首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on δ13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of δ18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in δ18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that δ18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50 °C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that δ18O values of CO2 were on average 36.4 ± 2.2‰ (1σ, n = 15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5‰ for the experimental temperatures of 50 °C. By using 18O enriched water for the experiments it was demonstrated that changes in the δ18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in δ18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the δ18O values of CO2 and water are sufficiently distinct.  相似文献   

2.
We report new stepped heating He, Ar, CO2 and water data on a petrogenetically diverse suite of lavas from the Manus back-arc basin, where a plume component has previously been identified. The aim of this study is to evaluate the superimposed effects of degassing and contamination in order to identify mantle source characteristics. CO2 abundances and carbon isotopes in both the vesicle ([CO2] up to 180ppm; δ13C as low as -33.6 ‰) and glass ([CO2] up to 270ppm; δ13C as low as -34.3 ‰) phases reveal that samples have been modified by varying degrees of degassing. High water concentration samples (back-arc basin basalts (BABB) and arc type samples) show the highest degrees of degassing (i.e. lower δ13C values and lower CO2 contents). The results are modelled for both the glass and vesicle phases using batch and fractional degassing models. Parental melt compositions can be constrained to show the following CO2 concentration trend: arc-type > BABB s.r. (southern rift) > MORB-2, E-MORB, X-BABB (extreme BABB), BABB > MORB-1 and MORB-smt. 4He/40Ar∗ ratios of samples (14.6-1100) are consistent with residual volatiles from a degassed source. Variations in CO2/3He values are likely due to degassing, followed by contamination from a crustal source (either the subducting Solomon Sea Plate or the pre-existing crust through which the lavas erupt), as evidenced by high K2O/TiO2 ratios and low δ13C. The CO2/3He of the Manus plume is best estimated by the MORB-smt and MORB-1 samples at 3.1 ± 0.6 x 109. This value is similar to previous estimates of plume CO2/3He values, which are either equal to or slightly greater than the upper mantle average of 2 x 109.  相似文献   

3.
Basaltic glasses included in olivine phenocrysts from Kilauea volcano contain concentrations of H2O, CO2, and S similar to glassy Kilauean basalt dredged from the deep sea floor and greater than vesicular, subaerial Kilauean basalt. Our result contrasts with earlier reports that inclusions of basaltic glass in phenocrysts have little or no H2O and large ratios of CO2H2O. Our analysed inclusions of glass are larger than 100 micrometers thick and similar in chemical composition to the host glass surrounding the olivine crystals indicating that the trapped melts are representative of the bulk liquid from which the crystals grew. Crystallization of about 2–8% of olivine from the melts after they were trapped is indicated by slight departures from the experimentally established equilibrium distribution of Mg and Fe between olivine and liquid. The measured concentrations of CO2 correspond to phenocryst crystallization pressures of about 1.3 kbar for a subaerial basalt and about 5 kbar for a submarine basalt, consistent with geophysical models of Kilauea volcano. The compositions of volcanic gas predicted from our analyses are consistent with restored compositions of actual Kilauean gases. The rate of sulfur emission predicted from our analyses is greater than the sulfur dioxide emission rate observed during repose, but probably consistent with total degassing including eruptive episodes. The concentrations of H2O, K2O, Cl, and P in parental Kilauean basalt can be derived from upper mantle phlogopitic mica, pargasitic amphibole and apatite with compositions close to those of natural primary minerals in ultramafic xenoliths from continental kimberlites, or solely from apatite and phlogopitic mica with H2OK2O near 0.47 ± 0.03, slightly higher than the range of values reported. The amounts of phlogopitic mica and pargasitic amphibole contributing volatiles to Kilauean tholeiite is about 10 percent by mass of the parental liquid, or about 5% if the source does not include amphibole. In view of an estimated 20% of partial melting of mantle source rock to produce Kilauean tholeiites, there may be about 2 weight percent of mica plus amphibole in part of the mantle beneath Kilauea, or about 1 weight percent of phlogopitic mica if amphibole is absent.  相似文献   

4.
The concentrations of Ir, Ru, Pt and Pd have been determined in 29 Mid-Oceanic Ridge basaltic (MORB) glasses from the Pacific (N = 7), the Atlantic (N = 10) and the Indian (N = 11) oceanic ridges and the Red Sea (N = 1) spreading centers. The effect of sulfide segregation during magmatic differentiation has been discussed with sample suites deriving from parental melts produced by high (16%) and low (6%) degrees of partial melting, respectively. Both sample suites define positive and distinct covariation trends in platinum-group elements (PGE) vs. Ni binary plots. The high-degree melting suite displays, for a given Ni content, systematically higher PGE contents relative to the low-degree melting suite. The mass fraction of sulfide segregated during crystallization (Xsulf), the achievement of equilibrium between sulfide melt and silicate melts (Reff), and the respective proportions between fractional and batch crystallization processes (Sb) are key parameters for modeling the PGE partitioning behavior during S-saturated MORB differentiation. Regardless of the model chosen, similar sulfide melt/silicate melt partition coefficients for Ir, Ru, Pt and Pd are needed to model the sulfide segregation process, in agreement with experimental data. When corrected for the effect of magmatic differentiation, the PGE data display coherent variations with partial melting degrees. Iridium, Ru and Pt are found to be compatible in nonsulfide minerals whereas the Pd behaves as a purely chalcophile element. The calculated partition coefficients between mantle sulfides and silicate melts (assuming a PGE concentration in the oceanic mantle at ∼0.007 × CI-chondritic abundances) increase from Pd (∼103) to Ir (∼105). This contrasting behavior of PGE during S-saturated magmatic differentiation and mantle melting processes can be accounted for by assuming that Monosufide Solid Solution (Mss) controls the PGE budget in MORB melting residues whereas MORB differentiation processes involve Cu-Ni-rich sulfide melt segregation.  相似文献   

5.
We determined total CO2 solubilities in andesite melts with a range of compositions. Melts were equilibrated with excess C-O(-H) fluid at 1 GPa and 1300°C then quenched to glasses. Samples were analyzed using an electron microprobe for major elements, ion microprobe for C-O-H volatiles, and Fourier transform infrared spectroscopy for molecular H2O, OH, molecular CO2, and CO32−. CO2 solubility was determined in hydrous andesite glasses and we found that H2O content has a strong influence on C-O speciation and total CO2 solubility. In anhydrous andesite melts with ∼60 wt.% SiO2, total CO2 solubility is ∼0.3 wt.% at 1300°C and 1 GPa and total CO2 solubility increases by about 0.06 wt.% per wt.% of total H2O. As total H2O increases from ∼0 to ∼3.4 wt.%, molecular CO2 decreases (from 0.07 ± 0.01 wt.% to ∼0.01 wt.%) and CO32− increases (from 0.24 ± 0.04 wt.% to 0.57 ± 0.09 wt.%). Molecular CO2 increases as the calculated mole fraction of CO2 in the fluid increases, showing Henrian behavior. In contrast, CO32− decreases as the calculated mole fraction of CO2 in the fluid increases, indicating that CO32− solubility is strongly dependent on the availability of reactive oxygens in the melt. These findings have implications for CO2 degassing. If substantial H2O is present, total CO2 solubility is higher and CO2 will degas at relatively shallow levels compared to a drier melt. Total CO2 solubility was also examined in andesitic glasses with additional Ca, K, or Mg and low H2O contents (<1 wt.%). We found that total CO2 solubility is negatively correlated with (Si + Al) cation mole fraction and positively correlated with cations with large Gibbs free energy of decarbonation or high charge-to-radius ratios (e.g., Ca). Combining our andesite data with data from the literature, we find that molecular CO2 is more abundant in highly polymerized melts with high ionic porosities (>∼48.3%), and low nonbridging oxygen/tetrahedral oxygen (<∼0.3). Carbonate dominates most silicate melts and is most abundant in depolymerized melts with low ionic porosities, high nonbridging oxygen/tetrahedral oxygen (>∼0.3), and abundant cations with large Gibbs free energy of decarbonation or high charge-to-radius ratio. In natural silicate melt, the oxygens in the carbonate are likely associated with tetrahedral and network-modifying cations (including Ca, H, or H-bonds) or a combinations of those cations.  相似文献   

6.
Hydrogen isotope exchange between water and orthosilicic acid (H4SiO4) was modeled using B3LYP calculations and classical transition-state theory. Configurations of 1, 2, 3 and 7 water molecules and H4SiO4 were used to investigate energetically viable reaction pathways. An upper-bound of 71 kJ/mol was assumed for the zero-point energy corrected barrier (ZPECB) because this is the experimentally determined activation energy for Si-O bond breaking (Rimstidt and Barnes, 1980) and ZPECB is expected to be close to this value. Long range solvation forces were accounted for using the integral equation formalism polarized continuum model (IEFPCM; Cancès et al., 1997). Primary and secondary isotope effects were computed by exchanging hydrogen atoms with deuterium. Results show that reaction mechanisms involving 3 and 7 water molecules have ZPECB of 34 to 38 kJ/mol, whereas those involving 1 and 2 water molecules have ZPECB in excess of the set upper-bound. The lower range of ZPECB with 3 or 7 water molecules is reasonable to explain rapid hydrogen isotope exchange with silicates. Rate constant calculations accounting for tunneling, anharmonicity and scaling factors indicate that the reaction is fast and equilibrium can be assumed under most geologic conditions.  相似文献   

7.
渭河盆地具有良好的氦资源前景,在勘探调查中氦气含量的测定至关重要。笔者针对渭河盆地顶空气样品中的氦氖氢测试方法与应用进行研究探讨。本方法通过气密性进样装置解决进样过程中气体样品中含较多水汽与气体逸散等问题,提高结果准确性与稳定性。采用阀切换反吹技术有效避免无关组分干扰并保护色谱柱。经多次实验优化确定仪器分析条件:载气流速14 mL/min;检测器(TCD)温度:180℃;柱箱温度:40℃;阀切换时间:0.65 min。通过检出限、正确度和精密度等参数确定了方法的可行性。最后将该方法应用于渭河盆地某剖面的顶空气样品氦气的测试中,结果满意。证明该方法具有良好的应用前景。  相似文献   

8.
9.
Here we present the first data on He, Ne, Ar isotopic and elemental composition in fluid phases of tholeiitic chilled glasses from the Bouvet Triple Junction (BTJ). The chilled glasses from several dredging stations situated at different segments of BTJ have been investigated: Spiess Ridge, Mid Atlantic Ridge (MAR) and in a valley of the Southwest Indian Ridge (SWIR). The data allow to distinguish within BTJ three segments characterized by different geochemical behavior of He, Ne and Ar. MAR and Spiess samples contain MORB-like helium and neon while SWIR is characterized by addition of plume type He and Ne. The strong atmospheric contamination is typical of all segments, but for MAR it is less pronounced. The Ne-Ar isotope systematics suggests that the atmospheric component was most probably introduced into the mantle source of the fluids with fragments of oceanic crust/sediments.  相似文献   

10.
11.
Based on our previous development of the molecular interaction potential for pure H2O and CO2 [Zhang, Z.G., Duan, Z.H. 2005a. Isothermal-isobaric molecular dynamics simulations of the PVT properties of water over wide range of temperatures and pressures. Phys. Earth Planet Interiors149, 335-354; Zhang, Z.G., Duan, Z.H. 2005b. An optimized molecular potential for carbon dioxide. J. Chem. Phys.122, 214507] and the ab initio potential surface across CO2-H2O molecules constructed in this study, we carried out more than one thousand molecular dynamics simulations of the PVTx properties of the CO2-H2O mixtures in the temperature-pressure range from 673.15 to 2573.15 K up to 10.0 GPa. Comparison with extensive experimental PVTx data indicates that the simulated results generally agree with experimental data within 2% in density, equivalent to experimental uncertainty. Even the data under the highest experimental temperature-pressure conditions (up to 1673 K and 1.94 GPa) are well predicted with the agreement within 1.0% in density, indicating that the high accuracy of the simulation is well retained as the temperature and pressure increase. The consistent and stable predictability of the simulation from low to high temperature-pressure and the fact that the molecular dynamics simulation resort to no experimental data but to ab initio molecular potential makes us convinced that the simulation results should be reliable up to at least 2573 K and 10 GPa with errors less than 2% in density. In order to integrate all the simulation results of this study and previous studies [Zhang and Duan, 2005a, 2005b] and the experimental data for the calculation of volumetric properties (volume, density, and excess volume), heat properties, and chemical properties (fugacity, activity, and possibly supercritical phase separation), an equation of state (EOS) is laboriously developed for the CO2, H2O, and CO2-H2O systems. This EOS reproduces all the experimental and simulated data covering a wide temperature and pressure range from 673.15 to 2573.15 K and from 0 to 10.0 GPa within experimental or simulation uncertainty.  相似文献   

12.
Armenite, ideal formula BaCa2Al6Si9O30·2H2O, and its dehydrated analog BaCa2Al6Si9O30 and epididymite, ideal formula Na2Be2Si6O15·H2O, and its dehydrated analog Na2Be2Si6O15 were studied by low-temperature relaxation calorimetry between 5 and 300 K to determine the heat capacity, Cp, behavior of their confined H2O. Differential thermal analysis and thermogravimetry measurements, FTIR spectroscopy, electron microprobe analysis and powder Rietveld refinements were undertaken to characterize the phases and the local environment around the H2O molecule.The determined structural formula for armenite is Ba0.88(0.01)Ca1.99(0.02)Na0.04(0.01)Al5.89(0.03)Si9.12(0.02)O30·2H2O and for epididymite Na1.88(0.03)K0.05(0.004)Na0.01(0.004)Be2.02(0.008)Si6.00(0.01)O15·H2O. The infrared (IR) spectra give information on the nature of the H2O molecules in the natural phases via their H2O stretching and bending vibrations, which in the case of epididymite only could be assigned. The powder X-ray diffraction data show that armenite and its dehydrated analog have similar structures, whereas in the case of epididymite there are structural differences between the natural and dehydrated phases. This is also reflected in the lattice IR mode behavior, as observed for the natural phases and the H2O-free phases. The standard entropy at 298 K for armenite is S° = 795.7 ± 6.2 J/mol K and its dehydrated analog is S° = 737.0 ± 6.2 J/mol K. For epididymite S° = 425.7 ± 4.1 J/mol K was obtained and its dehydrated analog has S° = 372.5 ± 5.0 J/mol K. The heat capacity and entropy of dehydration at 298 K are Δ = 3.4 J/mol K and ΔSrxn = 319.1 J/mol K and Δ = −14.3 J/mol K and ΔSrxn = 135.7 J/mol K for armenite and epididymite, respectively. The H2O molecules in both phases appear to be ordered. They are held in place via an ion-dipole interaction between the H2O molecule and a Ca cation in the case of armenite and a Na cation in epididymite and through hydrogen-bonding between the H2O molecule and oxygen atoms of the respective silicate frameworks. Of the three different H2O phases ice, liquid water and steam, the Cp behavior of confined H2O in both armenite and epididymite is most similar to that of ice, but there are differences between the two silicates and from the Cp behavior of ice. Hydrogen-bonding behavior and its relation to the entropy of confined H2O at 298 K is analyzed for various microporous silicates.The entropy of confined H2O at 298 K in various silicates increases approximately linearly with increasing average wavenumber of the OH-stretching vibrations. The interpretation is that decreased hydrogen-bonding strength between a H2O molecule and the silicate framework, as well as weak ion-dipole interactions, results in increased entropy of H2O. This results in increased amplitudes of external H2O vibrations, especially translations of the molecule, and they contribute strongly to the entropy of confined H2O at T < 298 K.  相似文献   

13.
Larryn W. Diamond   《Lithos》2001,55(1-4):69-99
Aqueous solutions that contain volatile (gas) components are one of the most important types of fluid in the Earth's crust. The record that such fluids have left in the form of fluid inclusions in minerals provides a wealth of insight into the geochemical and petrologic processes in which the fluids participated. This article reviews the systematics of CO2–H2O fluid inclusions as a starting point for interpreting the chemically more complex systems. The phase relations of the binary are described with respect to a qualitative PTX model, and isoplethic–isochoric paths through this model are used to explain the equilibrium and non-equilibrium behaviour of fluid inclusions during microthermometric heating and cooling. The PTX framework is then used to discuss the various modes of fluid inclusion entrapment, and how the resulting assemblage textures can be used to interpret the PT conditions, phase states, and evolution paths of the parent solutions. Finally, quantitative methods are reviewed by which bulk molar volume and composition of CO2–H2O fluid inclusions can be determined from microthermometric observations of phase transitions.  相似文献   

14.
A new microscope vacuum heating stage and gas analyzer has been developed for measurement of H2O, CO2, SO2, and noncondensable gas (H2, CO, N2, Ar, CH4, etc.) evolved from samples, particularly natural glass, at temperatures up to 1280°C. The gas evolved upon heating to 1280δC is collected in a liquid nitrogen cold trap. Gas components are identified by the characteristic vapor pressure and temperature ranges over which solid and vapor are in equilibrium during sublimation of individual components. The masses of CO2, SO2, and H2O derived from samples and blanks are calculated using the ideal gas law, the molecular weights of the components, and the gauge constant (i.e. the ratio of the number of moles of a gas to its partial pressure in the constant volume). Results obtained by repeated determinations of H2O, CO2, and SO2 evolved from a submarine basaltic glass from Kilauea volcano, Hawaii, (average sample mass = 3 × 10?3 g) gave probable errors for the determinations of H2O (0.23%), CO2 (0.025%), and S (0.071%) equal to 4, 10, and 8% respectively, of the concentrations. Determinations of H2O in smaller samples of H2O-poor basaltic pumice show a linear proportionality (0.063%) between the measured H2O and the sample mass over the range 0.1 × 10?6 to 1.7 × 10?6 g H2O. Comparisons of H2O determinations by this technique with those obtained by Penfield, gas chromatic, microcoulometric, and vacuum fusion techniques used elsewhere show reasonably good agreement. Determinations of SO2 by this technique agree reasonably well X-ray fluorescence and electron microprobe determinations of sulfur. Determinations of CO2 by the present technique are reproducible but cannot be compared directly to measurements made in other labs because of differences in samples analyzed. The principle advantages of this analytical technique are the very small sample required, the simultaneous determination of H2O, CO2, SO2 and noncondensable gas, the avoidance of calibration procedures dependent on chemical standards, and the visual observations that can be made during sample outgassing.  相似文献   

15.
The rates of Fe(II) oxidation and precipitation from groundwater are highly pH dependent. Elevated levels of dissolved CO2 can depress pH and cause difficulty in removing dissolved Fe and associated metals during treatment of ferruginous water. This paper demonstrates interdependent changes in pH, dissolved inorganic C species, and Fe(II) oxidation rates that occur as a result of the removal (degassing) of CO2 during aeration of waters discharged from abandoned coal mines. The results of field monitoring of aeration cascades at a treatment facility as well as batchwise aeration experiments conducted using net alkaline and net acidic waters in the UK are combined with geochemical modelling to demonstrate the spatial and temporal evolution of the discharge water chemistry. The aeration cascades removed approximately 67% of the dissolved CO2 initially present but varying the design did not affect the concentration of Fe(II) leaving the treatment ponds. Continued removal of the residual CO2 by mechanical aeration increased pH by as much as 2 units and resulted in large increases in the rates of Fe(II) oxidation and precipitation. Effective exsolution of CO2 led to a reduction in the required lime dose for removal of remaining Fe(II), a very important factor with regard to increasing the sustainability of treatment practices. An important ancillary finding for passive treatment is that varying the design of the cascades had little impact on the rate of CO2 removal at the flow rates measured.  相似文献   

16.
The solubility of CO2 in dacitic melts equilibrated with H2O-CO2 fluids was experimentally investigated at 1250°C and 100 to 500 MPa. CO2 is dissolved in dacitic glasses as molecular CO2 and carbonate. The quantification of total CO2 in the glasses by mid-infrared (MIR) spectroscopy is difficult because the weak carbonate bands at 1430 and 1530 cm−1 can not be reliably separated from background features in the spectra. Furthermore, the ratio of CO2,mol/carbonate in the quenched glasses strongly decreases with increasing water content. Due to the difficulties in quantifying CO2 species concentrations from the MIR spectra we have measured total CO2 contents of dacitic glasses by secondary ion mass spectrometry (SIMS).At all pressures, the dependence of CO2 solubility in dacitic melts on xfluidCO2,total shows a strong positive deviation from linearity with almost constant CO2 solubility at xCO2fluid > 0.8 (maximum CO2 solubility of 795 ± 41, 1376 ± 73 and 2949 ± 166 ppm at 100, 200 and 500 MPa, respectively), indicating that dissolved water strongly enhances the solubility of CO2. A similar nonlinear variation of CO2 solubility with xCO2fluid has been observed for rhyolitic melts in which carbon dioxide is incorporated exclusively as molecular CO2 (Tamic et al., 2001). We infer that water species in the melt do not only stabilize carbonate groups as has been suggested earlier but also CO2 molecules.A thermodynamic model describing the dependence of the CO2 solubility in hydrous rhyolitic and dacitic melts on T, P, fCO2 and the mol fraction of water in the melt (xwater) has been developed. An exponential variation of the equilibrium constant K1 with xwater is proposed to account for the nonlinear dependence of xCO2,totalmelt on xCO2fluid. The model reproduces the CO2 solubility data for dacitic melts within ±14% relative and the data for rhyolitic melts within 10% relative in the pressure range 100-500 MPa (except for six outliers at low xCO2fluid). Data obtained for rhyolitic melts at 75 MPa and 850°C show a stronger deviation from the model, suggesting a change in the solubility behavior of CO2 at low pressures (a Henrian behavior of the CO2 solubility is observed at low pressure and low H2O concentrations in the melt). We recommend to use our model only in the pressure range 100-500 MPa and in the xCO2fluid range 0.1-0.95. The thermodynamic modeling indicates that the partial molar volume of total CO2 is much lower in rhyolitic melts (31.7 cm3/mol) than in dacitic melts (46.6 cm3/mol). The dissolution enthalpy for CO2 in hydrous rhyolitic melts was found to be negligible. This result suggests that temperature is of minor importance for CO2 solubility in silicic melts.  相似文献   

17.
We describe here high-field 17O magic-angle-spinning (MAS) and triple-quantum MAS (3QMAS) NMR spectra for several alkali silicate and Na, K, and Ca aluminosilicate glasses containing up to 10 wt.% water. The H2O site appears to have a large quadrupolar coupling constant, and its chemical shift increases from Na- to K- glasses, suggesting significant cation-H2O interactions. In 17O one-pulse MAS and 3QMAS and 27Al one-pulse NMR experiments, major differences were seen between spectra for anhydrous and hydrous calcium aluminosilicate glasses. The changes in the 17O MAS spectra can be explained by the addition of an H2O peak and to the disappearance of an Al-O-Al peak from the 17O NMR spectrum for the hydrous glass. The 27Al results are consistent with this interpretation.  相似文献   

18.
Chemical and stable carbon isotopic modifications during the freezing of artificial seawater were measured in four 4 m3 tank incubations. Three of the four incubations were inoculated with a nonaxenic Antarctic diatom culture. The 18 days of freezing resulted in 25 to 27 cm thick ice sheets overlying the residual seawater. The ice phase was characterized by a decrease in temperature from −1.9 to −2.2°C in the under-ice seawater down to −6.7°C in the upper 4 cm of the ice sheet, with a concurrent increase in the salinity of the under-ice seawater and brine inclusions of the ice sheet as a result of physical concentration of major dissolved salts by expulsion from the solid ice matrix. Measurements of pH, total dissolved inorganic carbon (CT) and its stable isotopic composition (δ13CT) all exhibited changes, which suggest minimal effect by biological activity during the experiment. A systematic drop in pH and salinity-normalized CT by up to 0.37 pHSWS units and 376 μmol C kg−1 respectively at the lowest temperature and highest salinity part of the ice sheet were coupled with an equally systematic 13C enrichment of the CT. Calculations based on the direct pH and CT measurements indicated a steady increase in the in situ concentration of dissolved carbon dioxide (CO2(aq)) with time and increasing salinity within the ice sheet, partly due to changes in the dissociation constants of carbonic acid in the low temperature-high salinity range within sea ice. The combined effects of temperature and salinity on the solubility of CO2 over the range of conditions encountered during this study was a slight net decrease in the equilibrium CO2(aq) concentration as a result of the salting-out overriding the increase in solubility with decreasing temperature. Hence, the increase in the in situ CO2(aq) concentration lead to saturation or supersaturation of the brine inclusions in the ice sheet with respect to atmospheric pCO2 (≈3.5 × 10−4 atm). When all physico-chemical processes are considered, we expect CO2 degassing and carbonate mineral precipitation from the brine inclusions of the ice sheet, which were saturated or highly supersaturated with respect to both the anhydrous (calcite, aragonite, vaterite) and hydrated (ikaite) carbonate minerals.  相似文献   

19.
Hydrothermal experiments were conducted to evaluate the kinetics of H2(aq) oxidation in the homogeneous H2-O2-H2O system at conditions reflecting subsurface/near-seafloor hydrothermal environments (55-250 °C and 242-497 bar). The kinetics of the water-forming reaction that controls the fundamental equilibrium between dissolved H2(aq) and O2(aq), are expected to impose significant constraints on the redox gradients that develop when mixing occurs between oxygenated seawater and high-temperature anoxic vent fluid at near-seafloor conditions. Experimental data indicate that, indeed, the kinetics of H2(aq)-O2(aq) equilibrium become slower with decreasing temperature, allowing excess H2(aq) to remain in solution. Sluggish reaction rates of H2(aq) oxidation suggest that active microbial populations in near-seafloor and subsurface environments could potentially utilize both H2(aq) and O2(aq), even at temperatures lower than 40 °C due to H2(aq) persistence in the seawater/vent fluid mixtures. For these H2-O2 disequilibrium conditions, redox gradients along the seawater/hydrothermal fluid mixing interface are not sharp and microbially-mediated H2(aq) oxidation coupled with a lack of other electron acceptors (e.g. nitrate) could provide an important energy source available at low-temperature diffuse flow vent sites.More importantly, when H2(aq)-O2(aq) disequilibrium conditions apply, formation of metastable hydrogen peroxide is observed. The yield of H2O2(aq) synthesis appears to be enhanced under conditions of elevated H2(aq)/O2(aq) molar ratios that correspond to abundant H2(aq) concentrations. Formation of metastable H2O2 is expected to affect the distribution of dissolved organic carbon (DOC) owing to the existence of an additional strong oxidizing agent. Oxidation of magnetite and/or Fe++ by hydrogen peroxide could also induce formation of metastable hydroxyl radicals (•OH) through Fenton-type reactions, further broadening the implications of hydrogen peroxide in hydrothermal environments.  相似文献   

20.
Various iron-bearing primary phases and rocks have been weathered experimentally to simulate possible present and past weathering processes occurring on Mars. We used magnetite, monoclinic and hexagonal pyrrhotites, and metallic iron as it is suggested that meteoritic input to the martian surface may account for an important source of reduced iron. The phases were weathered in two different atmospheres: one composed of CO2 + H2O, to model the present and primary martian atmosphere, and a CO2 + H2O + H2O2 atmosphere to simulate the effect of strong oxidizing agents. Experiments were conducted at room temperature and a pressure of 0.75 atm. Magnetite is the only stable phase in the experiments and is thus likely to be released on the surface of Mars from primary rocks during weathering processes. Siderite, elemental sulfur, ferrous sulfates and ferric (oxy)hydroxides (goethite and lepidocrocite) are the main products in a water-bearing atmosphere, depending on the substrate. In the peroxide atmosphere, weathering products are dominated by ferric sulfates and goethite. A kinetic model was then developed for iron weathering in a water atmosphere, using the shrinking core model (SCM). This model includes competition between chemical reaction and diffusion of reactants through porous layers of secondary products. The results indicate that for short time scales, the mechanism is dominated by a chemical reaction with second order kinetics (k = 7.75 × 10−5 g−1/h), whereas for longer time scales, the mechanism is diffusion-controlled (DeA = 2.71 × 10−10 m2/h). The results indicate that a primary CO2- and H2O-rich atmosphere should favour sulfur, ferrous phases such as siderite or Fe2+-sulfates, associated with ferric (oxy)hydroxides (goethite and lepidocrocite). Further evolution to more oxidizing conditions may have forced these precursors to evolve into ferric sulfates and goethite/hematite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号