首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The rates of Sb(III) oxidation by O2 and H2O2 were determined in homogeneous aqueous solutions. Above pH 10, the oxidation reaction of Sb(III) with O2 was first order with respect to the Sb(III) concentration and inversely proportional to the H+ concentrations at a constant O2 content of 0.22 × 10−3 M. Pseudo-first-order rate coefficients, kobs, ranged from 3.5 × 10−8 s−1 to 2.5 × 10−6 s−1 at pH values between 10.9 and 12.9. The relationship between kobs and pH was:
  相似文献   

2.
The kinetics of crystallization of strontium carbonate (strontianite) from strontium bicarbonate solutions were examined. CO2 was stripped from a slightly acidic solution of Sr(HCO3)2 by stirring resulting in critical supersaturation and precipitation of strontianite. The reduction of the Sr2+ concentration was recorded as a function of time by measuring the electrolytic conductivity and the pH value.

Homogeneous primary nucleation is dominant at high supersaturations, whereas heterogeneous primary nucleation prevails at low supersaturations. The crystal growth rate increases with increasing supersaturation. This effect is less pronounced at higher supersaturations. The growth rate is mostly transport-controlled at high supersaturation. At lower supersaturation the crystal growth is mainly determined by integration of ions into the crystal lattice. These results may be used to explain the deposition of strontianite in natural systems.  相似文献   


3.
A highly reproducible seeded growth technique was used to study calcite crystallization from calcium bicarbonate solutions at 25°C and fixed carbon dioxide partial pressures between 0.03 and 0.3 atm. The results are not consistent with empirical crystallization models that have successfully described calcite growth at low PCO2 (< 10?3 atm). Good agreement was found between observed crystallization rates and those calculated from the calcite dissolution rate law and mechanism proposed by Plummer et al. (1978).  相似文献   

4.
The dissolution and growth of uranophane [Ca(UO2)2(SiO3OH)2·5H2O] have been examined in Ca- and Si-rich test solutions at low temperatures (20.5 ± 2.0 °C) and near-neutral pH (∼6.0). Uranium-bearing experimental solutions undersaturated and supersaturated with uranophane were prepared in matrices of ∼10−2 M CaCl2 and ∼10−3 M SiO2(aq). The experimental solutions were reacted with synthetic uranophane and analyzed periodically over 10 weeks. Interpretation of the aqueous solution data permitted extraction of a solubility constant for the uranophane dissolution reaction and standard state Gibbs free energy of formation for uranophane ( kJ mol−1).  相似文献   

5.
6.
Jarosite [KFe3(SO4)2(OH)6] is a mineral that is common in acidic, sulphate-rich environments, such as acid sulphate soils derived from pyrite-bearing sediments, weathering zones of sulphide ore deposits and acid mine or acid rock drainage (ARD/AMD) sites. The structure of jarosite is based on linear tetrahedral-octahedral-tetrahedral (T-O-T) sheets, made up from slightly distorted FeO6 octahedra and SO4 tetrahedra. Batch dissolution experiments carried out on synthetic jarosite at pH 2, to mimic environments affected by ARD/AMD, and at pH 8, to simulate ARD/AMD environments recently remediated with slaked lime (Ca(OH)2), suggest first order dissolution kinetics. Both dissolution reactions are incongruent, as revealed by non-ideal dissolution of the parent solids and, in the case of the pH 8 dissolution, because a secondary goethite precipitate forms on the surface of the dissolving jarosite grains. The pH 2 dissolution yields only aqueous K, Fe, and SO4. Aqueous, residual solid, and computational modelling of the jarosite structure and surfaces using the GULP and MARVIN codes, respectively, show for the first time that there is selective dissolution of the A- and T-sites, which contain K and SO4, respectively, relative to Fe, which is located deep within the T-O-T jarosite structure. These results have implications for the chemistry of ARD/AMD waters, and for understanding reaction pathways of ARD/AMD mineral dissolution.  相似文献   

7.
Solid phases of silicon dioxide react with water vapor with the formation of hydroxides and oxyhydroxides of silica. Recent transpiration and mass-spectrometric studies convincingly demonstrate that H4SiO4 is the predominant form of silica in vapor phase at water pressure in excess of 10−2 MPa. Available literature transpiration and solubility data for the reactions of solid SiO2 phases and low-density water, extending from 424 to 1661 K, are employed for the determination of ΔfG0, ΔfH0 and S0 of H4SiO4 in the ideal gas state at 298.15 K, 0.1 MPa. In total, there are 102 data points from seven literature sources. The resulting values of the thermodynamic functions of H4SiO4(g) are: ΔfG0 = −1238.51 ± 3.0 kJ mol−1, ΔfH0 = −1340.68 ± 3.5 kJ mol−1 and S0 = 347.78 ± 6.2 J K−1 mol−1. These values agree quantitatively with one set of ab initio calculations. The relatively large uncertainties are mainly due to conflicting data for H4SiO4(g) from various sources, and new determinations of would be helpful. The thermodynamic properties of this species, H4SiO4(g), are necessary for realistic modeling of silica transport in a low-density water phase. Applications of this analysis may include the processes of silicates condensation in the primordial solar nebula, the precipitation of silica in steam-rich geothermal systems and the corrosion of SiO2-containing alloys and ceramics in moist environments.  相似文献   

8.
We report rates of oxygen exchange with bulk solution for an aqueous complex, IVGeO4Al12(OH)24(OH2)128+(aq) (GeAl12), that is similar in structure to both the IVAlO4Al12(OH)24(OH2)127+(aq) (Al13) and IVGaO4Al12(OH)24(OH2)127+(aq) (GaAl12) molecules studied previously. All of these molecules have ε-Keggin-like structures, but in the GeAl12 molecule, occupancy of the central tetrahedral metal site by Ge(IV) results in a molecular charge of +8, rather than +7, as in the Al13 and GaAl12. Rates of exchange between oxygen sites in this molecule and bulk solution were measured over a temperature range of 274.5 to 289.5 K and 2.95 < pH < 4.58 using 17O-NMR.Apparent rate parameters for exchange of the bound water molecules (η-OH2) are kex298 = 200 (±100) s−1, ΔH = 46 (±8) kJ · mol−1, and ΔS = −46 (±24) J · mol−1 K−1 and are similar to those we measured previously for the GaAl12 and Al13 complexes. In contrast to the Al13 and GaAl12 molecules, we observe a small but significant pH dependence on rates of solvolysis that is not yet fully constrained and that indicates a contribution from the partly deprotonated GeAl12 species.The two topologically distinct μ2-OH sites in the GeAl12 molecule exchange at greatly differing rates. The more labile set of μ2-OH sites in the GeAl12 molecule exchange at a rate that is faster than can be measured by the 17O-NMR isotopic-equilibration technique. The second set of μ2-OH sites have rate parameters of kex298 = 6.6 (±0.2) · 10−4 s−1, ΔH = 82 (±2) kJ · mol−1, and ΔS = −29 (±7) J · mol−1 · K−1, corresponding to exchanges ≈40 and ≈1550 times, respectively, more rapid than the less labile μ2-OH sites in the Al13 and GaAl12 molecules. We find evidence of nearly first-order pH dependence on the rate of exchange of this μ2-OH site with bulk solution for the GeAl12 molecule, which contrasts with Al13 and GaAl12 molecules.  相似文献   

9.
10.
11.
Pyrite dissolution and interaction with Fe(II), Co(II), Eu(III) and U(VI) have been studied under anoxic conditions by solution chemistry and spectroscopic techniques. Aqueous data show a maximal cation uptake above pH 5.5. Iron (II) uptake can explain the non-stoichiometric [S]aq/[Fe]aq ratios often observed during dissolution experiments. Protonation data corrected for pyrite dissolution resulted in a proton site density of 9 ± 3 sites nm−2. Concentration isotherms for Eu(III) and U(VI) sorption on pyrite indicate two different behaviours which can be related to the contrasted redox properties of these elements. For Eu(III), sorption can be explained by the existence of a unique site with a saturation concentration of 1.25 × 10−6 mol g−1. In the U(VI) case, sorption seems to occur on two different sites with a total saturation concentration of 4.5 × 10−8 mol g−1. At lower concentration, uranium reduction occurs, limiting the concentration of dissolved uranium to the solubility of UO2(s).Scanning electron microscopy and micro-Raman spectrometry of U(VI)-sorbed pyrite indicate a heterogeneous distribution of U at the pyrite surface and a close association with oxidized S. X-ray photoelectron spectroscopy confirms the partial reduction of U and the formation of a hyperstoichiometric UO2+x(s). Our results are consistent with a chemistry of the pyrite surface governed not by Fe(II)-bound hydroxyl groups, but by S groups which can either sorb cations and protons, or sorb and reduce redox-sensitive elements such as U(VI).  相似文献   

12.
The solubility of baddeleyite (ZrO2) and the speciation of zirconium have been investigated in HF-bearing aqueous solutions at temperatures up to 400 °C and pressures up to 700 bar. The data obtained suggest that in HF-bearing solutions zirconium is transported mainly in the form of the hydroxyfluoride species ZrF(OH)3° and ZrF2(OH)2°. Formation constants determined for these species (Zr4+ + nF + mOH = ZrFn(OH)m°) range from 43.7 at 100 °C to 46.41 at 400 °C for ZrF(OH)3°, and from 37.25 at 100 °C to 43.88 at 400 °C for ZrF2(OH)2°.Although the solubility of ZrO2 is retrograde with respect to temperature, the measured concentrations of Zr are orders of magnitude higher than those predicted from theoretical extrapolations based on simple fluoride species (ZrF3+-ZrF62−). Model calculations performed for zircon show that zirconium can be transported by aqueous fluids in concentrations sufficient to account for the concentration of this metal at conditions commonly encountered in fluoride-rich natural hydrothermal systems.  相似文献   

13.
The standard thermodynamic properties and Helgeson-Kirkham-Flowers (HKF) parameters for Sb(OH)3(aq) have been estimated. For this purpose, the available solubility data for senarmontite, valentinite, stibnite, and native Sb in a wide range of temperatures (15 to 450°C) and pressures (1 to 1000 bar), and thermodynamic properties of Sb oxides (senarmontite and valentinite) have been critically analyzed. Published data were complimented by results from new experiments performed by solubility and solid-state galvanic cell methods. Both experimental data and thermodynamic calculations show that the hydroxide complex Sb(OH)3(aq) is primarily responsible for hydrothermal transport of antimony, especially at temperatures above 250°C.  相似文献   

14.
The osmotic coefficients of FeCl3 at 25 °C from 0.15 to 1.7 m [Rumyantsev et al., Z. Phys. Chem., 218, 1089-1127, 2004] have been used to determine the Pitzer parameters (β(0), β(1) and C?) for FeCl3. Since the differences in the Pitzer coefficients of rare earths in NaCl and NaClO4 are small, the values of Fe(ClO4)3 have been estimated using the differences between La(ClO4)3 and LaCl3. The Pitzer coefficients for FeCl3 combined with enthalpy and heat capacity data for the rare earths can be used to estimate the activity coefficients of Fe3+ in NaCl over a wide range of temperatures (0 to 50 °C) and ionic strength (0 to 6 m).The activity coefficients of Fe3+ in NaCl and NaClO4 solutions have been used to determine the activity coefficients of Fe(OH)2+ in these solutions from the measured first hydrolysis constants of Fe3+ [Byrne et al., Mar. Chem., 97, 34-48, 2005]. The activity coefficients of , Fe(OH)3 and from 0 to 50 °C have also been determined from the solubility measurements of Fe(III) in NaCl solutions [Liu and Millero, Geochim. Cosmochim Acta, 63, 3487-3497, 1999]. These activity coefficients have been fitted to the Pitzer equations. These results can be used to estimate the speciation of Fe(III) with OH in natural waters with high concentrations of NaCl from 0 to 50 °C.  相似文献   

15.
The structural change and mineralogy of Al gel during aging time were investigated by using spectroscopy techniques. The results indicated that: 1) the aggregation extent of solution-gel system increases with aging time, and the structure of amorphous gel becomes more short-ordered; 2) after six months, the gel formats nordstrandite and little gibbsite; 3) a marked decrease in the number of (Al-OH)oh bands occurring at 610 cm−1 and increase in the number of (Al-OH2)oh bands occurring at 555 cm−1 indicate that the gel undergoes rearrangement-like process during aging; 4) the gel constantly contains Al-O tetrahedron of Keggin structure, but the signal peak occurring at ≈61×10−6 of 27Al MAS NMR have a slight shift to downfield with aging time. A mineralogical transformation mechanism for hydrolysis Al(III) solution was proposed.  相似文献   

16.
The isotopic composition of carbon and oxygen in a calcite precipitating CO2-H2O-CaCO3 solution is preserved in the calcite precipitated. For the interpretation of isotopic proxies from stalagmites knowledge of the evolution of δ13C and δ18O in the solution during precipitation is required. A system of differential equations is presented from which this evolution can be derived. Both, irreversible loss of carbon and oxygen from the solution with precipitation time τ and exchange of oxygen in the carbonates with the oxygen in the water with exchange time T are considered. For carbon, where no exchange is active, a modified equation of Rayleigh-distillation is found, which takes into account that precipitation stops at ceq, the saturation concentration of DIC with respect to calcite, and that ceq as well as the precipitation time τ is slightly different for the heavy and the light isotope. This, however, requires introducing a new parameter γ = (Aeq/Beq)/(A0/B0), which has to be determined experimentally. (Aeq/Beq) is the isotopic ratio for the heavy (A) and the light isotope (B) at both chemical and isotopic equilibrium and (A0/B0) is the initial isotopic ratio of the solution. In the case of oxygen, where exchange is present, the isotopic shifts are reduced with increasing values of the precipitation time τ. For τ ? T the solution stays in isotopic equilibrium with the oxygen in the water during the entire time in which precipitation is active. The isotopic ratios in a calcite precipitating solution R(t)/R0 = (1 + δ(t)/1000) for carbon are plotted versus those of oxygen. R0 is the isotopic ratio at time t = 0, when precipitation starts and δ(t) the isotopic shift in the solution after time t. These show positive correlations for the first 50% of calcite, which can precipitate. Their slopes increase with increasing values of τ and they closely resemble Hendy-tests performed along growth layers of stalagmites. Our results show that stalagmites, which grow by high supply of water with drip times less than 50 s, exhibit positive correlations between δ13C and δ18O along a growth layer. But in spite of this the isotopic composition of oxygen in the solution at the apex is in isotopic equilibrium with the oxygen in the water, and therefore also that of calcite deposited at the apex.  相似文献   

17.
根据X射线衍射(XRD)分析发现: A Fe3(SO4)2(OH)6(A=K+、H3O+)系列铁钒的XRD数据十分相近,难以用XRD区别,需通过能谱(EDS)辅助分析,才能区分此类铁矾。另外,此类铁矾的003和107面网间距d随K+含量增大而增大,且呈一元三次方程的关系;而033和220面网间距d随K+含量增大而减小,呈一元二次方程的关系。对该现象从铁矾晶体结构方面进行解释:K+、H3O+离子位于较大空隙中,且沿着Z轴方向排列,当K+、H3O+离子之间相互替换时,会导致该铁矾晶体结构在Z轴方向有较明显的变化。  相似文献   

18.
19.
Rates of steady exchange of oxygens between bulk solution and the largest known aluminum polyoxocation: Al2O8Al28(OH)56(H2O)2618+(aq) (Al30) are reported at pH≈4.7 and 32-40°C. The Al30 molecule is a useful model for geochemists because it is ≈2 nm in length, comparable to the smallest colloidal solids, and it has structural complexity greater than the surfaces of most aluminum (hydr)oxide minerals. The Al30 molecule has 15 distinct hydroxyl sites and eight symmetrically distinct bound waters. Among the hydroxyl bridges are two sets of μ3-OH, which are not present in any of the other aluminum polyoxocations that have yet been studied by NMR methods. Rates of isotopic equilibration of the μ2-OH and μ3-OH hydroxyls and bound water molecules fall within the same range as we have determined for other aluminum solutes, although it is impossible to determine rate laws for exchange at the large number of individual oxygen sites. After injection of 17O-enriched water, growth of the 17O-NMR peak near 37 ppm, which is assigned to μ2-OH and μ3-OH hydroxyl bridges, indicates that these bridges equilibrate within two weeks at temperatures near 35°C. The peak at +22 ppm in the 17O-NMR spectra, assigned to bound water molecules (η-OH2), varies in width with temperature in a similar fashion as for other aluminum solutes, suggesting that most of the η-OH2 sites exchange with bulk solution at rates that fall within the range observed for other aluminum complexes. Signal from one anomalous group of four η-OH2 sites is not observed, indicating that these sites exchange at least a factor of ten more rapidly than the other η-OH2 sites on the Al30.  相似文献   

20.
In a recent study, sulphate-bearing green rust (GRSO4) was shown to incorporate Na+ in its structure (NaFeII6FeIII3(OH)18(SO4)2(s); GRNa,SO4). The compound was synthesised by aerial oxidation of Fe(OH)2(s) in the presence of NaOH. This paper reports on its free energy of formation .Freshly synthesised GRNa,SO4 was titrated with 0.5 M H2SO4 in an inert atmosphere at 25 °C, producing dissolved Fe2+ and magnetite or goethite. Solution concentrations, PHREEQC and the MINTEQ database were used to calculate reaction constants for the reactions:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号