首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Tri-octahedral Li-Mg smectites (hectorites) were synthesized at temperatures ranging from 25 to 250 °C, in the presence of solutions highly enriched in lithium. After removing all the exchangeable lithium from the synthesized clays, Li isotope fractionation (Δ7Liclay-solution) was determined. This fractionation was linked to Li incorporation into the structural octahedral site, substituting for Mg2+. As predicted, experimental Δ7Liclay-solution inversely correlates with temperature, and ranges from −1.6‰ ± 1.3‰ at 250 °C to −10.0‰ ± 1.3‰ at 90 °C, and then stays relatively constant down to 25 °C. The relatively constant isotope fractionation factor below 90 °C may be due to high concentrations of edge octahedra in low crystallinity smectites. The isotopic fractionation factor (α), for a given temperature, does not depend on the solution matrix, nor on the amount of structural Li incorporated into the clay. Empirical linear laws for α as a function of 1/T (K) were inferred. Smectite Li contents and smectite-solution distribution coefficients (DLi/Mg) increase with temperature, as expected for a substitution process. The fractions of dissolved Li incorporated into the smectite octahedral sites are small and do not depend on the duration of the experiment. In a seawater-like matrix solution, less Li is incorporated into the smectites, probably as a result of competition with dissolved Mg2+ ions for incorporation into the octahedral sites. The high Li contents observed in marine smectites are therefore best explained either by a significant contribution from basalts, by adsorption processes, or by the influence of seawater chemical composition on distribution coefficients. We also calculate, using present-day estimates of hydrothermal water and river fluxes, that a steady-state ocean would require a relatively large global clay-water Li isotope fractionation (−12‰ to −21‰). This study demonstrates the ability of laboratory experiments to quantify the impact of secondary phases on the Li geochemical cycle and associated isotope fractionations.  相似文献   

2.
The fractionation of lithium isotopes between synthetic spodumene as representative of Li-bearing clinopyroxene and Cl- and OH-bearing aqueous fluids was experimentally determined between 500 and 900°C at 2.0 GPa. In all the experiments, 7Li was preferentially partitioned into the fluid. The fractionation is temperature dependent and approximated by the equation Δ7Li(clinopyroxene–fluid)=−4.61×(1,000/T [K]) + 2.48; R 2=0.86. Significant Li isotopic fractionation of about 1.0‰ exists even at high temperatures of 900°C. Using neutral and weakly basic fluids revealed that the amount of fractionation is not different. The Li isotopic fractionation between altered basalt and hot spring water (350°C) in natural samples is in good agreement with our experimentally determined fractionation curve. The data confirm earlier speculations drawn from the Li isotopic record of dehydrated metamorphic rocks that fluids expelled from a dehydrating slab carry heavier Li into the mantle wedge, and that a light Li component is introduced into the deeper mantle. Li and Li isotopes are redistributed among wedge minerals as fluids travel across the wedge into hotter regions of arc magma production. This modifies the Li isotopic characteristics of slab-derived fluids erasing their source memory, and explains the absence of cross-arc variations of Li isotopes in arc basalts.  相似文献   

3.
We experimentally determined the boron partitioning and boron isotope fractionation between coexisting liquid and vapor in the system H2O−NaCl−B2O3. Experiments were performed along the 400 and 450°C isotherms. Pressure conditions ranged from 23 to 28 MPa at 400°C and from 38 to 42 MPa at 450°C. Boron partitions preferentially into the liquid. Its overall liquid-vapor fractionation is, however, weak: Calculated boron distribution coefficients DBliquid-vapor are < 2.5 at all run conditions. With decreasing pressure (i.e. increasing opening of the solvus) DBliquid-vapor increases along the individual isotherms. Extrapolation to salt saturated conditions yields maximum boron liquid-vapor fractionations of DBliquid-vapor = 1.8 at 450°C and DBliquid-vapor = 2.7 at 400°C. 11B preferentially fractionates into the vapor. Calculated Δ11Bvapor-liquid = {[(11B/10B)vapor - (11B/10B)liquid]/(11B/10B)NBS 951}*1000 are small and range from 0.2 (± 0.7) to 0.9 (± 0.5) ‰ at 450°C and from 0.1 (± 0.6) to 0.7 (± 0.6) ‰ at 400°C. The data indicate increasing isotopic fractionation with decreasing pressure (i.e. increasing opening of the solvus). Extrapolation to salt saturated conditions yields maximum boron isotope liquid-vapor fractionations of Δ11Bvapor-liquid = 1.5 (± 0.7) ‰ at 450°C and Δ11Bvapor-liquid = 1.3 (± 0.6) ‰ at 400°C. The weak boron isotope fractionation suggests similar trigonal speciation in liquid and vapor. Although the boron and boron isotope fractionation between liquid and vapor is only weak, mass balance calculations indicate that for high degrees of fractionation liquid-vapor phase separation in an open system can significantly alter the boron and boron isotope signature of low-salinity hydrous fluids in hydrothermal systems. Comparing the model calculations with natural oceanic hydrothermal fluids, however, indicate that other processes than fluid phase separation dominate the boron geochemistry in oceanic hydrothermal fluids.  相似文献   

4.
Experimental diffusion couples were used to study chemical diffusion between molten rhyolite and basalt with special emphasis on the associated fractionation of calcium and lithium isotopes. Diffusion couples were made by juxtaposing firmly packed powders of a natural basalt (SUNY MORB) and a natural rhyolite (Lake County Obsidian) and then annealing them in a piston cylinder apparatus for times ranging from 0.1 to 15.7 h, temperatures of 1350-1450°C, and pressures of 1.2-1.3 GPa. Profiles of the major elements and many trace elements were measured on the recovered quenched glasses. The diffusivities of all elements except lithium were found to be remarkably similar, while the diffusivity of lithium was two to three orders of magnitude larger than that of any of the other elements measured. Chemical diffusion of calcium from molten basalt into rhyolite was driven by a concentration ratio of ∼18 and produced a fractionation of 44Ca from 40Ca of about 6 ‰. Because of the relatively low concentration of lithium in the natural starting materials a small amount of spodumene (LiAlSi2O6) was added to the basalt in order to increase the concentration difference between basalt and rhyolite, which was expected to increase the magnitude of diffusive isotopic fractionation of lithium. The concentration ratio between Li-doped basalt and natural rhyolite was ∼15 and the resulting diffusion of lithium into the rhyolite fractionated 7Li from 6Li by about 40‰. We anticipate that several other major rock-forming elements such as magnesium, iron and potassium will also exhibit similarly larger isotopic fractionation whenever they diffuse between natural melts with sufficiently large differences in the abundance of these elements.  相似文献   

5.
Although iron isotopes provide a new powerful tool for tracing a variety of geochemical processes, the unambiguous interpretation of iron isotope ratios in natural systems and the development of predictive theoretical models require accurate data on equilibrium isotope fractionation between fluids and minerals. We investigated Fe isotope fractionation between hematite (Fe2O3) and aqueous acidic NaCl fluids via hematite dissolution and precipitation experiments at temperatures from 200 to 450 °C and pressures from saturated vapor pressure (Psat) to 600 bar. Precipitation experiments at 200 °C and Psat from aqueous solution, in which Fe aqueous speciation is dominated by ferric iron (FeIII) chloride complexes, show no detectable Fe isotope fractionation between hematite and fluid, Δ57Fefluid-hematite = δ57Fefluid − δ57Fehematite = 0.01 ± 0.08‰ (2 × standard error, 2SE). In contrast, experiments at 300 °C and Psat, where ferrous iron chloride species (FeCl2 and FeCl+) dominate in the fluid, yield significant fluid enrichment in the light isotope, with identical values of Δ57Fefluid-hematite = −0.54 ± 0.15‰ (2SE) both for dissolution and precipitation runs. Hematite dissolution experiments at 450 °C and 600 bar, in which Fe speciation is also dominated by ferrous chloride species, yield Δ57Fefluid-hematite values close to zero within errors, 0.15 ± 0.17‰ (2SE). In most experiments, chemical, redox, and isotopic equilibrium was attained, as shown by constancy over time of total dissolved Fe concentrations, aqueous FeII and FeIII fractions, and Fe isotope ratios in solution, and identical Δ57Fe values from dissolution and precipitation runs. Our measured equilibrium Δ57Fefluid-hematite values at different temperatures, fluid compositions and iron redox state are within the range of fractionations in the system fluid-hematite estimated using reported theoretical β-factors for hematite and aqueous Fe species and the distribution of Fe aqueous complexes in solution. These theoretical predictions are however affected by large discrepancies among different studies, typically ±1‰ for the Δ57Fe Fe(aq)-hematite value at 200 °C. Our data may thus help to refine theoretical models for β-factors of aqueous iron species. This study provides the first experimental calibration of Fe isotope fractionation in the system hematite-saline aqueous fluid at elevated temperatures; it demonstrates the importance of redox control on Fe isotope fractionation at hydrothermal conditions.  相似文献   

6.
Graphite in deep crustal enderbitic (orthopyroxene + garnet + plagioclase + quartz) granulites (740°C, 8.9 kb) of Nilgiri hills, southern India were investigated for their spectroscopic and isotopic characteristics. Four types of graphite crystals were identified. The first type (GrI), which is interstitial to other mineral grains, can be grouped into two subtypes, GrIA and GrIB. GrIA is either irregular in shape or deformed, and rough textured with average δ13C values of −12.7 ± 0.4‰ (n = 3). A later generation of interstitial graphite (GrIB) shows polygonal crystal shapes and highly reflecting smooth surface features. These graphite grains are more common and have δ13C values of −11.9 ± 0.3‰ (n = 14). Both subtypes show well-defined Raman shifts suggesting a highly crystalline nature. Cores of interstitial graphite grains have, on average, lower δ13C values by ∼0.5‰ compared to that of the rim. The second type of graphite (GrII) occurs as solid inclusions in silicate minerals, commonly forming regular hexagonal crystals with a slightly disordered structure. The third type of graphite (GrIII) is associated with solid inclusions (up to 100 μm) that have decrepitation halos of numerous small (<15 μm) satellite fluid inclusions of pure CO2 with varying density (1.105 to 0.75 g/cm3). The fourth type of graphite (GrIV) is found as daughter crystals within primary type CO2-fluid inclusions in garnet and quartz. These fluid inclusions have a range of densities (1.05 to 0.90 g/cm3), but in general are significantly less dense than graphite-free primary, pure CO2 fluid inclusions (1.12 g/cm3). Raman spectral characteristics of graphite inside fluid inclusions suggest graphite crystallization at low temperature (∼ 500°C). The precipitation of graphite probably occurred during the isobaric cooling of CO2-rich peak metamorphic fluid as a result of oxyexsolution of oxide phases. The oxyexsolution process is evidenced by the magnetite-ilmenite granular exsolution textures and the systematic presence of numerous micron-sized rutile and other oxide inclusions in association with fluid inclusions within garnet, plagioclase, and quartz.The carbon isotope compositions of coexisting CO2 (in fluid inclusions) and graphite show a fractionation (α2CO−gr) of ∼6‰ in garnet, consistent with the existing theoretical estimates of α2CO−gr at 800°C. A subsequent generation of CO2 inclusions trapped in matrix quartz and quartz segregation have higher δ13C values, −4‰ and −2.9‰ respectively. Graphite in quartz segregations also has higher δ13C values (−9.8‰) than those in enderbite (−12.7‰). Micro-graphite crystals included in garnet, quartz (enderbite), and quartz (segregation) have average δ13C values of −11.1, −10.4, and −8.7‰ respectively, indicating progressive enrichment in 13C with a decrease in temperature of recrystallization of respective minerals. This progressive enrichment is also observed in carbon isotope compositions of fluid inclusion CO2, suggesting isotopic equilibrium during graphite precipitation from CO2 fluids. Thus, the carbon isotope record preserved in these rocks by the interstitial graphite, CO2 fluid in enderbite, graphite microcrystals, graphite in quartz segregation, and CO2 fluid in quartz segregation, suggests a temperature-controlled isotopic evolution. This evolution is in accordance with a closed system Rayleigh-type graphite precipitation process which progressively enriched residual CO2 in 13C.  相似文献   

7.
Hydrogen fractionation laws between selected hydrous minerals (brucite, kaolinite, lizardite, and gibbsite) and perfect water gas have been computed from first-principles quantum-mechanical calculations. The β-factor of each phase was calculated using the harmonic phonon dispersion curves obtained within density functional theory. All the fractionation laws show the same shape, with a minimum between 200 °C (brucite) and 500 °C (gibbsite). At low temperatures, the mineral/liquid water fractionation laws have been obtained using the experimental gas/liquid water fractionation laws. The resulting fractionation laws systematically overestimate measurements by 15‰ at low temperatures to 8‰ at ≈400 °C. Based on this general agreement, all calculated laws were empirically corrected with reference to brucite/water data. These considerations suggest that the experimental or natural calibrations by Xu and Zheng (1999) and Horita et al. (2002) (brucite/water), Gilg and Sheppard (1996) (kaolinite/water), Wenner and Taylor (1973) (lizardite/water), and in some extents Vitali et al. (2001) (gibbsite/water) are representative of equilibrium fractionations. Besides, internal isotopic fractionation of hydrogen between inner-surface and inner hydroxyl groups has been computed for kaolinite and lizardite. The obtained fractionation is large, of opposite sign for the two systems (respectively, −23‰ and +63‰ at 25 °C) and is linear in T-2. Internal fractionation of hydrogen in TO phyllosilicates might thus be used in geothermometry.  相似文献   

8.
In order to use lithium isotopes as tracers of silicate weathering, it is of primary importance to determine the processes responsible for Li isotope fractionation and to constrain the isotope fractionation factors caused by each process as a function of environmental parameters (e.g. temperature, pH). The aim of this study is to assess Li isotope fractionation during the dissolution of basalt and particularly during leaching of Li into solution by diffusion or ion exchange. To this end, we performed dissolution experiments on a Li-enriched synthetic basaltic glass at low ratios of mineral surface area/volume of solution (S/V), over short timescales, at various temperatures (50 and 90 °C) and pH (3, 7, and 10). Analyses of the Li isotope composition of the resulting solutions show that the leachates are enriched in 6Li (δ7Li = +4.9 to +10.5‰) compared to the fresh basaltic glass (δ7Li = +10.3 ± 0.4‰). The δ7Li value of the leachate is lower during the early stages of the leaching process, increasing to values close to the fresh basaltic glass as leaching progresses. These low δ7Li values can be explained in terms of diffusion-driven isotope fractionation. In order to quantify the fractionation caused by diffusion, we have developed a model that couples Li diffusion with dissolution of the glassy silicate network. This model calculates the ratio of the diffusion coefficients of both isotopes (a = D7/D6), as well as its dependence on temperature, pH, and S/V. a is mainly dependent on temperature, which can be explained by a small difference in activation energy (0.10 ± 0.02 kJ/mol) between 6Li+ and 7Li+. This temperature dependence reveals that Li isotope fractionation during diffusion is low at low temperatures (T < 20 °C), but can be significant at high temperatures. However, concerning hydrothermal fluids (T > 120 °C), the dissolution rate of basaltic glass is also high and masks the effects of diffusion. These results indicate that the high δ7Li values of river waters, in particular in basaltic catchments, and the fractionated values of hydrothermal fluids are mainly controlled by precipitation of secondary phases.  相似文献   

9.
We report lithium (Li) isotopic measurements in seawater-derived waters that were discharged from geothermal wells, thermal springs, and sub-marine springs located in volcanic island arc areas in Guadeloupe (the Bouillante geothermal field) and Martinique (Lamentin plain and the Diamant areas). While Li isotopic signatures of the geothermal fluids collected from deep reservoirs were found to be homogeneous for a given site, the δ7Li signatures for each of these reservoirs were significantly different. The first low temperature (25-250 °C) experiments of Li isotope exchange during seawater/basalt interaction confirmed that Li isotopic exchange is strongly temperature dependent, as previously inferred from natural studies. Li isotopic fractionation ranged from +19.4‰ (Δsolution-solid) at 25 °C to +6.7‰ at 250 °C. These experiments demonstrated the importance of Li isotopic fractionation during the formation of Li-bearing secondary minerals and allowed us to determine the following empirical relationship between isotopic fractionation and temperature: Δsolution-solid = 7847/T − 8.093. Application of experimental results and literature data to the Bouillante area suggested that geothermal water was in equilibrium at 250-260 °C. It likely has a deep and large reservoir located in the upper sheeted dike complex of the oceanic crust, just below the transition zone between andesite volcanic flows and the basaltic dikes. The upper dike section, from which Li is extracted by hydrothermal fluids, was characterized by light Li isotopic values in the rocks, indicating retention of 6Li by the altered rocks. For the Lamentin and Diamant areas, the geothermal fluids appeared to be in equilibrium with reservoir volcano-sedimentary rocks at 90-120 °C and 180 °C, respectively. Further evidence for this argument is provided by the fact that only the Na/Li thermometric relationship determined for sedimentary basins yielded temperature values in agreement with those measured or estimated for the reservoir fluids. This suggests the importance of a sedimentary signature in these reservoir rocks. Altogether, this study highlights that the use of Li isotopic systematics is a powerful tool for characterizing the origin of geothermal waters as well as the nature of their reservoir rocks.  相似文献   

10.
Equilibrium and kinetic Fe isotope fractionation between aqueous ferrous and ferric species measured over a range of chloride concentrations (0, 11, 110 mM Cl) and at two temperatures (0 and 22°C) indicate that Fe isotope fractionation is a function of temperature, but independent of chloride contents over the range studied. Using 57Fe-enriched tracer experiments the kinetics of isotopic exchange can be fit by a second-order rate equation, or a first-order equation with respect to both ferrous and ferric iron. The exchange is rapid at 22°C, ∼60-80% complete within 5 seconds, whereas at 0°C, exchange rates are about an order of magnitude slower. Isotopic exchange rates vary with chloride contents, where ferrous-ferric isotope exchange rates were ∼25 to 40% slower in the 11 mM HCl solution compared to the 0 mM Cl (∼10 mM HNO3) solutions; isotope exchange rates are comparable in the 0 and 110 mM Cl solutions.The average measured equilibrium isotope fractionations, ΔFe(III)-Fe(II), in 0, 11, and 111 mM Cl solutions at 22°C are identical within experimental error at +2.76±0.09, +2.87±0.22, and +2.76±0.06 ‰, respectively. This is very similar to the value measured by Johnson et al. (2002a) in dilute HCl solutions. At 0°C, the average measured ΔFe(III)-Fe(II) fractionations are +3.25±0.38, +3.51±0.14 and +3.56±0.16 ‰ for 0, 11, and 111 mM Cl solutions. Assessment of the effects of partial re-equilibration on isotope fractionation during species separation suggests that the measured isotope fractionations are on average too low by ∼0.20 ‰ and ∼0.13 ‰ for the 22°C and 0°C experiments, respectively. Using corrected fractionation factors, we can define the temperature dependence of the isotope fractionation from 0°C to 22°C as: where the isotopic fractionation is independent of Cl contents over the range used in these experiments. These results confirm that the Fe(III)-Fe(II) fractionation is approximately half that predicted from spectroscopic data, and suggests that, at least in moderate Cl contents, the isotopic fractionation is relatively insensitive to Fe-Cl speciation.  相似文献   

11.
Variations in the oxygen isotope composition (δ18O) of five cherts from the 1.9 Ga Gunflint iron formation (Canada) were studied at the micrometer scale by ion microprobe to try to better understand the processes that control δ18O values in cherts and to improve seawater paleotemperature reconstructions. Gunflint cherts show clearly different δ18O values for different types of silica with for instance a difference of ≈15‰ between detrital quartz and microquartz. Microquartz in the five samples is characterized by large intra sample variations in δ18O values, (δ18O of quartz varies from 4.6‰ to 6.6‰ at the 20 μm scale and from ≈12‰ to 14‰ at 2 μm scale). Isotopic profiles in microquartz adjacent to hydrothermal quartz veins demonstrate that microquartz more than ≈200 μm away from the veins has preserved its original δ18O value.At the micrometer spatial resolution of the ion probe, data reveal that microquartz has preserved a considerable δ18O heterogeneity that must be regarded as a signature inherited from its diagenetic history. Modelling of the δ18O variations produced during the diagenetic transformation of sedimentary amorphous silica precursors into microquartz allows us to calculate seawater temperature (Tsw at which the amorphous silica precipitated) and diagenesis temperature (Tdiagenesis at which microquartz formed) that reproduce the δ18O distributions (mean, range and shape) measured at micrometer scale in microquartz. The two critical parameters in this modelling are the δ18O value and the mass fraction of the diagenetic fluid. Under these assumptions, the most likely ranges for Tsw and Tdiagenesis are from 37 to 52 °C and from 130 to 170 °C, respectively.  相似文献   

12.
Mercury isotope fractionation during liquid-vapor evaporation experiments   总被引:2,自引:0,他引:2  
Liquid-vapor mercury isotope fractionation was investigated under equilibrium and dynamic conditions. Equilibrium evaporation experiments were performed in a closed glass system under atmospheric pressure between 0 and 22 °C, where vapor above the liquid was sampled at chemical equilibrium. Dynamic evaporation experiments were conducted in a closed glass system under 10−5 bar vacuum conditions varying (1) the fraction of liquid Hg evaporated at 22 °C and (2) the temperature of evaporation (22-100 °C). Both, residual liquid and condensed vapor fractions were analyzed using stannous chloride CV-MC-ICP-MS.Equilibrium evaporation showed a constant liquid-vapor fractionation factor (α202/198) of 1.00086 ± 0.00022 (2SD, n = 6) within the 0-22 °C range. The 22 °C dynamic evaporations experiments displayed Rayleigh distillation fractionation behavior with liquid-vapor α202/198 = 1.0067 ± 0.0011 (2SD), calculated from both residual and condensed vapor fractions. Our results confirm historical data (1920s) from Brönsted, Mulliken and coworkers on mercury isotopes separation using evaporation experiments, for which recalculated δ202Hg′ showed a liquid-vapor α202/198 of 1.0076 ± 0.0017 (2SD). This liquid-vapor α202/198 is significantly different from the expected kinetic α202/198 value ((202/198)0.5 = 1.0101). A conceptual evaporation model of back condensation fluxes within a thin layer at the liquid-vapor interface was used to explain this discrepancy. The δ202Hg′ of condensed vapor fractions in the 22-100 °C temperature range experiments showed a negative linear relationship with 106/T2, explained by increasing rates of exchange within the layer with the increase in temperature.Evaporation experiments also resulted in non-mass-dependent fractionation (NMF) of odd 199Hg and 201Hg isotopes, expressed as Δ199Hg′ and Δ201Hg′, the deviation in ‰ from the mass fractionation relationship with even isotopes. Liquid-vapor equilibrium yielded Δ199Hg′/Δ201Hg′ relationship of 2.0 ± 0.6 (2SE), which is statistically not different from the one predicted for the nuclear field shift effect (Δ199Hg/Δ201Hg ≈ 2.47). On the other hand, evaporation under dynamic conditions at 22 °C led to negative anomalies in the residual liquid fractions that are balanced by positive anomalies in condensed vapors with lower Δ199Hg′/Δ201Hg′ ratios of 1.2 ± 0.4 (2SD). This suggests that either magnetic isotope effects may have occurred without radical chemistry or an unknown NMF process on odd isotopes operated during liquid mercury evaporation.  相似文献   

13.
Oxygen isotope microanalyses of authigenic quartz, in combination with temperatures of quartz precipitation constrained by fluid inclusion microthermometry and burial history modelling, are employed to trace the origin and evolution of pore waters in three distinct reservoirs of the Brae Formation in the Miller and Kingfisher Fields (North Sea). Oxygen isotope ratios of quartz cements were measured in situ in nine sandstone thin sections with a Cameca ims-4f ion microprobe. In conjunction with quartz cement paragenesis in the reservoirs, constrained from textural and cathodoluminescence (CL) microscopy studies, pore water evolution was reconstructed from the time of deposition of the sandstones in the Upper Jurassic until the present.CL photomicrographs of quartz overgrowths in the Brae Formation sandstones show three cement zones (A, B and C) which can be related to different oxygen isotope compositions: (1) the earliest, and thinnest, zone A (homogeneous CL pattern with probable δ18O values between +23‰ and +26‰—direct measurements were not possible) precipitated in the sandstones at temperatures <60 °C; (2) the second zone B (complex CL pattern and directly measured δ18O values between +15‰ and +18‰) precipitated in the sandstones most likely between 70 and 90 °C; (3) the third zone C (homogeneous CL pattern and directly measured δ18O values between +16‰ and +22‰) precipitated in the sandstones most likely at temperatures >90 °C. Calculated oxygen isotope compositions of pore waters show that zone A quartz cements, and enclosing concretionary calcite, precipitated from a meteoric-type fluid (∼−7‰) during shallow burial (<1.5 km). Zone B quartz cements precipitated from fluids which evolved in composition from a meteoric-type fluid (δ18O −7‰) to a more 18O-enriched fluid (δ18O −4‰) as burial continued to ∼3.0 km. Data from zone C quartz cements are consistent with further fluid evolution from δ18O −4‰ to basinal-type fluids with δ18O similar to the present-day formation water oxygen isotope composition (+0.6‰ at 4.0 km burial). A similar pore water evolution can be derived for all three reservoirs studied, indicating that hydrogeologic evolution was similar across sandstones of the whole Brae Formation.The quartz cement zones observed in the Brae Formation sandstones, and the pore water history derived for the area studied, is analogous to published petrographic and pore water evolution data from the nearby Brent Group reservoirs and from reservoirs located in the Haltenbanken area on the Atlantic margin offshore Norway. Considering quartz cement is a major porosity-occluding phase in many reservoir sandstones, and because pore waters both dissolve quartz and carry the dissolved silica to cementation sites, the data presented are valuable for improving the understanding and prediction of reservoir quality development in sandstones globally.  相似文献   

14.
The acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, plays a part in the pyrite oxidation process and has been widely studied in order to determine the kinetics of the reactions and the isotopic composition of dissolved product sulphates, but the details of the oxidation processes at the surface of pyrite are still poorly known. In this study, oxygen and sulphur isotopic compositions (δ18O and δ34S) were analyzed for dissolved sulphates and water from experimental aerobic acidic (pH < 2) pyrite oxidation by A. ferrooxidans. The oxidation products attached to the pyrite surfaces were studied for their morphology (SEM), their chemistry (Raman spectroscopy) and for their δ18O (ion microprobe). They were compared to abiotically (Fe3+, H2O2, O2) oxidized pyrite surface compounds in order to constrain the oxidation pathways and to look for the existence of potential biosignatures for this system.The pyrite dissolution evolved from non-stoichiometric (during the first days) to stoichiometric (with increasing time) resulting in dissolved sulphates having distinct δ18O (e.g. +11.0‰ and −2.0‰, respectively) and δ34S (+4.5‰ and +2.8‰, respectively) values. The “oxidation layer” at the surface of pyrite is complex and made of iron oxides, sulphate, polysulphide, elemental sulphur and polythionates. Bio- and Fe3+-oxidation favour the development of monophased micrometric bumps made of hematite or sulphate while other abiotic oxidation processes result in more variable oxidation products. The δ18O of these oxidation products at the surface of oxidized pyrites are strongly variable (from ≈−40‰ to ≈+30‰) for all experiments.Isotopic fractionation between sulphates and pyrite, Δ34SSO4-pyrite, is equal to −1.3‰ and +0.4‰ for sulphates formed by stoichiometric and non-stoichiometric processes, respectively. These two values likely reflect either a S-S or a Fe-S bond breaking process. The Δ18OSO4-H2O and Δ18OSO4-O2 are estimated to be ≈+16‰ and ≈−25‰, respectively. These values are higher than previously published data and may reflect biological effects. The large δ18O heterogeneity measured at the surfaces of oxidized pyrites, whatever the oxidant, may be related (i) to the existence of local surface environments isolated from the solution in which the oxidation processes are different and (ii) to the stabilization at the pyrite surface of reaction intermediates that are not in isotopic equilibrium with the solution. Though the oxygen isotopic composition of surface oxidation products cannot be taken as a direct biosignature, the combined morphological, chemical and isotopic characterization of the surfaces of oxidized pyrites may furnish clues about a biological activity on a mineral surface.  相似文献   

15.
The equilibrium Mg isotope fractionation factor between epsomite and aqueous MgSO4 solution has been measured using the three isotope method in recrystallization experiments conducted at 7, 20, and 40 °C. Complete or near-complete isotopic exchange was achieved within 14 days in all experiments. The Mg isotope exchange rate between epsomite and MgSO4 solution is dependent on the temperature, epsomite seed crystal grain size, and experimental agitation method. The Mg isotope fractionation factors (Δ26Mgeps-sol) at 7, 20, and 40 °C are 0.63 ± 0.07‰, 0.58 ± 0.16‰, and 0.56 ± 0.03‰, respectively. These values are indistinguishable within error, indicating that the Mg isotope composition of epsomite is relatively insensitive to temperature. The magnitude of the isotope fractionation factor (Δ26Mgeps-sol = ca. 0.6‰ between 7 and 40 °C) indicates that significant Mg isotope variations can be produced in evaporite sequences, and Mg isotopes may therefore, constrain the degree of closed-system behavior, paleo-humidity, and hydrological history of evaporative environments.  相似文献   

16.
Ammonia (NH3) is the major intermediate phase in the pathway of nitrogen (N) transfer from the fixed N phases (e.g., in crustal material) to free N2 (e.g., in natural gas reservoirs and volcanic gases). Yet the N isotopic behavior during these N-cycling processes remains poorly known. In an attempt to contribute to the understanding of N cycling using N isotopes, we carried out laboratory experiments to investigate the N isotopic effect associated with thermal decomposition of ammonia (2NH3 → N2 + 3H2). Pure NH3 (with initial δ15NNH3 of ∼ −2‰, relative to air standard) was sealed into quartz tubes and thermally decomposed at 600, 700 or 800 °C from 2 hours to 500 days. With the progress of the reaction, the δ15N of the remaining NH3 and the accumulated N2 increased from −2 to +35‰ and from −20 to −2‰, respectively. The differences of the N-isotope fractionations at the three temperatures are not significant. Modeling using the Rayleigh distillation model yielded similar kinetic N-isotope fractionation factors (αN2-NH3) of 0.983 ± 0.002 for 600, 700 and 800 °C. Applied to geological settings, this significant isotope discrimination (∼17‰) associated with partial decomposition of NH3/NH4+ from crustal sources (δ15Naverage ∼ +6.3‰) can produce mantle-like (i.e. ∼ −5‰) or even lower δ15N values of N2. This may explain the large variation of δ15N (−20 to +30‰) of N2 in natural gas reservoirs. It can also possibly explain the extreme 15N-depletion of N2 in some volcanic gases. This possibility has to be carefully considered when using N isotopes to trace geological N cycling across subduction zones by analysis of volcanic N2.  相似文献   

17.
Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (<100 °C). Measured iron isotope compositions are variable and cover a range in δ56Fe between −2.3‰ and +1.3‰. Primary hematite (δ56Fe: −0.5‰ to +0.5‰) precipitated by mixing oxidizing surface waters with a hydrothermal fluid that contained moderately light Fe (δ56Fe: −0.5‰) leached from the crystalline basement. Occasional input of CO2-rich waters resulted in precipitation of isotopically light siderite (δ56Fe: −1.4 to −0.7‰). The difference between hematite and siderite is compatible with published Fe isotope fractionation factors. The observed range in isotopic compositions can be accounted for by variable fractions of Fe precipitating from the fluid. Therefore, both fluid processes and mass balance can be inferred from Fe isotopes. Supergene weathering of siderite by oxidizing surface waters led to replacement of isotopically light primary siderite by similarly light secondary hematite and goethite, respectively. Because this replacement entails quantitative transfer of iron from precursor mineral to product, no significant isotope fractionation is produced. Hence, Fe isotopes potentially serve to identify precursors in ore alteration products. Goethites from oolitic sedimentary iron ores were also analyzed. Their compositional range appears to indicate oxidative precipitation from relatively uniform Fe dissolved in coastal water. This comprehensive iron isotope study illustrates the potential of the new technique in deciphering ore formation and alteration processes. Isotope ratios are strongly dependent on and highly characteristic of fluid and precipitation histories. Therefore, they are less suitable to provide information on Fe sources. However, it will be possible to unravel the physico-chemical processes leading to the formation, dissolution and redeposition of ores in great detail.  相似文献   

18.
Li concentrations and isotopic compositions of coexisting minerals (ol, opx, and cpx) from peridotite xenoliths entrained in the Hannuoba Tertiary basalts, North China Craton, provide insight into Li isotopic fractionation between mantle minerals during melt-rock interaction in the considerably thinned lithospheric mantle. Bulk analyses of mineral separates show significant enrichment of Li in cpx (2.4-3.6 ppm) relative to olivine (1.2-1.8 ppm), indicating that these peridotites have been affected by mantle metasomatism with mafic silicate melts. Bulk olivine separates (δ7Li ∼ +3.3‰ to +6.4‰) are isotopically heavier than coexisting pyroxenes (δ7Li ∼ −3.3‰ to −8.2‰ in cpx, and −4.0‰ to −6.7‰ in opx). Such large variation suggests Li elemental and isotopic disequilibrium. This conclusion is supported by results from in situ SIMS analyses of mineral grains where significant Li elemental and isotopic zonations exist. The olivine and opx have lower Li concentrations and heavier Li isotopes in the rims than in the cores. This reverse correlation of δ7Li with Li concentrations indicates diffusive fractionation of Li isotopes. However, the zoning patterns in coexisting cpx show isotopically heavier rims with higher Li abundances. This positive correlation between δ7Li and Li concentrations suggests a melt mixing trend. We attribute Li concentration and isotope zonation in minerals to the effects of two-stage diffusive fractionation coupled with melt-rock interaction. The earliest melts may have been derived from the subducted oceanic slab with low δ7Li values produced by isotopic fractionation during the dehydration of the seawater-altered slab. Melts at later stages were derived from the asthenosphere and interacted with the peridotites, producing the Li elemental and isotopic zoning in mineral grains. These data thus provide evidence for multiple-stage peridotite-melt interaction in the lithospheric mantle beneath the northern North China Craton.  相似文献   

19.
The fractionation of boron isotopes between synthetic dravitic tourmaline and fluid was determined by hydrothermal experiments between 400 and 700°C at 200 MPa and at 500°C, 500 MPa. Tourmaline was crystallized from an oxide mix in presence of water that contained boron in excess. In one series of experiments, [B]fluid/[B]tour was 9 after the run; in another series it was 0.1. All experiments produced tourmaline as the sole boron-bearing solid, along with traces of quartz and talc. Powder XRD and Rietveld refinements revealed no significant amounts of tetrahedrally coordinated boron in tourmaline. 11B always preferentially fractionated into the fluid. For experiments where [B]fluid/[B]tour was 9, a consistent temperature-dependent boron isotope fractionation curve resulted, approximated by Δ11B(tour–fluid) = −4.20 · [1,000/T (K)] + 3.52; R 2 = 0.77, and valid from 400 to 700°C. No pressure dependence was observed. The fractionation (−2.7 ± 0.5‰ at 400°C; and −0.8 ± 0.5‰ at 700°C) is much lower than that previously presented by Palmer et al. (1992). Experiments where [B]fluid/[B]tour was 0.1 showed a significant larger apparent fractionation of up to −4.7‰. In one of these runs, the isotopic composition of handpicked tourmaline crystals of different size varied by 1.3‰. This is interpreted as resulting from fractional crystallization of boron isotopes during tourmaline growth due to the small boron reservoir of the fluid relative to tourmaline, thus indicating larger fractionation than observed at equilibrium. The effect is eliminated or minimized in experiments with very high boron excess in the fluid. We therefore suggest that values given by the above relation represent the true equilibrium fractionations.  相似文献   

20.
Copper isotopes may prove to be a useful tool for investigating bacteria-metal interactions recorded in natural waters, soils, and rocks. However, experimental data which attempt to constrain Cu isotope fractionation in biologic systems are limited and unclear. In this study, we utilized Cu isotopes (δ65Cu) to investigate Cu-bacteria interactions, including surface adsorption and intracellular incorporation. Experiments were conducted with individual representative species of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as with wild-type consortia of microorganisms from several natural environments. Ph-dependent adsorption experiments were conducted with live and dead cells over the pH range 2.5-6. Surface adsorption experiments of Cu onto live bacterial cells resulted in apparent separation factors (Δ65Cusolution-solid = δ65Cusolution − δ65Cusolid) ranging from +0.3‰ to +1.4‰ for B. subtilis and +0.2‰ to +2.6‰ for E. coli. However, because heat-killed bacterial cells did not exhibit this behavior, the preference of the lighter Cu isotope by the cells is probably not related to reversible surface adsorption, but instead is a metabolically-driven phenomenon. Adsorption experiments with heat-killed cells yielded apparent separation factors ranging from +0.3‰ to −0.69‰ which likely reflects fractionation from complexation with organic acid surface functional group sites. For intracellular incorporation experiments the lab strains and natural consortia preferentially incorporated the lighter Cu isotope with an apparent Δ65Cusolution-solid ranging from ∼+1.0‰ to +4.4‰. Our results indicate that live bacterial cells preferentially sequester the lighter Cu isotope regardless of the experimental conditions. The fractionation mechanisms involved are likely related to active cellular transport and regulation, including the reduction of Cu(II) to Cu(I). Because similar intracellular Cu machinery is shared by fungi, plants, and higher organisms, the influence of biological processes on the δ65Cu of natural waters and soils is probably considerable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号