首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion-microprobe was used to measure Li abundances and isotopic compositions in pyroxenes from three Martian meteorites belonging to the nakhlite family. The profiles performed across augite crystals from Northwest Africa 817 show a large isotopic zoning from crystal cores (δ7Li ∼ 0‰) to rims (δ7Li ∼ +20‰) while Li abundances are almost constant (∼9.2 μg/g). Unlike NWA 817, the pyroxene studied in the Miller Range 03346 nakhlite shows a zoning in Li abundance, with concentrations increasing from ∼2.5 μg/g in the core to ∼9 μg/g in the rim. The augite rim (δ7Li = +7‰) is slightly enriched in 7Li with regard to the core (δ7Li = +4‰), but most of the isotopic variations observed occur at an intermediate position along the profile, where δ7Li falls down to ∼−11‰. In the case of Nakhla, Li concentrations in augite increase from cores (∼3.5 μg/g) to rims (∼6.5 μg/g), while the δ7Li variation is restricted (i.e., between δ7Li = +6.0 and +12.6‰). For the three meteorites the Li abundances were also measured in the groundmass, which was found to be enriched in lithium (∼10 μg/g). Conventional magmatic and post-magmatic processes such as alteration and fractional crystallization, fail to explain the dataset obtained on nakhlites. Degassing processes, which were previously proposed to explain the Li distribution in shergottite crystals, cannot result in the strong decoupling between Li abundances and isotopic composition observed in nakhlites. We suggest that the original magmatic Li distributions (concentrations and isotopic compositions) in nakhlites have been modified by diffusion of Li from the Li-rich groundmass towards the pyroxene crystals during sub-solidus cooling. Diffusion appears to have been efficient for NWA 817 and MIL 03346 but, apparently, did not produce a significant migration of Li in Nakhla, possibly because of the lower abundance of groundmass in the latter. Diffusion induced Li redistributions may also affect terrestrial porphyric rocks but very specific cooling rates are required to quench the diffusion profiles as observed in two of the present nakhlites.  相似文献   

2.
Lithium abundances and isotopic compositions were measured by ion microprobe in individual grains of pyroxene, and in a few maskelynites and Ca-phosphates grains, from the Martian meteorite Northwest Africa 480 (NWA 480).In pyroxenes Li abundances are nearly constant from core to rim with concentrations ranging between 3 and 4 μg/g. In contrast, a significant isotopic zoning is observed with δ7Li values increasing within single crystals from ∼ −17‰ in the core to ∼ +10‰ in the rim, most of the variability being observed in the core. Plagioclase (now maskelynite) and phosphate crystals, which co-crystallized with the pyroxene rims, display similar δ7Li values. Because of the incompatible behavior of Li, the present constancy of Li concentrations within zoned pyroxenes rules out any simple crystallization model in a closed system for Li. The large Li isotopic variations observed within pyroxenes support this conclusion. There is no evidence in support of secondary alteration of NWA 480 to explain the Li isotopic variations, which thus most likely reflect magmatic processes on Mars. Degassing might explain the Li systematics observed in NWA 480 pyroxenes. Because Li has a strong affinity with water-rich fluids, a significant loss of Li from NWA 480 parental melt can happen upon melt emplacement and cooling. Such a Li loss could compensate the effect of crystal fractionation and thus help to maintain constant the Li content of the melt. Li isotopic fractionation is anticipated to accompany this process, 7Li being depleted relative to 6Li in the volatile phase. The magnitude of the isotopic change of the fractionating melts is difficult to predict because it depends on the value of the Li isotopic fractionation and on the amount of Li loss, but at first glance it seems consistent with the increase of δ7Li values observed in NWA 480 pyroxenes with increasing fractionation. The present data suggest that degassing prevailed not only during the crystallization of shergottites like Zagami and Shergotty, but also during the crystallization of the other types of basaltic shergottites.  相似文献   

3.
Li isotope fractionation in peridotites and mafic melts   总被引:4,自引:0,他引:4  
We have measured the Li isotope ratios of a range of co-existing phases from peridotites and mafic magmas to investigate high-temperature fractionations of 7Li/6Li. The Li isotopic compositions of seven mantle peridotites, reconstructed from analyses of mineral separates, show little variation (δ7Li 3.2-4.9‰) despite a wide range in fertility and radiogenic isotopic compositions. The most fertile samples yield a best estimate of δ7Li ∼ 3.5‰ for the upper mantle. Bulk analyses of olivine separates from the xenoliths are typically ∼1.5‰ isotopically lighter than co-existing orthopyroxenes, suggestive of a small, high-temperature equilibrium isotope fractionation. On the other hand, bulk analyses of olivine phenocrysts and their host melts are isotopically indistinguishable. Given these observations, equilibrium mantle melting should generate melts with δ7Li little different from their sources (<0.5‰ lighter). In contrast to olivine and orthopyroxene, that dominate peridotite Li budgets, bulk clinopyroxene analyses are highly variable (δ7Li = 6.6‰ to −8.1‰). Phlogopite separated from a modally metasomatised xenolith yielded an extreme δ7Li of −18.9‰. Such large Li isotope variability is indicative of isotopic disequilibrium. This inference is strongly reinforced by in situ, secondary ion mass-spectrometry analyses which show Li isotope zonation in peridotite minerals. The simplest zoning patterns show isotopically light rims. This style of zoning is also observed in the phenocrysts of holocrystalline Hawaiian lavas. More dramatically, a single orthopyroxene crystal from a San Carlos xenolith shows a W-shaped Li isotope profile with a 40‰ range in δ7Li, close to the isotope variability seen in all terrestrial whole rock analyses. We attribute Li isotope zonation in mineral phases to diffusive fractionation of Li isotopes, within mineral phases and along melt pathways that pervade xenoliths. Given the high diffusivity of Li, the Li isotope profiles we observe can persist, at most, only a few years at magmatic temperatures. Our results thus highlight the potential of Li isotopes as a high-resolution geospeedometer of the final phases of magmatic activity and cooling.  相似文献   

4.
Li concentrations and isotopic compositions of coexisting minerals (ol, opx, and cpx) from peridotite xenoliths entrained in the Hannuoba Tertiary basalts, North China Craton, provide insight into Li isotopic fractionation between mantle minerals during melt-rock interaction in the considerably thinned lithospheric mantle. Bulk analyses of mineral separates show significant enrichment of Li in cpx (2.4-3.6 ppm) relative to olivine (1.2-1.8 ppm), indicating that these peridotites have been affected by mantle metasomatism with mafic silicate melts. Bulk olivine separates (δ7Li ∼ +3.3‰ to +6.4‰) are isotopically heavier than coexisting pyroxenes (δ7Li ∼ −3.3‰ to −8.2‰ in cpx, and −4.0‰ to −6.7‰ in opx). Such large variation suggests Li elemental and isotopic disequilibrium. This conclusion is supported by results from in situ SIMS analyses of mineral grains where significant Li elemental and isotopic zonations exist. The olivine and opx have lower Li concentrations and heavier Li isotopes in the rims than in the cores. This reverse correlation of δ7Li with Li concentrations indicates diffusive fractionation of Li isotopes. However, the zoning patterns in coexisting cpx show isotopically heavier rims with higher Li abundances. This positive correlation between δ7Li and Li concentrations suggests a melt mixing trend. We attribute Li concentration and isotope zonation in minerals to the effects of two-stage diffusive fractionation coupled with melt-rock interaction. The earliest melts may have been derived from the subducted oceanic slab with low δ7Li values produced by isotopic fractionation during the dehydration of the seawater-altered slab. Melts at later stages were derived from the asthenosphere and interacted with the peridotites, producing the Li elemental and isotopic zoning in mineral grains. These data thus provide evidence for multiple-stage peridotite-melt interaction in the lithospheric mantle beneath the northern North China Craton.  相似文献   

5.
Despite the occurrence of highly variable lithium (Li) elemental distribution and isotopic fractionation in mantle mineral, the mechanism of Li heterogeneity and fractionation remains a controversial issue. We measured Li contents and isotopic compositions of olivine and clinopyroxene xenocrysts and phenocrysts from kamafugite host lavas, as well as minerals in melt pockets occurring as metasomatic products in peridotite xenoliths from the Western Qinling, central China. The olivine xenocrysts in the kamafugites show compositional zonation. The cores have high Mg# (100 × Mg/(Mg+Fe); 91.0–92.2) and Li abundances (5.63–21.7 ppm), low CaO contents (≤0.12 wt%) and low δ7Li values (−39.6 to −6.76‰), which overlap with the compositional ranges of the olivines in the melt pockets as well as those in peridotite xenoliths. The rims of the olivine xenocrysts display relatively low Mg# (85.9–88.2), high CaO contents (0.19–0.38 wt%) and high δ7Li values (18.3–26.9‰), which are comparable to the olivine phenocrysts (Mg#: 86.4–87.1; CaO: 0.20–0.28 wt%; Li: 12.4–36.8 ppm; δ7Li: 18.1–26.0‰) and the silicate-melt metasomatized olivines. The clinopyroxene phenocrysts and clinopyroxenes in the melt pockets have no distinct characteristics with respect to the Li abundances and δ7Li values, but show higher and lower CaO contents, respectively, than the clinopyroxenes from silicate and carbonatite metasomatized samples. These features indicate that Li concentration and isotopic signatures of the cores of the xenocrysts recorded carbonatite melt-peridotite reaction (carbonatite metasomatism) at mantle depth, and the variations in the rims probably resulted from xenocryst–host magma interaction during ascent. Our results reveal that the interaction with carbonatite and silicate melts gave rise to an increase in Li abundance in minerals of peridotite xenoliths at mantle depth or during transportation. In terms of δ7Li, the carbonatite and silicate melts produced remarkably contrasting δ7Li variations in olivine. Based on the systematic variations of Li abundances and Li isotopes in olivines, we suggest that the δ7Li value of olivine is a more important indicator than that of clinopyroxene in discriminating carbonatite and silicate melt interaction agents with peridotites.  相似文献   

6.
Li behaviour and distribution in the mantle were investigated by ion microprobe in situ measurements on co-existing olivine (ol), orthopyroxene (opx), clinopyroxene (cpx) and amphibole (amp) in xenoliths from the French Massif Central. The fertile spinel lherzolites of this study record increasing degrees of mantle metasomatism, from unmetasomatised anhydrous samples through cryptically metasomatised samples to highly metasomatised amphibole-rich samples. In anhydrous lherzolites, Li is preferentially incorporated into olivine (1.1-1.4 ppm, average values) compared to pyroxenes (0.2-0.9 ppm). The hydrous samples clearly show enrichment of Li in ol (1.5-5.0 ppm), opx (1.1-2.4 ppm) and cpx (2.4-5.4 ppm), while amphibole incorporates less Li than the co-existing phases (0.8-1.3 ppm). Average δ7Li values range from +7.6 to +14.5‰ in ol, from 5.1 to +13.7‰ in opx and from 8.8 to +10.3‰ in cpx from the anhydrous lherzolites. A layered peridotite sample (Sdi) shows higher Li content in all phases, with lighter isotopic composition in opx and cpx (−0.6 and −2‰ average δ7Li values, respectively). In the hydrous lherzolites average δ7Li values both overlap and extend beyond these ranges in ol (up to 17.5 ‰) and in opx (up to 22.9‰), and vary widely in cpx (−2.7 to +9.7‰). Low δ7Li values are observed in some opx (−10.4‰) and cpx (−13‰) from sample Sdi, and in cpx from three hydrous samples (from −9.7 to −5.3‰). The different anhydrous phases from the hydrous samples show large intra-grain variations in Li isotopic ratios (e.g., up to 18‰) compared to the same phases from the anhydrous samples (mostly less than 6‰), excepting sample Sdi which has up to 20.4‰ variation in cpx. Similar to the anhydrous silicates, amphiboles show a wide variation of δ7Li values on the intra-grain scale (2-27‰). These variations are interpreted to result from fractionation processes during metasomatism by a silicate melt undergoing compositional changes as it percolates through and reacts with the peridotite phases. Thus Li abundances and isotopic in situ measurements are useful for tracing metasomatic processes but the heterogeneities observed in the samples preclude any identification of a specific mantle source by its Li signature.  相似文献   

7.
The Li isotopic composition of the upper continental crust is estimated from the analyses of well-characterized shales, loess, granites and upper crustal composites (51 samples in total) from North America, China, Europe, Australia and New Zealand. Correlations between Li, δ7Li, and chemical weathering (as measured by the Chemical Index of Alteration (CIA)), and δ7Li and the clay content of shales (as measured by Al2O3/SiO2), reflect uptake of heavy Li from the hydrosphere by clays. S-type granites from the Lachlan fold belt (-1.1 to -1.4‰) have δ7Li indistinguishable from their associated sedimentary rocks (-0.7 to 1.2‰), and show no variation in δ7Li throughout the differentiation sequence, suggesting that isotopic fractionation during crustal anatexis and subsequent differentiation is less than analytical uncertainty (±1‰, 2σ). The isotopically light compositions for both I- and S-type granites from the Lachlan fold belt (-2.5 to + 2.7 ‰) and loess from around the world (-3.1 to + 4.5‰) reflect the influence of weathering in their source regions. Collectively, these lithologies possess a limited range of Li isotopic compositions (δ7Li of −5‰ to + 5‰), with an average (δ7Li of 0 ± 2‰ at 1σ) that is representative of the average upper continental crust. Thus, the Li isotopic composition of the upper continental crust is lighter than the average upper mantle (δ7Li of + 4 ± 2‰), reflecting the influence of weathering on the upper crustal composition. The concentration of Li in the upper continental crust is estimated to be 35 ± 11 ppm (2σ), based on the average loess composition and correlations between insoluble elements (Ti, Nb, Ta, Ga and Al2O3, Th and HREE) and Li in shales. This value is somewhat higher than previous estimates (∼20 ppm), but is probably indistinguishable when uncertainties in the latter are accounted for.  相似文献   

8.
Chemical and isotopic data for 23 geothermal water samples collected in New Zealand within the Taupo Volcanic Zone (TVZ) are reported. Major and trace elements including Li, B and Sr and their isotopic compositions (δ7Li, δ11B, 87Sr/86Sr) were determined in high temperature geothermal waters collected from deep boreholes in different geothermal fields (Ohaaki, Wairakei, Mokai, Kawerau and Rotokawa geothermal systems). Lithium concentrations are high (from 4.5 to 19.9 mg/L) and Li isotopic compositions (δ7Li) are homogeneous, ranging between −0.5‰ and +1.4‰. In particular, it is noteworthy that, except for the samples from the Kawerau geothermal field having slightly higher δ7Li values (+1.4%), the other geothermal waters have a near constant δ7Li signature around a mean value of 0‰ ± 0.6 (2σ, n = 21). Boron concentrations are also high and relatively homogeneous for the geothermal samples, falling between 17.5 and 82.1 mg/L. Boron isotopic compositions (δ11B) are all negative, and display a range between −6.7‰ and −1.9‰. These B isotope compositions are in agreement with those of the Ngawha geothermal field in New Zealand. Lithium and B isotope signatures are in a good agreement with a fluid signature mainly derived from water/rock interaction involving magmatic rocks with no evidence of seawater input. On the other hand, Sr concentrations are lower and more heterogeneous and fall between 2 and 165 μg/L. The 87Sr/86Sr ratios range from 0.70549 to 0.70961. These Sr isotope compositions overlap those of the Rotorua geothermal field in New Zealand, confirming that some geothermal waters (with more radiogenic Sr) have interacted with bedrocks from the metasedimentary basement. Each of these isotope systems on their own reveals important information about particular aspects of either water source or water/rock interaction processes, but, considered together, provide a more integrated understanding of the geothermal systems from the TVZ in New Zealand.  相似文献   

9.
This work considers petrogenesis of the largest Holocene basaltic fissure eruptions of Iceland, which are also the largest in the world: Laki (1783-84 AD, 15 km3), Eldgjá (934 AD, 18 km3), Veidivötn (900, 1480 AD, multiple eruptions, >2 km3), Núpahraun (ca. 4000 BP, >1 km3) and Thjórsárhraun (ca 8000 BP, >20 km3). We present oxygen isotope laser fluorination analyses of 55 individual and bulk olivine crystals, coexisting individual and bulk plagioclase phenocrysts, and their host basaltic glasses with average precision of better than 0.1‰ (1SD). We also report O isotope analyses of cores and rims of 61 olivine crystals by SIMS with average precision on single spots of 0.24‰ (1SD) in 13 samples coupled with electron microprobe data for major and trace elements in these olivines. Within each individual sample, we have found that basaltic glass is relatively homogeneous with respect to oxygen isotopes, plagioclase phenocrysts exhibit crystal to crystal variability, while individual olivines span from the values in equilibrium with the low-δ18O matrix glass to those being three permil higher in δ18O than the equilibrium. Olivine cores with maximum value of 5.2‰ are found in many of these basalts and suggest that the initial magma was equilibrated with normal-δ18O mantle. No olivines or their intracrystalline domains are found with bulk or spot value higher than those found in MORB olivines. The δ18O variability of 0.3-3‰ exists for olivine grains from different lavas, and variable core-to-rim oxygen isotopic zoning is present in selected olivine grains. Many olivines in the same sample are not zoned, while a few grains are zoned with respect to oxygen isotopes and exhibit small core-to-core variations in Fe-Mg, Ni, Mn, Ca. Grains that are zoned in both Mg# and δ18O exhibit positive correlation of these two parameters. Electron microprobe analysis shows that most olivines equilibrated with the transporting melt, and thin Fe-richer rim is present around many grains, regardless of the degree of olivine-melt oxygen isotope disequilibrium.The preservation of isotopic and compositional zoning in selected grains, and subtle to severe Δ18O (melt-olivine) and Δ18O (plagioclase-olivine) disequilibria suggests rather short crystal residence times of years to centuries. Synglacially-altered upper crustal, tufaceous hyaloclastites of Pleistocene age serve as a viable source for low-δ18O values in Holocene basalts through assimilation, mechanical and thermal erosion, and devolatilization of stoped blocks. Cumulates formed in response to cooling during assimilation, and xenocrysts derived from hyaloclastites, contribute to the diverse δ18O crystalline cargo. The magma plumbing systems under each fissure are likely to include a network of interconnected dikes and sills with high magma flow rates that contribute to the efficacy of magmatic erosion of large quantities (10-60% mass) of hyaloclastites required by isotopic mass balance.Olivine diversity and the pervasive lack of phenocryst-melt oxygen isotopic equilibrium suggest that a common approach of analyzing bulk olivine for oxygen isotopes, as a proxy for the basaltic melt or to infer mantle δ18O value, needs to proceed with caution. The best approach is to analyze olivine crystals individually and demonstrate their equilibrium with matrix.  相似文献   

10.
Sulfur isotopic compositions were determined by ion microprobe for 36 spots on anhydrite crystals in trachyandesitic pumices erupted from El Chichón Volcano in 1982. Individual anhydrite crystals are homogeneous in δ34S, within the ±1‰ (2σ) uncertainty of the method, but crystal-to-crystal variations are large (+2.5 to +10.9‰). The mean δ34S for anhydrite (+6.4 ± 2.1‰, 1σ) is significantly lower than earlier results for bulk anhydrite separates (+9.0 to +9.2‰). The difference between the mean δ34S values in these two populations may reflect a grain-size effect, with heavier sulfur concentrated in smaller anhydrite crystals, few of which were analyzed by ion microprobe. Variations in δ34S show no correlation with complex textures in anhydrite revealed by cathodoluminescence color. Ion-microprobe analyses of δ34S were also obtained on six ovoid-shaped inclusions of pyrrhotite, chalcopyrite, and/or intermediate sulfide solid solution hosted by silicate or oxide crystals, interpreted to be magmatic (δ34S = −0.1 to +2.7‰; mean +0.7‰), and on four irregularly shaped multiphase sulfide fragments in the matrix, interpreted as xenocrystic, which range widely in δ34S (−3.7 to +5.5‰). We evaluate four different mixing scenarios involving (1) magmatic anhydrite and sedimentary sulfate, (2) magmatic anhydrite and hydrothermal anhydrite, and anhydrite and coexisting sulfide crystals precipitated in different domains of a common magma reservoir that were affected by (3) different degrees of degassing or (4) different degrees of crustal sulfur contamination. The model involving physical contamination of sedimentary sulfate is considered untenable. The other three models are considered to be viable, but none of them can explain all observations. The results of this study and other recent investigations prompt a re-evaluation of the sulfur budget for the 1982 El Chichón eruption. We estimate that 2.2 × 1013 g of S was emitted, and that 58 wt.% of the sulfur was present as anhydrite prior to eruption, with the remainder in a vapor phase, with H2S/SO2 ≈ 9. The bulk magmatic δ34S value for the 1982 El Chichón trachyandesite is estimated as +4.1 to +5.8‰, typical of the relatively heavy sulfur isotopic compositions that characterize subduction-related magmas.  相似文献   

11.
Large, correlated, mass-dependent enrichments in the heavier isotopes of O, Cr, Fe, and Ni are observed in type-I (metal/metal oxide) cosmic spherules collected from the deep sea. Limited intraparticle variability of oxygen isotope abundances, typically <5‰ in δ18O, indicates good mixing of the melts and supports the application of the Rayleigh equation for the calculation of fractional evaporative losses during atmospheric entry. Fractional losses for oxygen evaporation from wüstite, assuming a starting isotopic composition equal to that of air (δ18O = 23.5‰; δ17O = 11.8‰), are in the range 55%-77%, and are systematically smaller than evaporative losses calculated for Fe (69%-85%), Cr (81%-95%), and especially Ni (45%-99%). However, as δ18O values increase, fractional losses for oxygen approach those of Fe, Cr, and Ni indicating a shift in the evaporating species from metallic to oxidized forms as the spherules are progressively oxidized during entry heating. The observed unequal fractional losses of O and Fe can be reconciled by allowing for a kinetic isotope mass-dependent fractionation of atmospheric oxygen during the oxidation process and/or that some metallic Fe may have undergone Rayleigh evaporation before oxidation began.In situ measurements of oxygen isotopic abundances were also performed in 14 type-S (silicate) cosmic spherules, 13 from the Antarctic ice and one from the deep sea. Additional bulk Fe and Cr isotopic abundances were determined for two type-S deep-sea spherules. The isotopic fractionation of Cr isotopes suggest appreciable evaporative loss of Cr, perhaps as a sulfide. The oxygen isotopic compositions for the type-S spherules range from δ18O = −2‰ to + 27‰. The intraspherule isotopic variations are typically small, ∼5% relative, except for the less-heated porphyritic spherules which have preserved large isotopic heterogeneities in at least one case. A plot of δ17O vs. δ18O values for these spherules defines a broad parallelogram bounded at higher values of δ17O by the terrestrial fractionation line, and at lower values of δ17O by a line parallel to it and anchored near the isotopic composition of δ18O = −2.5‰ and δ17O = −5‰. Lack of independent evidence for substantial evaporative losses suggests that much of this variation reflects the starting isotopic composition of the precursor materials, which likely resembled CO, CM, or CI chondrites. However, the enrichments in heavy isotopes indicate that some mixing with atmospheric oxygen was probably involved during atmospheric entry for some of the spherules. Isotopic fractionation due to evaporation of incoming grain is not required to explain most of the oxygen isotopic data for type-S spherules. However spherules with barred olivine textures that are thought to have experienced a more intense heating than the porphyritic ones might have undergone some distillation. Two cosmic spherules, one classified as a radial pyroxene type and the other showing a glassy texture, show unfractionated oxygen isotopic abundances. They are probably chondrule fragments that survived atmospheric entry unmelted.Possible reasons type-I spherules show larger degrees of isotopic fractionation than type-S spherules include: a) the short duration of the heating pulse associated with the high volatile content of the type-S spherule precursors compared to type-I spherules; b) higher evaporation temperatures for at least a refractory portion of the silicates compared to that of iron metal or oxide; c) lower duration of heating of type-S spherules compared to type-I spherules as a consequence of their lower densities.  相似文献   

12.
Sulfur isotope compositions of pumice and adsorbed volatiles on ash from the first historical eruption of Anatahan volcano (Mariana arc) are presented in order to constrain the sources of sulfur erupted during the period 10-21 May, 2003. The isotopic composition of S extracted from erupted pumice has a narrow range, from δ34SV-CDT +2.6‰ to +3.2‰, while the composition of sulfur adsorbed onto ash has a larger range (+2.8‰ to +5.3‰). Fractionation modeling for closed and open system scenarios suggests that degassing of SO2 raised the δ34SV-CDT value of S dissolved in the melt from an initial composition of between +1.6‰ and +2.6‰ for closed-system degassing, or between −0.5‰ and +1.5‰ for open-system degassing, however closed-system degassing is the preferred model. The calculated values for the initial composition of the magma represent a MORB-like (δ34SV-CDT ∼ 0‰) mantle source with limited contamination by subducted seawater sulfate (δ34SV-CDT +21‰). Modeling also suggests that the δ34SV-CDT value of SO2 gas in closed-system equilibrium with the degassed magma was between +0.9‰ and +2.5‰. The δ34SV-CDT value of sulfate adsorbed onto ash in the eruption plume (+2.8‰ to +5.1‰) is consistent with sulfate formation by oxidation of magmatic SO2 in the eruption column. The sulfur isotope composition of sulfate adsorbed to ash changes from lower δ34S values for ash erupted early in the eruption to higher δ34S values for ash erupted later in the eruption. We interpret the temporal/stratigraphic change in sulfate isotopic composition to primarily reflect a change in the isotopic composition of magmatic SO2 released from the progressively degassing magma and is attributed to the expulsion of an accumulated gas phase at the beginning of the eruption. More efficient oxidation of magmatic SO2 gas to sulfate in the early water-rich eruption plume probably contributed to the change in S isotope compositions observed in the ash leachates.  相似文献   

13.
We report Lithium (Li) concentrations and isotopic compositions for co-existing olivine, orthopyroxene (opx), and clinopyroxene (cpx) mineral separates from depleted and metasomatised peridotite xenoliths hosted by basaltic lavas from northwestern Ethiopian plateau (Gundeweyn area). The peridotites contain five lherzolites and one harzburgite and are variably depleted and enriched in LREE relative to HREE. In both depleted and enriched lherzolites, Li is preferentially incorporated into olivine (2.4-3.3 ppm) compared to opx (1.4-2.1 ppm) and cpx (1.4-2.0 ppm) whereas the Li contents of olivines (5.4 ppm) from an enriched harzburgiteare higher than those of lherzolites. Olivines from the samples show higher Li abundances than normal mantle olivines (1.6-1.9 ppm) indicating the occurrence of Li enrichments through melt-preroditite interaction. The average δ7 Li values range from +2.2 to +6.0‰ in olivine, from -0.1 to +2.0‰ in opx and from -4.4 to -0.9‰ in cpx from the lherzolites. The Li isotopic composition (3.5‰) of olivines from harzburgite fall within the range of olivine from lherzolites but the opxs show low in δ7Li (-2.0‰). Overall Li isotopic compositions of olivines from the peridotites fall within the range of normal mantle olivine, δ7Li values of ~+4±2‰ within uncertainty, reflecting metasomatism (enrichment) of the peridotites by isotopically heavy Li-rich asthenospheric melt. Li isotope zonation is also observed in most peridotite minerals. Majority of olivine grains display isotopically heavy cores and light rims and the reverse case is observed for some olivine grains. Orthopyroxene and clinopyroxene grains show irregular distribution in δ7Li. These features of Li isotopic compositions within and between grains in the samples reflect the effect of diffusion-driven isotopic fractionation during meltperidotite interaction and cooling processes.  相似文献   

14.
The lunar meteorite Northwest Africa (NWA) 032 is a low-Ti basalt that has incompatible-element abundances and Th/Sm ratios characteristic of the involvement of late stage magma ocean crystallization products (urKREEP) in its petrogenesis. This sample is very fine-grained and contains terrestrial weather products. A progressive leaching procedure was therefore developed and applied to magnetic separates and whole rock fractions to obtain Rb-Sr and Sm-Nd ages. Although many of the leachates, as well as the unleached mineral and whole rock fractions contain terrestrial alteration products, selected residue fractions yield concordant Rb-Sr and Sm-Nd ages. Rubidium-Sr isotopic analyses yield an age of 2947 ± 16 Ma with an initial 87Sr/86Sr of 0.700057 ± 17. These characteristics indicate NWA 032 is derived from a source region with an 87Rb/86Sr ratio of 0.044 ± 0.001. This value is higher than all but those determined for KREEP basalts, and suggests that NWA 032 is derived from a source region that has higher incompatible-element abundances than other low-Ti basalts. Samarium-neodymium isotopic analysis yield a concordant age of 2931 ± 92 Ma and an initial εNd of +9.71 ± 0.74 corresponding to a source region with 147Sm/144Nd ratio of 0.246 ± 0.004. The initial Nd isotopic composition stands in contrast to the initial Sr isotopic composition by requiring NWA 032 to be derived from a source with lower incompatible-element abundances than most low-Ti basalts. The source of NWA 032 is therefore unlike those of other lunar basalts.Modeling of magma ocean cumulate formation demonstrates that unlike other low-Ti basalt source regions the NWA 032 source is a mixture of olivine, pigeonite, and clinopyroxene bearing cumulates and only a small amount of urKREEP. Furthermore, unlike other mare basalt sources, the NWA 032 source does not contain appreciable quantities of plagioclase. Partial melting models demonstrate that the incompatible-element characteristics of the NWA 032 result from formation by smaller degrees of partial melting than other mare basalts. Thus, the incompatible-element geochemical signature that is observed in NWA 032 appears to reflect the combined effects of generation from an unusual plagioclase-free incompatible-element-depleted source region by very small degrees of partial melting. This study demonstrates that both the presence of urKREEP in the source region and small degrees of partial melting generate magmas with similar, but not identical, incompatible-element characteristics. In addition, it underscores the fact that there is significantly more geochemical diversity on the Moon than is represented by samples collected by the American and Soviet lunar missions.  相似文献   

15.
We present whole rock Li and Mg isotope analyses of 33 ultramafic xenoliths from the terrestrial mantle, which we compare with analyses of 30 (mostly chondritic) meteorites. The accuracy of our new Mg isotope ratio measurement protocol is substantiated by a combination of standard addition experiments, the absence of mass independent effects in terrestrial samples and our obtaining identical values for rock standards using two different separation chemistries and three different mass-spectrometric introduction systems. Carbonaceous, ordinary and enstatite chondrites have irresolvable mean stable Mg isotopic compositions (δ25Mg = −0.14 ± 0.06; δ26Mg = −0.27 ± 0.12‰, 2SD), but our enstatite chondrite samples have lighter δ7Li (by up to ∼3‰) than our mean carbonaceous and ordinary chondrites (3.0 ± 1.5‰, 2SD), possibly as a result of spallation in the early solar system. Measurements of equilibrated, fertile peridotites give mean values of δ7Li = 3.5 ± 0.5‰, δ25Mg = −0.10 ± 0.03‰ and δ26Mg = −0.21 ± 0.07‰. We believe these values provide a useful estimate of the primitive mantle and they are within error of our average of bulk carbonaceous and ordinary chondrites. A fuller range of fresh, terrestrial, ultramafic samples, covering a variety of geological histories, show a broad positive correlation between bulk δ7Li and δ26Mg, which vary from −3.7‰ to +14.5‰, and −0.36‰ to + 0.06‰, respectively. Values of δ7Li and δ26Mg lower than our estimate of primitive mantle are strongly linked to kinetic isotope fractionation, occurring during transport of the mantle xenoliths. We suggest Mg and Li diffusion into the xenoliths is coupled to H loss from nominally anhydrous minerals following degassing. Diffusion models suggest that the co-variation of Mg and Li isotopes requires comparable diffusivities of Li and Mg in olivine. The isotopically lightest samples require ∼5-10 years of diffusive ingress, which we interpret as a time since volatile loss in the host magma. Xenoliths erupted in pyroclastic flows appear to have retained their mantle isotope ratios, likely as a result of little prior degassing in these explosive events. High δ7Li, coupled with high [Li], in rapidly cooled arc peridotites may indicate that these samples represent fragments of mantle wedge that has been metasomatised by heavy, slab-derived fluids. If such material is typically stirred back into the convecting mantle, it may account for the heavy δ7Li seen in some oceanic basalts.  相似文献   

16.
Zoning patterns of light lithophile elements (the LLE: Li, Be, and B) in pyroxenes of some Martian basaltic meteorites have been used to suggest that the parent basalts were saturated in water and exsolved an aqueous fluid phase. Here, we examine LLE zoning in the augites of a quickly cooled Martian basalt that was not water-saturated—the Northwest Africa (NWA) 817 nakhlite. Analyses for LLE were by secondary ion mass spectrometry (SIMS), supported by EMP analyses of major and minor elements. In NWA 817, zoning of Be and B is consistent with igneous fractionations while Li abundances are effectively constant across wide ranges in abundance of other incompatible elements (Be, B, Ti, and Fe*). The lack of strong zoning in Li can be ascribed to intracrystalline diffusion, despite the rapid cooling of NWA 817. Most other nakhlites, notably Nakhla and Lafayette, cooled more slowly than did NWA 817 [Treiman, A.H., 2005. The nakhlite Martian meteorites: augite-rich igneous rock from Mars. Chem. Erde65, 203-270]. In them Li abundances are constant across augite, as are abundances of other elements. In Nakhla pyroxenes, all the LLE have effectively constant abundances across significant ranges in Fe* and Ti abundance. Lafayette is more equilibrated still, and shows constant abundances of LLE and nearly constant Fe*. A pyroxene in the NWA480 shergottite has constant Li abundances, and was interpreted to represent mineral fractionation coupled with exsolution of aqueous fluid. A simple quantitative model of this process requires that the partitioning of Li between basalt and aqueous fluid, LiDaq/bas, be 15 times larger than its experimentally determined value. Thus, its seems unlikely that the Li zoning pattern in NWA480 augite represents exsolution of aqueous fluid. Late igneous or sub-solidus diffusion seems more likely as is suggested by Li isotopic studies [Beck, P., Chaussidon, M., Barrat, J.-A., Gillet, Ph., Bohn, M., 2005. An ion-microprobe study of lithium isotopes behavior in nakhlites. Meteorit. Planet. Sci.40, Abstract #5118; Beck, P., Chaussidon, M., Barrat, J.-A., Gillet, Ph., Bohn, M., 2006. Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochim. Cosmochim. Acta70, in press]. Pyroxenes of the Shergotty and Zagami meteorites have nearly constant abundances of B, and Li that decreases core-to-rim. Applying the quantitative model to the constant B in these pyroxenes requires that BDaq/bas be 25 times larger than experimentally constrained values. Li abundances in pigeonite can be fit by the model of crystal fractionation and fluid loss, but only if LiDaq/bas is 30 times the experimentally constrained value. The Li abundance pattern in augite cannot be modeled by simple fractionation, suggesting some strong crystal-composition effects. Thus, Li and B distributions in Shergotty and Zagami pyroxenes cannot be explained by igneous fractionation and exsolution of aqueous vapor. Intracrystalline diffusion, complete for B and incomplete for Li, seems more consistent with the observed zoning patterns.  相似文献   

17.
In the present work, the first results are reported for both Li and B isotope ratios in rainwater samples collected over a long time period (i.e. monthly rainfall events over 1 a) at a national scale (from coastal and inland locations). In addition, the stable isotopes of the water molecule (δD and δ18O) are also reported here for the same locations so that the Li and B isotope data can be discussed in the same context. The range of Li and B isotopic variations in these rainwaters were measured to enable the determination of the origin of these elements in rainwaters and the characterization of both the seasonal and spatio-temporal effects for δ7Li and δ11B signatures in rainwaters. Lithium and B concentrations are low in rainwater samples, ranging from 0.004 to 0.292 μmol/L and from 0.029 to 6.184 μmol/L, respectively. δ7Li and δ11B values in rainwaters also show a great range of variation between +3.2‰ and +95.6‰ and between −3.3‰ and +40.6‰ over a period of 1 a, respectively, clearly different from the signature of seawater. Seasonal effects (i.e. rainfall amount and month) are not the main factors controlling element concentrations and isotopic variations. δ7Li and δ11B values in rainwaters are clearly different from one site to another, indicating the variable contribution of sea salts in the rainwater depending on the sampling site (coastal vs. inland: also called the distance-from-the-coast-effect). This is well illustrated when wind direction data (origin of air masses) is included. It was found that seawater is not the main supplier of dissolved atmospheric Li and B, and non-sea-salt sources (i.e. crustal, anthropogenic, biogenic) should also be taken into account when Li and B isotopes are considered in hydrogeochemistry as an input to surface waters and groundwater bodies as recharge. In parallel, the isotopic variations of the water molecule, vector of the dissolved B and Li, are also investigated and reported as a contour map for δ18O values based on compiled data including more than 400 δ18O values from throughout France. This δ18O map could be used as a reference for future studies dealing with δ18O recharge signature in relation to the characterization of surface waters and/or groundwater bodies.  相似文献   

18.
Northwest Africa (NWA) 12379 is a new metal-rich chondrite with unique characteristics distinguishing it from all previously described meteorites. It contains high Fe,Ni-metal content (∼ 70 vol.%) and completely lacks interchondrule matrix; these characteristics are typical only for metal-rich carbonaceous (CH and CB) and G chondrites. However, chondrule sizes (60 to 1200 μm; mean = 370 μm), their predominantly porphyritic textures, nearly equilibrated chemical compositions of chondrule olivines (Fa18.1–28.3, average Fa24.9±3.2, PMD = 12.8; Cr2O3 = 0.03 ± 0.02 wt.%; FeO/MnO = 53.2 ± 6.5 (wt.-ratio); n = 28), less equilibrated compositions of low-Ca pyroxenes (Fs3.2–18.7Wo0.2–4.5; average Fs14.7±3.7Wo1.4±1.3; n = 20), oxygen-isotope compositions of chondrule olivine phenocrysts (Δ17O ∼ 0.2–1.4‰, average ∼ 0.8‰), and the presence of coarse-grained Ti-bearing chromite, Cl-apatite, and merrillite, all indicate affinity of NWA 12379 to unequilibrated (type 3.8) ordinary chondrites (OCs). Like most OCs, NWA 12379 experienced fluid-assisted thermal metamorphism that resulted in formation of secondary ferroan olivine (Fa27) that replaces low-Ca pyroxene grains in chondrules and in inclusions in Fe,Ni-metal grains. Δ17O of the ferroan olivine (∼ 4‰) is similar to those of aqueously-formed fayalite in type 3 OCs, but its δ18O is significantly higher (15–19‰, average = 17‰ vs. 3―12‰, average = 8‰, respectively). We suggest classifying NWA 12379 as the ungrouped metal-rich chondrite with affinities of its non-metal fraction to unequilibrated OCs and speculate that it may have formed by a collision between an OC-like body and a metal-rich body and subsequently experienced fluid-assisted thermal metamorphism. Trace siderophile element abundances and isotopic compositions (e.g., Mo, Ni, Fe) of the NWA 12379 metal could help to constrain its origin.  相似文献   

19.
Over the last decade it has become apparent that Li isotopes may be a good proxy to trace silicate weathering. However, the exact mechanisms which drive the behaviour of Li isotopes in surface environments are not totally understood and there is a need to better calibrate and characterize this proxy. In this study, we analysed the Li concentrations and isotopic compositions in the various surface reservoirs (soils, rocks, waters and plants) of a small forested granitic catchment located in the Vosges Mountains (Strengbach catchment, France, OHGE http://ohge.u-strasbg.fr). Li fluxes were calculated in both soil profiles and at the basin scale and it was found that even in this forested basin, atmospheric inputs and litter fall represented a minor flux compared to input derived from the weathering of rocks and soil minerals (which together represent a minimum of 70% of dissolved Li). Li isotope ratios in soil pore waters show large depth dependent variations. Average dissolved δ7Li decreases from −1.1‰ to −14.4‰ between 0 and −30 cm, but is +30.7‰ at −60 cm. This range of Li isotopic compositions is very large and it encompasses almost the entire range of terrestrial Li isotope compositions that have been previously reported. We interpret these variations to result from both the dissolution and precipitation of secondary phases. Large isotopic variations were also measured in the springs and stream waters, with δ7Li varying from +5.3‰ to +19.6‰. δ7Li increases from the top to the bottom of the basin and also covaries with discharge at the outlet. These variations are interpreted to reflect isotopic fractionations occurring during secondary phase precipitation along the water pathway through the rocks. We suggest that the dissolved δ7Li increases with increasing residence time of waters through the rocks, and so with increasing time of interaction between waters and solids. A dissolution precipitation model was used to fit the dissolved Li isotopic compositions. It was found that the isotopic compositions of springs and stream waters are explicable by an isotopic fractionation of −5‰ to −14‰ (best fit −10.8‰), in agreement with Li incorporation into clay. In soil solutions, it was found that isotopic fractionation during secondary precipitation is larger (at least −23‰), suggesting a major role for different secondary phases, such as iron oxides that maybe incorporate Li with a higher isotope fractionation.  相似文献   

20.
The oxygen three-isotope systematics of 36 chondrules from the Allende CV3 chondrite are reported using high precision secondary ion mass spectrometer (CAMECA IMS-1280). Twenty-six chondrules have shown internally homogenous Δ17O values among olivine, pyroxene, and spinel within a single chondrule. The average Δ17O values of 19 FeO-poor chondrules (13 porphyritic chondrules, 2 barred olivine chondrules, and 4 chondrule fragments) show a peak at −5.3 ± 0.6‰ (2SD). Another 5 porphyritic chondrules including both FeO-poor and FeO-rich ones show average Δ17O values between −3‰ and −2‰, and 2 other FeO-poor barred olivine chondrules show average Δ17O values of −3.6‰ and 0‰. These results are similar to those for Acfer 094 chondrules, showing bimodal Δ17O values at −5‰ and −2‰. Nine porphyritic chondrules contain olivine grains with heterogeneous Δ17O values as low as −18‰, indicating that they are relict olivine grains and some of them were derived from precursors related to refractory inclusions. However, most relict olivine grains show oxygen isotope ratios that overlap with those in homogeneous chondrules. The Δ17O values of four barred olivine chondrules range from −5‰ to 0‰, indicating that not all BO chondrules plot near the terrestrial fractionation line as suggested by previous bulk chondrule analyses. Based on these data, we suggest the presence of multiple oxygen isotope reservoirs in local dust-rich protoplanetary disk, from which the CV3 parent asteroid formed.A compilation of 225 olivine and low-Ca pyroxene isotopic data from 36 chondrules analyzed in the present study lie between carbonaceous chondrite anhydrous mineral (CCAM) and Young and Russell lines. These data define a correlation line of δ17O = (0.982 ± 0.019) × δ18O − (2.91 ± 0.10), which is similar to those defined by chondrules in CV3 chondrites and Acfer 094 in previous studies. Plagioclase analyses in two chondrules plot slightly below the CCAM line with Δ17O values of −2.6‰, which might be the result of oxygen isotope exchange between chondrule mesostasis and aqueous fluid in the CV parent body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号