首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three simultaneous 24-h samplings at three sites over a downstream pH gradient were conducted to examine diel fluctuations in heavy metal concentrations in Fisher Creek, a small mountain stream draining abandoned mine lands in Montana. Average pH values at the upstream (F1), middle (F2), and downstream (F3) monitoring stations were 3.31, 5.46, and 6.80, respectively. The downstream increase in pH resulted in precipitation of hydrous ferric oxide (HFO) and hydrous aluminum oxide (HAO) on the streambed. At F1 and F2, Fe showed strong diel cycles in dissolved concentration and Fe(II)/Fe(III) ratio; these cycles were attributed to daytime photoreduction of Fe(III) to Fe(II), reoxidation of Fe(II) to Fe(III), and temperature-dependent hydrolysis and precipitation of HFO. At the near-neutral downstream station, no evidence of Fe(III) photoreduction was observed, and suspended particles of HFO dominated the total Fe load. HFO precipitation rates between F2 and F3 were highest in the afternoon, due in part to reoxidation of a midday pulse of Fe2+ formed by photoreduction in the upper, acidic portions of the stream. Dissolved concentrations of Fe(II) and Cu decreased tenfold and 2.4-fold, respectively, during the day at F3. These changes were attributed to sorption onto fresh HFO surfaces. Results of surface complexation modeling showed good agreement between observed and predicted Cu concentrations at F3, but only when adsorption enthalpies were added to the thermodynamic database to take into account diel temperature variations. The field and modeling results illustrate that the degree to which trace metals adsorb onto actively forming HFO is strongly temperature dependent. This study is an example of how diel Fe cycles caused by redox and hydrolysis reactions can induce a diel cycle in a trace metal of toxicological importance in downstream waters.  相似文献   

2.
Short-term changes in water chemistry, and especially in dissolved trace element concentrations, associated with diel cycles during base-flow conditions at a specific sampling station in the Baccu Locci stream draining the homonymous old mine area in Sardinia (Italy) were investigated. Diel fluctuations in pH and alkalinity were correlated with the temperature-dependent CO2 solubility and the biologically-induced CO2 production, both of which were higher during the night. Adsorption/desorption to/from streambed material, in particular ferrihydrite, is believed to be the main in-stream mechanism causing the observed diel variations in dissolved concentrations of As and Zn. Arsenic was mainly affected by the dual action of temperature and competing carbonate ions, whereas pH seemed less important. Temperature acted in accordance with the exothermic feature of anion sorption onto hydrous metal oxide surfaces; aqueous carbonate species exerted their competitive effect in relation to alkalinity variation. Zinc was primarily affected by temperature, in accordance with the endothermic feature of metal cation sorption onto hydrous metal oxide surfaces, and secondly by pH. Co-precipitation of As and Zn with calcite is another possible mechanism, which requires further investigation involving examination of inorganic and biological materials coating the streambed. All these processes potentially controlling the diel cycles of trace elements should be carefully considered to assess the effectiveness of remediation actions currently in progress at Baccu Locci. A normalization method for data from asynchronous sampling has been developed and proposed in order to eliminate or at least attenuate the effect of sampling time and provide an additional tool to identify the processes/mechanisms involved in trace element concentration fluctuations observed along a contaminated stream during base-flow conditions.  相似文献   

3.
《Applied Geochemistry》2006,21(3):476-491
Many mining-impacted streams in western Montana with pH near or above neutrality display large (up to 500%) diel cycles in dissolved Zn concentrations. The streams in question typically contain boulders coated with a thin biofilm, as well as black mineral crusts composed of hydrous Mn–Zn oxides. Laboratory mesocosm experiments simulating diel behavior in High Ore Creek (one of the Montana streams with particularly high Zn concentrations) show that the Zn cycles are not caused by 24-h changes in streamflow or hyporheic exchange, but rather to reversible in-stream processes that are driven by the solar cycle and its attendant influence on pH and water temperature (T). Laboratory experiments using natural Mn–Zn precipitates from the creek show that the mobilities of Zn and Mn increase nearly an order of magnitude for each unit decrease in pH, and decrease 2.4-fold for an increase in T from 5 to 20 °C. The response of dissolved metal concentration to small changes in either pH or T was rapid and reversible, and dissolved Zn concentrations were roughly an order of magnitude higher than Mn. These observations are best explained by sorption of Zn2+ and Mn2+ onto the secondary Mn–Zn oxide surfaces. From the T-dependence of residual metal concentrations in solution, approximate adsorption enthalpies of +50 kJ/mol (Zn) and +46 kJ/mol (Mn) were obtained, which are within the range of enthalpy values reported in the literature for sorption of divalent metal cations onto hydrous metal oxides. Using the derived pH- and T-dependencies from the experiments, good agreement is shown between predicted and observed diel Zn cycles for several historical data sets collected from High Ore Creek.  相似文献   

4.
Data are presented on suspended particles and colloids in groundwaters from the Osamu Utsumi mine and the Morro do Ferro analogue study sites. Cross-flow ultrafiltration with membranes of different pore sizes (450 nm to 1.5 nm) was used to prepare colloid concentrates and ultrafiltrates for analyses of major and trace elements and U- and Th-isotopic compositions. Additional characterization of colloidal and particulate material was performed by ESCA, SEM and X-ray diffraction. The results indicate the presence of low concentrations of colloids in these waters (typically < 500 μg/l), composed mainly of iron/organic species. Minor portions of uranium and other trace elements, but significant fractions of the total concentrations of Th and REE in prefiltered waters (< 450 nm) were associated with these colloids.Suspended particles (> 450 nm), also composed mainly of hydrous ferric oxides and humic-like compounds, show the same trend as the colloids with respect to U, Th and REE associations, but elemental concentrations were typically higher by a factor of 1,000 or more. In waters of low pH and with high sulphate content, these associations are considerably lower. Due to the low concentrations of suspended particles in groundwaters from the Osamu Utsumi uranium mine (typically <0.5 mg/l), these particles carry only a minor fraction of U and the REE (<10% of the total concentrations in unfiltered groundwaters), but a significant, usually predominant fraction of Th (30–70%). The suspended particle load in groundwaters from the Morro do Ferro environment is typically higher than in those from the mine by a factor of 5 to 10. This suggests that U, Th and the REE could be transported predominantly by particulate matter. However, these particles and colloids seem to have a low capacity for migration.  相似文献   

5.
6.
Experiments were conducted to evaluate the impact of organic complexation on the development of Ce anomalies and the lanthanide tetrad effect during the adsorption of rare-earth elements (REE) onto MnO2. Two types of aqueous solutions—NaCl and NaNO3—were tested at pH 5 and 7.5. Time-series experiments indicate that a steady-state is reached within less than 10 h when REE occur as free inorganic species, whereas steady state is not reached before 10 d when REE occur as REE-humate complexes. The distribution coefficients (KdREE) between suspended MnO2 and solution show no or only very weak positive Ce anomaly or lanthanide tetrad effect when REE occur as humate complexes, unlike the results obtained in experiments with REE occurring as free inorganic species. Monitoring of dissolved organic carbon (DOC) concentrations show that log KdREEorganic/KdDOC ratios are close to 1.0, implying that the REE and humate remain bound to each other upon adsorption. Most likely, the Ce anomaly reduction/suppression in the organic experiments arises from a combination of two processes: (i) inability of MnO2 to oxidize Ce(III) because of shielding of MnO2 surfaces by humate molecules and (ii) Ce(IV) cannot be preferentially removed from solution due to quantitative complexation of the REE by organic matter. We suggest that the lack of lanthanide tetrad effect arises because the adsorption of REE-humate complexes onto MnO2 occurs dominantly via the humate side of the complexes (anionic adsorption), thereby preventing expression of the differences in Racah parameters for 4f electron repulsion between REE and the oxide surface. The results presented here explain why, despite the development of strongly oxidizing conditions and the presence of MnO2 in the aquifer, no (or insignificant) negative Ce anomalies are observed in organic-rich waters. The present study demonstrates experimentally that the Ce anomaly cannot be used as a reliable proxy of redox conditions in organic-rich waters or in precipitates formed at equilibrium with organic-rich waters.  相似文献   

7.
The fractionation of rare earth elements (REE) was evaluated under the conditions of natural acidic water mixing with fresh and sea waters using the example of unique objects on Kunashir Island (the Kislaya and Lesnaya rivers). It was shown that the concentrations and fractionation of REE in the water types considered are diverse and controlled by a number of factors. The concentrations of dissolved REE normalized to the North American Shale Composite show an increase from the light to the heavy REE, which reflects both the character of the REE input with the thermal waters and the more active sorption of the light REE and their preferential removal to suspended solids. This is supported by the similar REE patterns in the suspended matter of the Kislaya River. The mixing of the waters of the Kislaya and Lesnaya rivers, which are assigned to different chemical types, is accompanied by active REE coprecipitation with Fe, Al, and Mn oxides and the more extensive removal of the light REE compared with the heavy REE. During acidic water mixing with seawater, more than 80% of the REE were precipitated at a salinity of 8‰.  相似文献   

8.
《Applied Geochemistry》2004,19(8):1339-1354
Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH.  相似文献   

9.
The aquatic chemistry of rare earth elements in rivers and estuaries   总被引:17,自引:0,他引:17  
Laboratory experiments were carried out to determine how pH, colloids and salinity control the fractionation of rare earth elements (REEs) in river and estuarine waters. By using natural waters as the reaction media (river water from the Connecticut, Hudson and Mississippi Rivers) geochemical reactions can be studied in isolation from the large temporal and spatial variability inherent in river and estuarine chemistry. Experiments, field studies and chemical models form a consistent picture whereby REE fractionation is controlled by surface/solution reactions. The concentration and fractionation of REEs dissolved in river waters are highly pH dependent. Higher pH results in lower concentrations and more fractionated composition relative to the crustal abundance. With increasing pH the order of REE adsorption onto river particle surfaces is LREEs > MREEs > HREEs. With decreasing pH, REEs are released from surfaces in the same order. Within the dissolved (<0.22 µm) pool of river waters, Fe-organic colloids are major carriers of REEs. Filtration through filters and ultrafilters with progressively finer pore sizes results in filtrates which are lower in absolute concentrations and more fractionated. The order of fractionation with respect to shale, HREEs > MREEs > LREEs, is most pronounced in the solution pool, defined here as <5K and <50K ultrafiltrates. Colloidal particles have shale-like REE compositions and are highly LREE enriched relative to the REE composition of the dissolved and solution pools. The addition of sea water to river water causes the coagulation of colloidal REEs within the dissolved pool. Fractionation accompanies coagulation with the order of sea water-induced removal being LREEs > MREEs > HREEs. While the large scale removal of dissolved river REEs in estuaries is well established, the release of dissolved REEs off river particles is a less studied process. Laboratory experiments show that there is both release and fractionation of REEs when river particles are leached with seawater. The order of sea water-induced release of dissolved REE(III) (LREEs > MREEs > HREEs) from Connecticut River particles is the same as that associated with lowering the pH and the same as that associated with colloidal particles. River waters, stripped of their colloidal particles by coagulation in estuaries, have highly evolved REE composition. That is, the solution pool of REEs in river waters are strongly HREE-enriched and are fractionated to the same extent as that of Atlantic surface seawater. This strengthens the conclusions of previous studies that the evolved REE composition of sea water is coupled to chemical weathering on the continents and reactions in estuaries. Moreover, the release of dissolved Nd from river particles to sea water may help to reconcile the incompatibility between the long oceanic residence times of Nd (7100 yr) and the inter-ocean variations of the Nd isotopic composition of sea water. Using new data on dissolved and particle phases of the Amazon and Mississippi Rivers, a comparison of field and laboratory experiments highlights key features of REE fractionation in major river systems. The dissolved pool of both rivers is highly fractionated (HREE enriched) with respect to the REE composition of their suspended particles. In addition, the dissolved pool of the Mississippi River has a large negative Ce-anomaly suggesting in-situ oxidation of Ce(III). One intriguing feature is the well developed maximum in the middle REE sector of the shale normalized patterns for the dissolved pool of Amazon River water. This feature might reflect competition between surface adsorption and solution complexation with carbonate and phosphate anions.  相似文献   

10.
巢湖的稀土元素地球化学特征   总被引:2,自引:1,他引:1  
采用液-液萃取法和ICP-MS测试技术对巢湖的溶解态稀土元素进行了分析。结果表明,巢湖的溶解态稀土的含量与世界淡水相当,丰水期的样品含量高于其他季节。pH值和悬浮物、胶体是控制巢湖水体中溶解态稀土含量的主要因素。巢湖的溶解态稀土的分布模式以平坦型为主,少数呈现重稀土富集。丰水期和枯水期的溶解态稀土的(La/Yb)N值从西半湖区到东半湖区呈现有规律性的逐渐增大,并且丰水期的(La/Yb)N值低于枯水期。在富营养化湖泊中,胶体和水生生物可能是造成这一现象的主要原因。  相似文献   

11.
This work assessed both the fractionation and the seasonal mobility variations of Ga and In in systems impacted by acidic thermal waters. This was accomplished by performing thermodynamic calculations using the PHREEQC algorithm and by assessing the activity of acidophilic iron-oxidizing bacteria. The pH of the Kusatsu thermal waters in Gunma Prefecture, central Japan, is rapidly increased following the addition of a lime suspension. After an abrupt pH increase, under which conditions free ions of Ga and In and their complexes with Cl? and SO42? exist only in negligible quantities, the majority of dissolved Ga and In is removed by sorption onto suspended hydrous ferric oxides (HFOs). These HFOs are then transported to an artificial lake without significant sedimentation along the river. Subsequently, the suspended HFOs settle out and are added to sediments without significant fractionation between Ga and In. The Tamagawa thermal waters in Akita Prefecture, northeast Japan, are also treated with lime. However, complete neutralization requires mixing with some tributary streams, leading to a gradual downstream increase in pH. Dissolved Ga is, in general, sorbed by HFOs in upstream areas, leading to wide dispersal of Ga across the entire watershed. In comparison, In is transported to the lake inlet predominantly as a Cl? complex species without significant removal along the river, with the majority being precipitated in an artificial lake, where Cl? concentrations are too low to form stable complex species with In, and thus, dissolved In is sorbed by HFOs. As a result, In is effectively concentrated within downstream lakebed sediments, whereas Ga is dispersed along the river. Seasonal variations in Ga mobility within the Tamagawa field between snowmelt and low-flow seasons are primarily controlled by pH, because hydrolysis reactions of these metals, which are related to sorption reactions, tend to occur in the upstream regions in the snowmelt season. However, under warmer conditions, HFO formation preferably occurs due to the activity of acidophilic iron-oxidizing bacteria. Thus, under similar pH variations, dissolved Ga is more effectively removed by HFOs during warmer seasons. On the contrary, because HFOs are abundantly formed in low-flow season, even under colder conditions, before In hydrolysis reaction starts to occur, In mobility is less affected by water temperature and then bacterial activity.  相似文献   

12.
Substantial diel (24-h) cycles in dissolved (0.1-m filtration) metal concentrations were observed during summer low flow, winter low flow, and snowmelt runoff in Prickly Pear Creek, Montana. During seven diel sampling episodes lasting 34–61.5 h, dissolved Mn and Zn concentrations increased from afternoon minimum values to maximum values shortly after sunrise. Dissolved As concentrations exhibited the inverse timing. The magnitude of diel concentration increases varied in the range 17–152% for Mn and 70–500% for Zn. Diel increases of As concentrations (17–55%) were less variable. The timing of minimum and maximum values of diel streamflow cycles was inconsistent among sampling episodes and had little relation to the timing of metal concentration cycles, suggesting that geochemical rather than hydrological processes are the primary control of diel metal cycles. Diel cycles of dissolved metal concentrations should be assumed to occur at any time of year in any stream with dissolved metals and neutral to alkaline pH.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   

13.
《Applied Geochemistry》1998,13(4):451-462
Water, suspended matter, and sediment samples were taken from 8 locations along the Yangtze River in 1992. The concentration and speciation (exchangeable, bound to carbonates, bound to Fe–Mn oxides, bound to organic matter, and residual forms) of rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb, and Lu) were determined by instrumental neutron activation analysis (INAA).The contents of the soluble fraction of REEs in the river are low, and REEs mainly reside in particulate form. In the particles, the chondrite-normalized distribution patterns show significant LREE enrichment and Eu-depletion. While normalized to shales, both sediments and suspended matter samples show relative LREE enrichment and HREE depletion. REEs are relatively enriched in fine-grained fractions of the sediments.The speciation characteristics of REEs in the sediments and suspended matter are very similar. The amount of the five forms follows the order: residual>>bound to organic matter∼bound to Fe–Mn oxides>bound to carbonates>>exchangeable. About 65 to 85% of REEs in the particles exist in the residual form, and the exchangeable form is very low. High proportions of residual REEs reveal that REEs in sediments and suspended matter are controlled by their abundances in the earth's crust. Carbonate, Fe–Mn oxide and organic fractions of REEs in sediments account for 2.4–6.9%, 5.2–11.1%, and 7.3–14.0% of the total contents respectively. They are similar to those in the suspended matter. This shows that carbonates, Fe–Mn oxides and organic matter play important roles during the particle-water interaction processes. By normalization to shales, the 3 forms of REEs follow convex shapes according to atomic number with middle REE (Sm, Eu, and Tb) enrichment, while light REE and heavy REE are depleted.  相似文献   

14.
河流稀土元素地球化学研究进展   总被引:30,自引:1,他引:30  
河流系统中,稀土元素(REE)受区域地质背景、风化作用、溶液化学以及水与颗粒物相互作用等因素的影响发生分异。河流悬浮物显示轻稀土(LREE)适度富集;河水显示重稀土(HREE)富集,或在HREE富集的基础上又有适度的中稀土(MREE)富集;与其它微量元素相比,REE在河水与颗粒物之间有较小的分配系数(K≈10-6);河流沉积物多显示平坦的REE配分模式。  相似文献   

15.
Here we report diel (24 h) and seasonal differences in the concentration and stable carbon isotope composition of dissolved inorganic (DIC) and organic carbon (DOC) in the Clark Fork (CFR) and Big Hole (BHR) Rivers of southwestern Montana, USA. In the CFR, DIC concentration decreased during the daytime and increased at night while DOC showed an inverse temporal relationship; increasing in the daytime most likely due to release of organic photosynthates and decreasing overnight due to heterotrophic consumption. The stable isotope composition of DIC (δ13C-DIC) became enriched during the day and depleted over night and the δ13C-DOC displayed the inverse temporal pattern. Additionally, the night time molar rate of decrease in the concentration of DOC was up to two orders of magnitude smaller than the rate of increase in the concentration of DIC indicating that oxidation of DOC was responsible for only a small part of the increase in inorganic carbon. In the BHR, in two successive years (late summer 2006 & 2007), the DIC displayed little diel concentration change, however, the δ13C-DIC did show a more typical diel pattern characteristic of the influences of photosynthesis and respiration indicating that the isotopic composition of DIC can change while the concentration stays relatively constant. During 2006, a sharp night time increase in DOC was measured; opposite to the result observed in the CFR and may be related to the night time increase in flow and pH also observed in that year. This night time increase in DOC, flow, and pH was not observed 1 year later at approximately the same time of year. An in-stream mesocosm chamber used during 2006 showed that the night time increase in pH and DOC did not occur in water that was isolated from upstream or hyporheic contributions. This result suggests that a “pulse” of high DOC and pH water was advected to the sampling site in the BHR in 2006 and a model is proposed to explain this temporal pattern.  相似文献   

16.
Concentrations of total and dissolved elements were determined in 35 water samples collected from rivers in Sardinia, a Mediterranean island in Italy. The overall composition did not change for waters sampled in both winter and summer (i.e., January at high-flow condition and June at low-flow condition), but the salinity and concentrations of the major ions increased in summer. Concentrations of elements such as Li, B, Mn, Rb, Sr, Mo, Ba and U were higher in summer with only small differences between total and dissolved (i.e., in the fraction <0.4 μm) concentrations. The fact that these elements are mostly dissolved during low flow periods appears to be related to the intensity of water–rock interaction processes that are enhanced when the contribution of rainwater to the rivers is low, that is during low-flow conditions. In contrast, the concentrations of Al and Fe were higher in winter during high flow with total concentrations significantly higher than dissolved concentrations, indicating that the total amount depends on the amount of suspended matter. In waters filtered through 0.015 μm pore-size filters, the concentrations of Al and Fe were much lower than in waters filtered through 0.4 μm pore-size filters, indicating that the dissolved fraction comprises very fine particles or colloids. Also, Co, Ni, Cu, Zn, Cd and Pb were generally higher in waters collected during the high-flow condition, with much lower concentrations in 0.015 μm pore-size filtered waters; this suggests aqueous transport via adsorption onto very fine particles. The rare earth elements (REE) and Th dissolved in the river waters display a wide range in concentrations (∑REE: 0.1–23 μg/L; Th: <0.005–0.58 μg/L). Higher REE and Th concentrations occurred at high flow. The positive correlation between ∑REE and Fe suggests that the REE are associated with very fine particles (>0.015 and <0.4 μm); the abundance of these particles in the river controls the partitioning of REE between solution and solid phases.Twenty percent of the water samples had dissolved Pb and total Hg concentrations that exceeded the Italian guidelines for drinking water (>10 μg/L Pb and >1 μg/L Hg). The highest concentrations of these heavy metals were observed at high-flow conditions and they were likely due to the weathering of mine wastes and to uncontrolled urban wastes discharged into the rivers.  相似文献   

17.
Sorption of lanthanides on smectite and kaolinite   总被引:2,自引:0,他引:2  
Experiments were carried out to investigate the sorption of the complete lanthanide series (Ln or rare earth elements, REE) on a kaolinite and an a Na-montmorillonite at 22°C over a wide range of pH (3-9). Experiments were conducted at two ionic strengths, 0.025 and 0.5 M, using two different background electrolytes (NaNO3 or NaClO4) under atmospheric conditions or N2 flow (glove box). The REE sorption does not depend on the background electrolyte or the presence of dissolved CO2, but is controlled by the nature of the clay minerals, the pH and the ionic strength. At 0.5 M, both clay minerals exhibit the same pH dependence for the Ln sorption edge, with a large increase in the sorption coefficient (KD) above pH 5.5. At 0.025 M, the measured KD is influenced by the Cation Exchange Capacity (CEC) of the minerals. Two different behaviours are observed for smectite: between pH 3 and 6, the KD is weakly pH-dependent, while above pH 6, there is a slight decrease in log KD. This can be explained by a particular arrangement of the particles. For kaolinite, the sorption coefficient exhibits a linear increase with increasing pH over the studied pH range. A fractionation is observed that due to the selective sorption between the HREEs and the LREEs at high ionic strength, the heavy REE is being more sorbed than the light REE. These results can be interpreted in terms of the surface chemistry of clay minerals, where two types of surface charge are able to coexist: the permanent structural charge and the variable pH-dependent charge. The fractionation due to sorption observed at high ionic strength can be interpreted either because of a competition with sodium or because of the formation of inner-sphere complexes. Both processes could favour the sorption of HREEs according to the lanthanide contraction.  相似文献   

18.
Mine-drainage water from coal mines of Kerman region,Iran   总被引:1,自引:0,他引:1  
Two types of mine-drainage water were recognized in Kerman coalfield, namely neutral to alkaline and acid (AMD). Both types contain a high level of trace-metal concentrations with a higher level in AMD. Trace metals from the coal-mine waters of Kerman coalfield are mainly present as adsorption on Fe and Mn oxide and hydroxide particles, and to a lesser extent as sulfate, simple metal ions and as metal sorption on clay particles and hydrous aluminum oxides.  相似文献   

19.
Rare earth element (REE) adsorption onto sand from a well characterized aquifer, the Carrizo Sand aquifer of Texas, has been investigated in the laboratory using a batch method. The aim was to improve our understanding of REE adsorption behavior across the REE series and to develop a surface complexation model for the REEs, which can be applied to real aquifer-groundwater systems. Our batch experiments show that REE adsorption onto Carrizo sand increases with increasing atomic number across the REE series. For each REE, adsorption increases with increasing pH, such that when pH >6.0, >98% of each REE is adsorbed onto Carrizo sand for all experimental solutions, including when actual groundwaters from the Carrizo Sand aquifer are used in the experiments. Rare earth element adsorption was not sensitive to ionic strength and total initial REE concentrations in our batch experiments. It is possible that the differences in experimental ionic strength conditions (i.e., 0.002-0.01 M NaCl) chosen were insufficient to affect REE adsorption behavior. However, cation competition (e.g., Ca, Mg, and Zn) did affect REE adsorption onto Carrizo sand, especially for light rare earth elements (LREEs) at low pH. Rare earth element adsorption onto Carrizo sand can be successfully modeled using a generalized two-layer surface complexation model. Our model calculations suggest that REE complexation with strong surface sites of Carrizo sand exceeds the stability of the aqueous complexes LnOH2+, LnSO4+, and LnCO3+, but not that of Ln(CO3)2- or LnPO4o in Carrizo groundwaters. Thus, at low pH (<7.3), where major inorganic ligands did not effectively compete with surface sites for dissolved REEs, free metal ion (Ln3+) adsorption was sufficient to describe REE adsorption behavior. However, at higher pH (>7.3) where solution complexation of the dissolved REEs was strong, REEs were adsorbed not only as free metal ion (Ln3+) but also as aqueous complexes (e.g., as Ln(CO3)2- in Carrizo groundwaters). Because heavy rare earth elements (HREEs) were preferentially adsorbed onto Carrizo sand compared to LREEs, original HREE-enriched fractionation patterns in Carrizo groundwaters from the recharge area flattened along the groundwater flow path in the Carrizo Sand aquifer due to adsorption of free- and solution-complexed REEs.  相似文献   

20.
Rare-earth elements in samples of geological interest were separated from other elements and concentrated onto ion-exchange membrane through ion-exchange procedures. The membrane was then used to determine the REE by X-ray fluorescence spectrography. In comparison with the traditional “thick-specimen” approach, the requirement of sample (REE oxides) in this method was reduced from 10 to 1 mg. Variable-internal-standard-quantification method was adopted to determine the relative concentrations of REE collected on the membrane. The area density of the sample was controlled at about 0.0003 g/cm2, so that the matrix effect could be eliminated to a satisfactory extent. Interference calibration between the spectro-lines and the background determination was also improved, with the detection limit reaching 2.5×10?6g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号