and tectonic setting. Results indicated that the granites have high absolute REE concentrations (190×10^-6-1191×10^-6; av.=549×10^-6) with the chondrite-normalized REE patterns characterized by steep negative slopes and prominent to slight or no negative Eu anomalies. All the samples are also characterized by high and variable concentrations of the LREE (151×10^-6-1169×10^-6; av.= 466×10^-6), while the HREE show low abundance (4×10^-6-107×10^-6; av.=28×10^-6). These are consistent with the variable levels of REE fractionation, and differentiation of the granites. This is further supported by the range of REE contents, the chondrite-normalized patterns and the ratios of LaN/YbN (2.30-343.37), CeN/YbN (5.94-716.87), LaN/SmN (3.14-11.68) and TbN/YbN (0.58-1.65). The general parallelism of the REE patterns, suggest that all the granites were comagmatic in origin, while the high Eu/Eu* ratios (0.085-2.807; av.=0.9398) indicate high fo2 at the source. Similarly, irregular variations in LaN/YbN, CeN/YbN and Eu/Eu* ratios and REE abundances among the samples suggest behaviors that are related to mantle and crustal sources.  相似文献   

20.
Abstract: The Onsen acid‐sulphate type of mineralization is located in the Desmos caldera, Manus back‐arc basin. Hydrothermal precipitates, fresh and altered basaltic andesite collected from the Desmos caldera were studied to determine mineralization and mobility of elements under seawater dominated condition of hydrothermal alteration. The mineralization is characterized by three stages of advanced argillic alteration. Alteration stage I is characterized by coarse subhedral pyrophyllite with disseminated anhedral pyrite and enargite which were formed in the temperature range of 260–340°C. Alteration stage II which overprinted alteration stage I was formed in the temperature range of 270–310°C and is characterized by euhedral pyrite, quartz, natroalunite, cristobalite and mixed layer minerals of smectite and mica with 14–15 Å XRD peak. Alteration stage III is characterized by amorphous silica, native sulphur, covellite, marcasite and euhedral pyrite, which has overprinted alteration stages I and II. Relative to the fresh basaltic andesite samples, the rims and cores of the partly altered basaltic andesite samples have very low major, minor and rare earth elements content except for SiO2 which is much higher (58–78 wt%) than SiO2 content of the fresh basaltic andesite (55 wt%). REE patterns of the partly altered basaltic andesite specimens are variably depleted in LREE and have pronounced negative Eu anomalies. Normalization of major, minor and REE content of the partly altered basaltic andesites to the fresh basaltic andesite indicates that all the elements except for SiO2 in the partly altered basaltic andesite are strongly lost (e.g. Al2O3 = ‐8.3 to ‐10.9 g/100cm3, Ba = ‐2.2 to ‐5.6 mg/100cm3, La = ‐130 to ‐200 μg/100cm3) during the alteration process. Abnormal depletion of MgO, total Fe as Fe2O3, LREE especially Eu and enrichment of SiO2 in the altered basaltic andesites from the Desmos caldera seafloor is caused by interaction of hot acidic hydrothermal fluid, which originates from a mixing of magmatic fluid and seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号