首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Controlling bioaccumulation of toxic monomethylmercury (MMHg) in aquatic food chains requires differentiation between biotic and abiotic pathways that lead to its production and degradation. Recent mercury (Hg) stable isotope measurements of natural samples suggest that Hg isotope ratios can be a powerful proxy for tracing dominant Hg transforming pathways in aquatic ecosystems. Specifically, it has been shown that photo-degradation of MMHg causes both mass dependent (MDF) and mass independent fractionation (MIF) of Hg isotopes. Because the extent of MDF and MIF observed in natural samples (e.g., fish, soil and sediments) can potentially be used to determine the relative importance of pathways leading to MMHg accumulation, it is important to determine the potential role of microbial pathways in contributing to the fractionation, especially MIF, observed in these samples. This study reports the extent of fractionation of Hg stable isotopes during degradation of MMHg to volatile elemental Hg and methane via the microbial Hg resistance (mer) pathway in Escherichia coli carrying a mercury resistance (mer) genetic system on a multi-copy plasmid. During experimental microbial degradation of MMHg, MMHg remaining in reactors became progressively heavier (increasing δ202Hg) with time and underwent mass dependent Rayleigh fractionation with a fractionation factor α202/198 = 1.0004 ± 0.0002 (2SD). However, MIF was not observed in any of the microbial MMHg degradation experiments indicating that the isotopic signature left by mer mediated MMHg degradation is significantly different from fractionation observed during DOC mediated photo-degradation of MMHg. Additionally, a clear suppression of Hg isotope fractionation, both during reduction of Hg(II) and degradation of MMHg, was observed when the cell densities increased, possibly due to a reduction in substrate bioavailability. We propose a multi-step framework for understanding the extent of fractionation seen in our MMHg degradation experiments and, based on estimates of the rates of the various steps involved in this mer mediated pathway, suggest which steps in the process could contribute towards the observed extent of fractionation. This framework suggests that at lower cell densities catalysis by MerB was the rate limiting step while at higher cell densities transport into the cell, which does not cause fractionation, became the rate limiting step. In addition to presenting evidence for absence of MIF during mer mediated Hg transformations, based on the nature of Hg compounds and microbe-Hg interactions, we suggest that the nuclear spin dependent MIF (i.e., the magnetic isotope effect) is also unlikely to occur during other non mer mediated ‘dark’ microbial Hg transformations (e.g., formation of MMHg and oxidative degradation of MMHg). Because of the important implications of the absence of MIF during biological processes on Hg isotope systematics, we discuss theoretical considerations and experimental strategies that could be used to confirm this suggestion.  相似文献   

2.
A study has been made of the abrasion and soundness characteristics of crushed-rock aggregates obtained from a wide variety of igneous rocks of volcanic and plutonic origins, that range from acidic to basic in composition. The grain size and the volume of pore spaces were found to be the significant geological factors controlling the evaluation of these two parameters. Fine-grained rocks when compared with coarse-grained rocks having the same porosity were found to be more sound and more resistant to wear.  相似文献   

3.
Soil microbial biomass is a primary source of soil organic carbon (SOC) and therefore plays a fundamental role in carbon and nitrogen cycling. However, little is known about the fate and transformations of microbial biomass in soil. Here we employ HR-MAS NMR spectroscopy to monitor 13C and 15N labeled soil microbial biomass and leachate degradation over time. As expected, there is a rapid loss of carbohydrate structures. However, diffusion edited HR-MAS NMR data reveals that macromolecular carbohydrates are more resistant to degradation and are found in the leachate. Aromatic components survive as dissolved species in the leachate while aliphatic components persist in both the biomass and leachate. Dissolved protein and peptidoglycan accumulate in the leachate and recalcitrant amide nitrogen and lipoprotein persists in both the degraded biomass and leachate. Cross-peaks that appear in 1H-15N HR-MAS NMR spectra after degradation suggest that specific peptides are either selectively preserved or used for the synthesis of unknown structures. The overall degradation pathways reported here are similar to that of decomposing plant material degraded under similar conditions suggesting that the difference between recalcitrant carbon from different sources is negligible after decomposition.  相似文献   

4.
Organic carbon (OC) burial is an important process influencing atmospheric CO2 concentration and global climate change; therefore it is essential to obtain information on the factors determining its preservation. The Southern Ocean (SO) is believed to play an important role in sequestering CO2 from the atmosphere via burial of OC. Here we investigate the degradation of organic-walled dinoflagellate cysts (dinocysts) in two short cores from the SO to obtain information on the factors influencing OC preservation. On the basis of the calculated degradation index kt, we conclude that both cores are affected by species-selective aerobic degradation of dinocysts. Further, we calculate a degradation constant k using oxygen exposure time derived from the ages of our cores. The constant k displays a strong relationship with pore-water O2, suggesting that decomposition of OC is dependent on both the bottom- and pore-water O2 concentrations.  相似文献   

5.
To demonstrate the potential of model microbial assemblages in studies of the biogeochemistry of complex organic molecules, anaerobic microbial populations capable of degrading cholesterol (cholest-5-en-3β-ol) have been enriched from marine sediment sources. The bacterial enrichments actively mineralized the C-4 nucleus of the cholesterol ring system to carbon dioxide when nitrate was present as the terminal electron acceptor. Nitrite was found as an intermediate in the reduction of nitrate, indicating the presence of denitrifying bacteria in the enrichments. When sulfate was supplied as the sole electron acceptor, active dissimilation of cholesterol was not observed. In enrichments containing 5 mM nitrate, 95–98% of the added cholesterol was recovered as carbon dioxide (2–5%), transformation products (20–30%), or as the unmodified sterol (70–80%). Cholesterol transformation products thus far identified include 5α- and 5β-cholestan-3β-ol, cholest-4-en-3-one, 5α-androstan-3, 17-dione and androst-4-en-3, 17 dione.  相似文献   

6.
Metabolic models for fractionations produced by sulfate-reducing Bacteria and Archaea derived from experimental observations are the cornerstone of our interpretation of ancient and modern biogeochemical cycles. Although recent studies have called into question a traditionally accepted model, experimental evidence has been lacking for such a claim. We present data from all four sulfur isotopes that suggest that the internal fractionations associated with the sulfate reduction network are larger than previous estimates. Models of a traditional sulfate reduction network, as well as a more recent incarnation of the sulfate reduction network (with multiple sulfur intermediates) are constructed to aid in the understanding of new experimental data. These data also allow for the further development of additional minor isotope relationships, one of which is easily measurable in geologic settings and accurately depicts the net effect of an environment, whereas the other is more applicable to modern environments and may better illuminate the specific process(es) controlling the fractionation in those environments. This approach illustrates the uses of systems containing more than two isotopes.  相似文献   

7.
In this study, the degradation of novaluron (benzoylphenyl urea insect growth regulator) was investigated under controlled laboratory conditions in clay loam alluvial and coastal saline soils of West Bengal, India. The application rates were field rate (FR); 2FR and 10FR. The incubation study was carried out at 30 °C and 60% of maximum water holding capacity of both the soils. Degradation of novaluron in both the soils followed first order reaction kinetics at all application rates under non-sterile and sterile conditions. The half-lives of novaluron in non-sterilized soils ranged from 17.0–17.8 days (alluvial soil) and 11.4–12.7 days (coastal saline soil), while the values in case of the sterilized soils were 53.7–59.0 days (alluvial soil) and 28.9–29.8 days (coastal saline soil) respectively. The novaluron degradation patterns were found to be highly influenced by soil types, application rates, and biotic abiotic factors. Abiotic factors strongly influenced novaluron degradation in both the soils. Biotic degradation was higher in alluvial soil compared to the coastal saline soil.  相似文献   

8.
Adenosine triphosphate (ATP), particulate organic carbon (POC), pH, temperature, and salinity associated with the water column of several salt marsh creeks were monitored at 5 stations for 8 months. A gradient in mean salinity of 11.5‰ to 32.7‰ was observed in the creeks. No significant correlations (Pearson’s r) could be found among the variables measured at the station with the highest salinity. ATP and POC were found to be positively correlated at all other stations. Salinity was found to be negatively correlated with both ATP and POC only at a station with the second highest mean salinity (28.8‰) and could account for only 45.7‰ of the variation in ATP. The lack of significant correlations between salinity and ATP as well as the inability of salinity to account for a large portion of the variation in ATP suggested that salinity had little relationship to the level of total microbial mass.  相似文献   

9.
Weathering of ancient organic matter contributes significantly to biogeochemical carbon cycles over geological times. The principle role of microorganisms in this process is well recognized. However, information is lacking on the contribution of individual groups of microorganisms and on the effect of labile carbon sources to the degradation process. Therefore, we investigated the contribution of fungi, Gram-positive and Gram-negative bacteria in the degradation process using a column experiment. Investigations were performed on low metamorphic black slates. All columns contained freshly crushed, sieved (0.63-2 mm), not autoclaved black slates. Two columns were inoculated with the lignite-degrading fungus Schizophyllum commune and received a culture medium containing 13C labeled glucose, two columns received only this culture medium and two control columns received only water.The total mass balance was calculated from all carbon added to the slate and the CO2 and DOC losses. Phospholipid fatty acids (PLFA) were extracted to investigate microbial communities. We used both the compound specific 14C and 13C signal of the PLFA to quantify carbon uptake from black slates and the glucose of the culture medium, respectively.The total carbon loss in these columns exceeded the amount of added carbon by approximately 60%, indicating that black slate carbon has been used. PLFA associated with Gram-positive bacteria dominated the indigenous community and took up 22% of carbon from black slate carbon, whereas PLFA of Gram-negative bacteria used only 8% of carbon from the slates. PLFA of Gram-negative bacteria and fungi were both mostly activated by the glucose addition. The added Schizophyllum did not establish well in the columns and was overgrown by the indigenous microbial community. Our results suggest that especially Gram-positive bacteria are able to live on and degrade black slate material. They also benefit from easy degradable carbon from the nutrient broth. In natural environments priming due to root exudates might consequently enhance weathering.  相似文献   

10.
The potential of various organisms to metabolize organic compounds has been observed to be a potentially effective means in disposing of hazardous and toxic wastes. Phenols and their compounds have long been recognized as one of the most recalcitrant and persistent organic chemicals in the environment. The bioremediation potential of an indigenous Pseudomonas fluorescence was studied in batch culture using synthetic phenol in water in the concentration range of (100–500) mg/L as a model limiting substrate. The effect of initial phenol concentration on the degradation process was investigated. Phenol was completely degraded at different cultivation times for the different initial phenol concentrations. Increasing the initial phenol concentration from 100 mg/L to 500 mg/L increased the lag phase from 0 to 66 h and correspondingly prolonged the degradation process from 84 h to 354 h. There was decrease in biodegradation rate as initial phenol concentration increased. Fitting data into Monod kinetic model showed the inhibition effect of phenol The kinetic parameters have been estimated up to initial phenol concentration of 500 mg/ L. The rsmax decreased and Ks increased with higher concentration of phenol. The rsmaxhas been found to be a strong function of initial phenol concentration. The culture followed substrate inhibition kinetics and the specific phenol consumption rates were fitted to Haldane, Yano and Koga, Aiba et al., Teissier and Webb models. Between the five inhibition models, the Haldane model was found to give the best fit. Therefore, the biokinetic constants estimated using these models showed good potential of the Pseudomonas fluorescence and the possibility of using it in bioremediation of phenol waste effluents.  相似文献   

11.
The potential for Mn oxides to modify the biogeochemical behavior of U during reduction by the subsurface bacterium Shewanella putrefaciens strain CN32 was investigated using synthetic Mn(III/IV) oxides (pyrolusite [β-MnO2], bixbyite [Mn2O3] and K+-birnessite [K4Mn14O27 · 8H2O]). In the absence of bacteria, pyrolusite and bixbyite oxidized biogenic uraninite (UO2[s]) to soluble U(VI) species, with bixbyite being the most rapid oxidant. The Mn(III/IV) oxides lowered the bioreduction rate of U(VI) relative to rates in their absence or in the presence of gibbsite (Al[OH]3) added as a non-redox-reactive surface. Evolved Mn(II) increased with increasing initial U(VI) concentration in the biotic experiments, indicating that valence cycling of U facilitated the reduction of Mn(III/IV). Despite an excess of the Mn oxide, 43 to 100% of the initial U was bioreduced after extended incubation. Analysis of thin sections of bacterial Mn oxide suspensions revealed that the reduced U resided in the periplasmic space of the bacterial cells. However, in the absence of Mn(III/IV) oxides, UO2(s) accumulated as copious fine-grained particles external to the cell. These results indicate that the presence of Mn(III/IV) oxides may impede the biological reduction of U(VI) in subsoils and sediments. However, the accumulation of U(IV) in the cell periplasm may physically protect reduced U from oxidation, promoting at least a temporal state of redox disequilibria.  相似文献   

12.
The origin of the genus Bos is a debated issue. From ∼ 0.5 Ma until historic times, the genus is well known in the Eurasian large mammal assemblages, where it is represented by Bos primigenius. This species has a highly derived cranial anatomy that shows important morphological differences from other Plio-Pleistocene Eurasian genera of the tribe Bovini such as Leptobos, Bison, Proamphibos-Hemibos, and Bubalus. The oldest clear evidence of Bos is the skull fragment ASB-198-1 from the middle Pleistocene (∼ 0.6-0.8 Ma) site of Asbole (Lower Awash Valley, Ethiopia). The first appearance of Bos in Europe is at the site of Venosa-Notarchirico, Italy (∼ 0.5-0.6 Ma). Although the origin of Bos has traditionally been connected with Leptobos and Bison, after a detailed anatomical and morphometric study we propose here a different origin, connecting the middle Pleistocene Eurasian forms of B. primigenius with the African Late Pliocene and early Pleistocene large size member of the tribe Bovini Pelorovis sensu stricto. The dispersal of the Bos lineage in Western Europe during middle Pleistocene times seems to coincide with the arrival of the Acheulean tool technology in this continent.  相似文献   

13.
14.
Different bacterial and fungal strains, isolated from petroleum hydrocarbon-contaminated soil, were tested, in isolation as well as in combination, for their ability to degrade total petroleum hydrocarbon (TPH) in soil samples spiked with crude oil (2, 5 or 10 %, w/w) for 30 days. The selected combination of bacterial and fungal isolates, i.e., Pseudomonas stutzeri BP10 and Aspergillus niger PS9, exhibited the highest efficiency of TPH degradation (46.7 %) in soil spiked with 2 % crude oil under control condition. Further, when this combination was applied under natural condition in soil spiked with 2 % (w/w) crude oil along with inorganic fertilizers (NPK) and different bulking agents such as rice husk, sugarcane, vermicompost or coconut coir, the percent degradation of TPH was found to be maximum (82.3 %) due to the presence of inorganic fertilizers and rice husk as bulking agent. Further, results showed that the presence of NPK and bulking agents induced the activity of degradative enzymes, such as catalase (0.718 m mol H2O2 g?1), laccase (0.77 µmol g?1), dehydrogenase (37.5 µg g?1 h?1), catechol 1, 2 dioxygenase (276.11 µ mol g?1) and catechol 2, 3 dioxygenase (15.15 µ mol g?1) as compared to control (without bioaugmentation). It was inferred that the selected combination microbes along with biostimulants could accentuate the crude oil degradation as evident from the biostimulant-induced enhanced activity of degradative enzymes.  相似文献   

15.
Permian torbanites and Recent coorongite represent fossil algal accumulations, the affinity of which as well as the extent of their biodegradation is not known. Extensive previous research has been carried out on the geochemical constituents of torbanite and coorongite. However, the study of the microbiological components has been somewhat neglected in the past. In the present study an attempt is made at improving the understanding of the nature and origin of these deposits.The major components of coorongite as observed in the present study are a diatomaceous alga and a biodegraded organism of unknown affinity. Transmission electron microscopy (TEM) also revealed a microbial assemblage most probably responsible for the degradation of the primary organic matter. Torbanites from Glen Davis, N.S.W. (TGD-1) and Carnarvon Creek, Queensland (TC-1) revealed an organism of possible cyanobacterial affinity in various stages of biodegradation. TEM studies showed the ultra-structure of the organism as well as microbial components closely resembling cysts of methanogenic bacteria; the last in the biodegradation chain to survive in the highly anoxic environment. Similar ultra-structures have been observed in the Green River shale. Geochemical evidence for the involvement of bacteria in kerogen formation in general and coorongite (Douglas et al., 1969, Geochim. Cosmochim. Acta, v. 3, p. 56–577) in particular has been reported for sometime. Selected geochemical data are reviewed in the present study and linked to the microbial assemblages observed.  相似文献   

16.
微生物降解蒙脱石层间吸附有机质的实验研究   总被引:1,自引:0,他引:1  
近年来,国内外学者意识到,有机质在蒙脱石结构层间的吸附是有机质保存的重要机理之一,然而,目前关于微生物能否降解蒙脱石层间吸附有机质以及降解的程度等尚没有任何实验数据的支撑。本文试图通过人工合成含有层间吸附有机质的蒙脱石,利用海洋和湖泊沉积物中常见的降解有机质的微生物对其进行降解实验,据此探讨有机质的蒙脱石层间吸附在沉积物埋藏过程中对有机质保存的贡献。有机质选择半胱氨酸和甲苯,前者是生物生长所需的一种重要氨基酸,后者大量存在于土壤和沉积物中,多种细菌可以在有碳氢化合物的环境下将其降解。实验菌种选择恶臭假单胞杆菌(Pseudomonas putida)和腐败希瓦氏菌(Shewanella putrefaciens CN32)2种细菌,它们均为海洋和湖泊沉积物中的主导微生物,前者有较强的有机质降解能力,后者为铁的还原菌,厌氧代谢过程中能将蒙脱石结构中的Fe(III)还原为Fe(II)。通过上述不同菌种对蒙脱石层间吸附不同性质有机质的降解实验,结果显示,微生物对蒙脱石层间吸附的有机质的降解方式主要有分泌有机酸直接降解和破坏层间结构释放有机物从而进行降解。代表菌种假单胞菌和希瓦氏菌对半胱氨酸绿脱石及甲苯绿脱石的作用表明,微生物通过分泌有机酸的形式对蒙脱石层间吸附的有机质降解作用很有限,该结构在恒定的有氧和无氧条件下对保存有机质有利;希瓦氏菌在严格无氧条件下通过还原Fe(III)进行代谢,实验表明,无氧条件下,希瓦氏菌可以一定程度破坏矿物结构,释放并消耗有机物,因此,铁还原微生物对蒙脱石层间吸附有机质的保存有一定的影响,但由于微生物对矿物晶体结构的破坏能力有限,故其对层间吸附有机质降解的能力也有限;不同有机物对生物降解过程也有影响,这些影响取决于有机质的特性及有机质与细菌之间的相互作用。绿脱石层间吸附的半胱氨酸对生物生长有利,从而可能促进生物还原Fe(III)作用。相反,甲苯却很明显的抑制了Fe(III)的还原。由此可见,有机质的蒙脱石层间吸附是有机质保存的重要方式之一。  相似文献   

17.
At the Chapopote Knoll in the Southern Gulf of Mexico, deposits of asphalt provide the substrate for a prolific cold seep ecosystem extensively colonized by chemosynthetic communities. This study investigates microbial life and associated biological processes within the asphalts and surrounding oil-impregnated sediments by analysis of intact polar membrane lipids (IPLs), petroleum hydrocarbons and stable carbon isotopic compositions (δ13C) of hydrocarbon gases. Asphalt samples are lightly to heavily biodegraded suggesting that petroleum-derived hydrocarbons serve as substrates for the chemosynthetic communities. Accordingly, detection of bacterial diester and diether phospholipids in asphalt samples containing finely dispersed gas hydrate suggests the presence of hydrocarbon-degrading bacteria. Biological methanogenesis contributes a substantial fraction to the methane captured as hydrate in the shallow asphalt deposits evidenced by significant depletion in 13C relative to background thermogenic methane. In sediments, petroleum migrating from the subsurface stimulates both methanogenesis and methanotrophy at a sulfate-methane transition zone 6-7 m below the seafloor. In this zone, microbial IPLs are dominated by archaeal phosphohydroxyarchaeols and archaeal diglycosidic diethers and tetraethers. Bacterial IPLs dominate surface sediments that are impregnated by severely biodegraded oil. In the sulfate-reduction zone, diagnostic IPLs indicate that sulfate-reducing bacteria (SRB) play an important role in petroleum degradation. A diverse mixture of phosphohydroxyarchaeols and mixed phospho- and diglycosidic archaeal tetraethers in shallow oil-impregnated sediments point to the presence of anaerobic methane-oxidizing ANME-2 and ANME-1 archaea, respectively, or methanogens. Archaeal IPLs increase in relative abundance with increasing sediment depth and decreasing sulfate concentrations, accompanied by a shift of archaeol-based to tetraether-based archaeal IPLs. The latter shift is suggested to be indicative of a community shift from ANME-2 and/or methanogenic archaea in shallower sediments to ANME-1/methanogenic archaea and possibly benthic archaea in deeper sediments.  相似文献   

18.
采煤造成黄河流域一带生态环境问题日趋严重。为了探明采煤扰动对黄河流域一带土壤因子及微生物群落的扰动特征,阐明采煤沉陷边缘区域与未开采区域土壤微生物群落的差异性,以内蒙古上湾煤矿为研究区,选择以沉陷边缘区作为起始区域(HD),向未开采区进行等距取样。选择距沉陷边缘区150(D1)、300(D2)、450(D3)、600(D4)及750 m(D5)作为采样点,测定营养指标、土壤酶及土壤C∶N∶P化学计量特征3种土壤因子和微生物群落特征。结果表明,边缘沉陷区与未开采区土壤因子及微生物多样性的差异主要集中在距边缘沉陷区较近(小于300 m)的未开采区。在靠近边缘沉陷区,全氮、土壤有机质含量以及细菌丰度产生不同程度下降,速效钾、碳氮比(C/N)、蔗糖酶及磷酸酶活性有不同程度上升。群落组成方面,酸杆菌门(Acidobacteria)相对丰度在未开采区随距离呈现先增大后降低趋势,绿弯菌门(Chloroflexi)表现为边缘沉陷区高于未开采区;Phaeosphaeriaceae、毛壳菌科(Chaetomiaceae)相对丰度表现为边缘沉陷区显著高于未开采区。研究发现,边缘沉陷区对未开采区的影响主要集中...  相似文献   

19.
The microbial recalcitrance of char accumulated after vegetation fires was studied using pyrogenic organic material (PyOM) with increasing degrees of charring, produced from rye grass (Lolium perenne) and pine wood (Pinus sylvestris) at 350 °C under oxic conditions. Solid state 13C and 15N nuclear magnetic resonance (NMR) spectroscopy confirmed increasing aromaticity and the formation of heterocyclic N with prolonged charring. After mixing with a mineral soil, the PyOM was aerobically incubated for 48 days at 30 °C. To account for the input of fresh litter after a fire event, unburnt rye grass residue was added as a co-substrate. The grass-derived PyOM showed the greatest extent of C mineralisation. After 48 days incubation, up to 3.2% of the organic C (OC) was converted to CO2. More severe thermal alteration resulted in a decrease in the total C mineralisation to 2.5% of OC. In the pine-derived PyOM, only 0.7% and 0.5% of the initial C were mineralised. The co-substrate additions did not enhance PyOM mineralisation during initial degradation. 13C NMR spectroscopic analysis indicated structural changes during microbial degradation of the PyOM. Concomitant with a decrease in O-alkyl/alkyl-C, carboxyl/carbonyl C content increased, pointing to oxidation. Only the strongly thermally altered pine PyOM showed a reduction in aromaticity. The small C losses during the experiment indicated conversion of aryl C into other C groups. As revealed by the increase in carboxyl/carbonyl C, this conversion must have included the opening and partial oxidation of aromatic ring structures. Our study demonstrates that plant PyOM can be microbially attacked and mineralised at rates comparable to those for soil organic matter (SOM), so its role as a highly refractory SOM constituent may need re-evaluation.  相似文献   

20.
Experimental observations are reported of weakening of sediment-like aggregates by addition of hard particles. Sieved mixtures of calcite and halite grains are experimentally compacted in drained pressure cells in the presence of a saturated aqueous solution. The individual halite grains deform easily by pressure solution creep whereas calcite grains act as hard objects and resist compaction. The fastest rate of compaction of the mixed aggregate is not obtained for a 100% halite aggregate but for a content of halite grains between 45% and 75%. We propose that this unusual compaction behavior reflects the competition between two mechanisms at the grain scale: intergranular pressure solution at grain contacts and grain boundary healing between halite grains that prevent further compaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号