首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Diverse interpretations have been made of carbon isotope time series in speleothems, reflecting multiple potential controls. Here we study the dynamics of 13C and 12C cycling in a particularly well-constrained site to improve our understanding of processes affecting speleothem δ13C values. The small, tubular Grotta di Ernesto cave (NE Italy) hosts annually-laminated speleothem archives of climatic and environmental changes. Temperature, air pressure, pCO2, dissolved inorganic carbon (DIC) and their C isotopic compositions were monitored for up to five years in soil water and gas, cave dripwater and cave air. Mass-balance models were constructed for CO2 concentrations and tested against the carbon isotope data. Air advection forces winter pCO2 to drop in the cave air to ca. 500 ppm from a summer peak of ca. 1500 ppm, with a rate of air exchange between cave and free atmosphere of approximately 0.4 days. The process of cave ventilation forces degassing of CO2 from the dripwater, prior to any calcite precipitation onto the stalagmites. This phase of degassing causes kinetic isotope fractionation, i.e. 13C-enrichment of dripwater whose δ13CDIC values are already higher (by about 1‰) than those of soil water due to dissolution of the carbonate rock. A subsequent systematic shift to even higher δ13C values, from −11.5‰ in the cave drips to about −8‰ calculated for the solution film on top of stalagmites, is related to degassing on the stalagmite top and equilibration with the cave air. Mass-balance modelling of C fluxes reveals that a very small percentage of isotopically depleted cave air CO2 evolves from the first phase of dripwater degassing, and shifts the winter cave air composition toward slightly more depleted values than those calculated for equilibrium. The systematic 13C-enrichment from the soil to the stalagmites at Grotta di Ernesto is independent of drip rate, and forced by the difference in pCO2 between cave water and cave air. This implies that speleothem δ13C values may not be simply interpreted either in terms of hydrology or soil processes.  相似文献   

2.
The origin and environmental dependencies of lamination in stalagmites from Katerloch, common in speleothems from other cave sites, are examined in detail. Petrographic observations and chemical analyses (including isotopes) of stalagmites and modern calcite were combined with multi‐annual cave monitoring. All investigated stalagmites are composed of low‐Mg calcite and show white, porous laminae and typically thinner, translucent dense laminae. The binary lamination pattern results from changes in the calcite fabric: white, porous laminae are characterized by a high porosity and abundant fluid inclusions and also by enhanced vertical growth and thinning towards the flanks. Translucent, dense laminae exhibit a compact fabric and constant thickness of individual growth layers. U‐Th dating supports an annual origin of the lamination and the seasonally changing intensity of cave ventilation provides a robust explanation for the observed relationships between lamination, stable C isotopic compositions and trace elements (Mg, Sr and Ba). The seasonally variable air exchange, driven by temperature contrasts between the cave interior and outside atmosphere, modulates the rate and amount of CO2 degassing from the drip water and affects the hydrochemistry and consequently the fabric of the precipitating calcite. Although cave air composition and drip rate are both major variables in controlling CO2 degassing from the drip water, the seasonally changing ventilation in Katerloch exerts the primary control and the results suggest a secondary (amplifying/attenuating) influence of the drip rate. Drip rate, however, might be the controlling parameter for lamina development at cave sites experiencing only small seasonal cave air exchange. Importantly, the seasonally variable composition of drip water does not reflect the seasonal cycle of processes in the soil zone, but results from exchange with the cave atmosphere. The alternating porous and dense calcite fabric is the expression of a variable degree of lateral coalescence of smaller crystallites forming large columnar crystals. The white, porous laminae represent partial coalescence and form during the warm season: low calcite δ13C values are linked to low δ13C values of cave air and drip water during that time. This observation corresponds to times of reduced cave ventilation, high pCO2 of cave air, low drip water pH, lower calcite supersaturation and typically high drip rates. In contrast, the translucent, dense laminae represent more or less complete lateral coalescence (inclusion‐free) during the cold season (high calcite, drip water and cave air δ13C values), i.e. times of enhanced cave ventilation, low cave air pCO2, increased drip water pH, relatively high calcite supersaturation and typically low drip rates. In essence, the relative development of the two lamina types reflects changes in the seasonality of external air temperature and precipitation, with a strong control of the winter air temperature on the intensity of cave‐air exchange. Thick translucent, dense laminae are favoured by long, cold and wet winters and such conditions may be related closely to the North Atlantic Oscillation mode (weak westerlies) and enhanced Mediterranean cyclone activity during the cold season. Studies of speleothem lamination can thus help to better understand (and quantify) the role of seasonality changes, for example, during rapid climate events.  相似文献   

3.
Cave air CO2 is a vital part of the cave environment. Most studies about cave air CO2 variations are performed in caves with no streams; there are few studies to date regarding the relationship of cave air CO2 variations and drip water hydrochemistry in underground stream–developed caves. To study the relationship of underground stream, drip water, and cave air CO2, monthly and daily monitoring of air CO2 and of underground stream and drip water was performed in Xueyu Cave from 2012 to 2013. The results revealed that there was marked seasonal variation of air CO2 and stream hydrochemistry in the cave. Daily variations of cave air CO2, and of stream and drip water hydrochemistry, were notable during continuous monitoring. A dilution effect was observed by analyzing hydrochemical variations in underground stream and drip water after rainfall. High cave air CO2 along with low pH and low δ13CDIC in stream and drip water indicated that air CO2 was one of the dominant factors controlling stream and drip water hydrochemistry on a daily scale. On a seasonal scale, stream flows may promote increased cave air CO2 in summer; in turn, the higher cave air CO2 could inhibit degassing of drip water and make calcite δ13C more negative. Variation of calcite δ13C (precipitated from drip water) was in reverse of monthly temperature, soil CO2, and cave air CO2. Therefore, calcite δ13C in Xueyu Cave could be used to determine monthly changes outside the cave. However, considering the different precipitation rate of sediment in different seasons, it was difficult to use stalagmites to reconstruct environmental change on a seasonal scale.  相似文献   

4.
Carbon isotopes in speleothems can vary in response to a number of complex processes active in cave systems that are both directly and indirectly related to climate. Progressing downward from the soil zone overlying the cave, these processes include soil respiration, fluid-rock interaction in the host limestone, degassing of CO2 and precipitation of calcite upflow from the speleothem drip site, and calcite precipitation at the drip site. Here we develop a new approach to independently constrain the roles of water-rock interaction and soil processes in controlling stalagmite δ13C. This approach uses the dead carbon proportion (dcp) estimated from coupled 14C and 230Th/U measurements, in conjunction with Sr isotope analyses on stalagmite calcite from a central Sierra Nevada foothills cave in California, a region characterized by a highly seasonal Mediterranean-type climate, to determine the roles of water-rock interaction and soil processes in determining stalagmite δ13C. Increases in stalagmite dcp between 16.5 and 8.8 ka are coincident with decreased δ13C, indicating a varying yet substantial contribution from the soil organic matter (SOM) reservoir, likely due to significantly increased average age of SOM in the soil veneer above the cave during wet climatic intervals.We use geochemical and isotope mixing models to estimate the host-carbonate contribution throughout the δ13C time series and determine the degree of degassing and calcite precipitation that occurred prior to precipitation of stalagmite calcite. The degree of degassing and prior calcite precipitation we calculate varies systematically with other climate indicators, with less degassing and prior calcite precipitation occurring during wetter climatic intervals and more during drier intervals. Modeled δ13C values and degassing calculations suggest that some degree of prior calcite precipitation is necessary at all time intervals to explain measured stalagmite δ13C values, even during relatively wet intervals. These results illustrate the importance of constraining degassing and prior calcite precipitation in the interpretation of speleothem δ13C records, particularly those from caves that formed in seasonal semi-arid to arid environments.  相似文献   

5.
Understanding the relationships between speleothem stable isotopes (δ13C δ18O) and in situ cave forcing mechanisms is important to interpreting ancient stalagmite paleoclimate records. Cave studies have demonstrated that the δ18O of inorganically precipitated (low temperature) speleothem calcite is systematically heavier than the δ18O of laboratory-grown calcite for a given temperature. To understand this apparent offset, rainwater, cave drip water, groundwater, and modern naturally precipitated calcite (farmed in situ) were grown at multiple locations inside Hollow Ridge Cave in Marianna, Florida. High resolution micrometeorological, air chemistry time series and ventilation regimes were also monitored continuously at two locations inside the cave, supplemented with periodic bi-monthly air gas grab sample transects throughout the cave.Cave air chemistry and isotope monitoring reveal density-driven airflow pathways through Hollow Ridge Cave at velocities of up to 1.2 m s−1 in winter and 0.4 m s−1 in summer. Hollow Ridge Cave displays a strong ventilation gradient in the front of the cave near the entrances, resulting in cave air that is a mixture of soil gas and atmospheric CO2. A clear relationship is found between calcite δ13C and cave air ventilation rates estimated by proxies pCO2 and 222Rn. Calcite δ13C decreased linearly with distance from the front entrance to the interior of the cave during all seasons, with a maximum entrance-to-interior gradient of Δδ13CCaCO3 = −7‰. A whole-cave “Hendy test” at multiple contemporaneous farming sites reveals that ventilation induces a +1.9 ± 0.96‰ δ13C offset between calcite precipitated in a ventilation flow path and calcite precipitated on the edge or out of flow paths. This interpretation of the “Hendy test” has implications for interpreting δ13C records in ancient speleothems. Calcite δ13CCaCO3 may be a proxy not only for atmospheric CO2 or overlying vegetation shifts but also for changes in cave ventilation due to dissolution fissures and ceiling collapse creating and plugging ventilation windows.Farmed calcite δ18O was found to exhibit a +0.82 ± 0.24‰ offset from values predicted by both theoretical calculations and laboratory-grown inorganic calcite. Unlike δ13CCaCO3, oxygen isotopes showed no ventilation effects, i.e. Δδ18OCaCO3 appears to be a function of growth temperature only although we cannot rule out a small effect of (unmeasured) gradients in relative humidity (evaporation) accompanying ventilation. Our results support the findings of other cave investigators that water-calcite fractionation factors observed in speleothem calcite are higher that those measured in laboratory experiments. Cave and laboratory calcite precipitates may differ mainly in the complex effects of kinetic isotope fractionation. Combining our data with other recent speleothem studies, we find a new empirical relationship for cave-specific water-calcite oxygen isotope fractionation across a range of temperatures and cave environments:
1000lnα=16.1(103T-1)-24.6  相似文献   

6.
The oxygen isotope composition of speleothems is an important proxy of continental paleoenvironments, because of its sensitivity to variations in cave temperature and drip water δ18O. Interpreting speleothem δ18O records in terms of absolute paleotemperatures and δ18O values of paleo-precipitation requires quantitative separation of the effects of these two parameters, and correcting for possible kinetic isotope fractionation associated with precipitation of calcite out of thermodynamic equilibrium. Carbonate clumped-isotope thermometry, based on measurements of Δ47 (a geochemical variable reflecting the statistical overabundance of 13C18O bonds in CO2 evolved from phosphoric acid digestion of carbonate minerals), potentially provides a method for absolute speleothem paleotemperature reconstructions independent of drip water composition. Application of this new technique to karst records is currently limited by the scarcity of published clumped-isotope studies of modern speleothems. The only modern stalagmite reported so far in the literature yielded a lower Δ47 value than expected for equilibrium precipitation, possibly due to kinetic isotope fractionation.Here we report Δ47 values measured in natural speleothems from various cave settings, in carbonate produced by cave precipitation experiments, and in synthetic stalagmite analogs precipitated in controlled laboratory conditions designed to mimic natural cave processes. All samples yield lower Δ47 and heavier δ18O values than predicted by experimental calibrations of thermodynamic equilibrium in inorganic calcite. The amplitudes of these isotopic disequilibria vary between samples, but there is clear correlation between the amount of Δ47 disequilibrium and that of δ18O. Even pool carbonates believed to offer excellent conditions for equilibrium precipitation of calcite display out-of-equilibrium δ18O and Δ47 values, probably inherited from prior degassing within the cave system.In addition to these modern observations, clumped-isotope analyses of a flowstone from Villars cave (France) offer evidence that the amount of disequilibrium affecting Δ47 in a single speleothem can experience large variations at time scales of 10 kyr. Application of clumped-isotope thermometry to speleothem records calls for an improved physical understanding of DIC fractionation processes in karst waters, and for the resolution of important issues regarding equilibrium calibration of Δ47 in inorganic carbonates.  相似文献   

7.
Applications of speleothem calcite geochemistry in climate change studies require the evaluation of the accuracy and sensitivity of speleothem proxies to correctly infer paleoclimatic information. The present study of Harrison’s Cave, Barbados, uses the analysis of the modern climatology and groundwater system to evaluate controls on the C and O isotopic composition of modern speleothems. This new approach directly compares the δ18O and δ13C values of modern speleothems with the values for their corresponding drip waters in order to assess the degree to which isotopic equilibrium is achieved during calcite precipitation. If modern speleothems can be demonstrated to precipitate in isotopic equilibrium, then ancient speleothems, suitable for paleoclimatic studies, from the same cave environment may also have been precipitated in isotopic equilibrium. If modern speleothems are precipitated out of isotopic equilibrium, then the magnitude and direction of the C and O isotopic offsets may allow specific kinetic and/or equilibrium isotopic fractionation mechanisms to be identified.Carbon isotope values for the majority of modern speleothem samples from Harrison’s Cave fall within the range of equilibrium values predicted from the combined use of (1) calcite-water fractionation factors from the literature, (2) measured temperatures, and (3) measured δ13C values of the dissolved inorganic carbon of drip waters. Calcite samples range from ∼0.8‰ higher to ∼1.1‰ lower than predicted values. The 13C depletions are likely caused by kinetically driven departures in the fractionation between HCO3 (aq) and CaCO3 from equilibrium conditions, caused by rapid calcite growth. 13C enrichments can be accounted for by Rayleigh distillation of the HCO3 (aq) reservoir during degassing of 13C-depleted CO2.Modern speleothems from Harrison’s Cave are not in O isotopic equilibrium with their corresponding drip waters and are 0.2‰ to 2.3‰ enriched in 18O relative to equilibrium values. δ18O variations in modern calcite are likely controlled by kinetically driven changes in the fractionation between HCO3 (aq) and CaCO3 from equilibrium conditions to nonequilibrium conditions, consistent with rapid calcite growth. In contrast to δ13C, δ18O values of modern calcite may not be affected by Rayleigh distillation during degassing because CO2 hydration and hydroxylation reactions will buffer the O isotopic composition of the HCO3 (aq) reservoir. If the effects of Rayleigh distillation manifest themselves in the O isotopic system, they will result in 18O enrichment in the HCO3 (aq) reservoir and ultimately in the precipitated CaCO3.  相似文献   

8.
To understand oxygen and carbon stable isotopic characteristics of aragonite stalagmites and evaluate their applicability to paleoclimate, the isotopic compositions of active and fossil aragonite speleothems and water samples from an in situ multi-year (October 2005-July 2010) monitoring program in Furong Cave located in Chongqing of China have been examined. The observations during October 2005-June 2007 show that the meteoric water is well mixed in the overlying 300-500-m bedrock aquifer, reflected by relatively constant δ18O, ±0.11-0.14‰ (1σ), of drip waters in the cave, which represents the annual status of rainfall water. Active cave aragonite speleothems are at oxygen isotopic equilibrium with drip water and their δ18O values capture the surface-water oxygen isotopic signal. Aragonite-to-calcite transformation since the last glaciation is not noticeable in Furong stalagmites. Our multi-year field experiment approves that aragonite stalagmite δ18O records in this cave are suitable for paleoclimate reconstruction. With high U, 0.5-7.2 ppm, and low Th, 20-1270 ppt, the Furong aragonite stalagmites provide very precise chronology (as good as ±20s yrs (2σ)) of the climatic variations since the last deglaciation. The synchroneity of Chinese stalagmite δ18O records at the transition into the Bølling-Allerød (t-BA) and the Younger Dryas from Furong, Hulu and Dongge Caves supports the fidelity of the reconstructed East Asian monsoon evolution. However, the Furong record shows that the cold Older Dryas (OD) occurred at 14.0 thousand years ago, agreeing with Greenland ice core δ18O records but ∼200 yrs younger than that in the Hulu record. The OD age discrepancy between Chinese caves can be attributable to different regionally climatic/environmental conditions or chronological uncertainty of stalagmite proxy records, which is limited by changes in growth rate and subsampling intervals in absolute dating. Seasonal dissolved inorganic carbon δ13C variations of 2-3‰ in the drip water and 5-7‰ in the pool and spring waters are likely attributed to variable degrees of CO2 degassing in winter and summer. The variable δ13C values of active deposits from −11‰ to 0‰ could be caused by kinetically mediated CO2 degassing processes. The complicated nature of pre-deposition kinetic isotopic fractionation processes for carbon isotopes in speleothems at Furong Cave require further study before they can be interpreted in a paleoclimatic or paleoenvironmental context.  相似文献   

9.
Plio‐Pleistocene speleothems from australopithecine‐bearing caves of South Africa have the potential to yield paleoenvironmental and geochronological information using isotope geochemistry. Prior to such studies it is important to assess the preservation of geochemical signals within the calcitic and aragonitic speleothems, given the tendency of aragonitic speleothems to recrystallize to calcite. This study documents the geochemical suitability of speleothems from the principal hominin‐bearing deposits of South Africa. We use petrography, together with stable isotope and trace element analysis, to identify the occurrence of primary aragonite, primary calcite, and secondary calcite. This study highlights the presence of diagenetic alteration at many of the sites, often observed as interbedded primary and secondary fabrics. Trace element and stable isotopic values distinguish primary calcite from secondary calcite and offer insights into geochemical aspects of the past cave environment. δ13C values of the primary and secondary calcites range from +6 to −9‰ and δ18O values range from −4 to −6‰. The data are thus typical of meteoric calcites with highly variable δ13C and relatively invariant δ18O. High carbon isotope values in these deposits are associated with the effects of recrystallization and rapid outgassing of CO2 during precipitation. Mg/Ca and Sr/Ca ratios differ between primary and secondary calcite speleothems, aiding their identification. Carbon and oxygen isotope values in primary calcite reflect the proportion of C3 and C4 vegetation in the local environment and the oxygen isotope composition of rainfall. Primary calcite speleothems preserve the pristine geochemical signals vital for ongoing paleoenvironmental and geochronological research. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Cave dripwater hydrochemistry responds to environmental changes, both within and outside of the cave, and thereby conveys this information to any stalagmite fed by the drips. As stalagmites are important archives of climate proxy information, understanding how dripwater hydrochemistry responds to environmental forcing is critical. However, despite the large number of speleothems in SW China, the response of dripwater to regional climate variability is not yet adequately understood. A 3‐year study of three drip sites in Xueyu Cave, Chongqing Municipality, SW China, revealed the most important mechanisms controlling dripwater chemical variability. The principal chemical indices (pH, specific conductivity, Ca2+, Mg2+, Sr2+ and ) in collected dripwaters and the local climate data were analysed in this study. The principal controls on the hydrochemistry were found to be the external climate and its changes, groundwater residence time, cave ventilation and prior calcite precipitation (PCP) processes. Dripwater hydrochemistry showed strongly coherent seasonal patterns despite the fact that all sites are Ca–HCO3 type waters and supersaturated with calcite. Seasonal changes in dripwater hydrochemistry were influenced by the soil and vadose zone CO2 content as well as groundwater residence time in the upper karst zone. Cave‐air CO2 seasonal variations were consistent with changes in dripwater PCO2 and cave ventilation. Trace element ratios (Mg/Ca and Sr/Ca) of dripwater were controlled by PCP processes. Seasonal variations in dripwater Mg/Ca and Sr/Ca ratios in Xueyu Cave showed inverse changes with the Asia Monsoon Index during the monitoring period, reflecting the seasonal climate changes that may have been recorded in the speleothems. Based on a linear regression of PCO2 and the Ca2+ data in the cold–dry winter season, a 130‐ppm shift in cave‐air PCO2 results in a 1‐ppm shift in dripwater Ca2+ concentration in Xueyu Cave. This study illustrates the importance of understanding factors controlling the changes in the composition of dripwater before it reaches the speleothem.  相似文献   

11.
The Pleistocene speleothems of Sa Bassa Blanca cave, Mallorca, are excellent indicators of palaeoclimate variations, and are samples that allow evaluation of the products and processes of mixing‐zone diagenesis in an open‐water cave system. Integrated stratigraphic, petrographic and geochemical data from a horizontal core of speleothem identified two main origins for speleothem precipitates: meteoric‐marine mixing zone and meteoric‐vadose zone. Mixing‐zone precipitates formed at and just below the water–air interface of cave pools during interglacial times, when the cave was flooded as a result of highstand sea‐level. Mixing‐zone precipitates include bladed and dendritic high‐Mg calcite, microporous‐bladed calcite with variable Mg content, and acicular aragonite; their presence suggests that calcium‐carbonate cementation is significant in the studied mixing‐zone system. Fluid inclusion salinities, δ13C and δ18O compositions of the mixing‐zone precipitates suggest that mixing ratio was not the primary control on whether precipitation or dissolution occurred, rather, the proximity to the water table and degassing of CO2 at the interface, were the major controls on precipitation. Thus, simple two‐end‐member mixing models may apply only in mixing zones well below the water table. Meteoric‐vadose speleothems include calcite and high‐Mg calcite with columnar and bladed morphologies. Vadose speleothems precipitated during glacial stages when sea level was lower than present. Progressive increase in δ13C and δ18O of the vadose speleothems resulted from cooling temperatures and more positive seawater δ18O associated with glacial buildup. Such covariation could be considered as a valid alternative to models predicting invariant δ18O and highly variable δ13C in meteoric calcite. Glacio‐eustatic oscillations of sea‐level are recorded as alternating vadose and mixing‐zone speleothems. Short‐term climatic variations are recorded as alternating aragonite and calcite speleothems precipitated in the mixing zone. Fluid‐inclusion and stable‐isotope data suggest that aragonite, as opposed to calcite, precipitated during times of reduced meteoric recharge.  相似文献   

12.
Unraveling the factors controlling the carbon chemistry and transport of carbon within extant karst systems has important implications concerning the assessment of time-series δ13C records of speleothems. Here we report the results of a 3-year study of total dissolved inorganic carbon [DIC] and δ13CDIC from cave waters at DeSoto Caverns (Southeastern USA) that offer valuable insight on carbon transport and the accompanied isotope fractionations from end-member sources to speleothems.[DIC] and δ13CDIC values of cave waters range from 0.2 to 6.0 mM and 2.7 to −12.9 (‰ VPDB), respectively. [DIC] and δ13CDIC of “seasonal drips” show seasonal, albeit noisy, variability and are inversely related (δ13CDIC = −2.49[DIC] + 0.64, r2 = 0.84). A shallow pool fed by multiple drips shows a bimodal δ13CDIC distribution with an isotopically heavier mode during winter (−4‰ to −5‰ VPDB) relative to summer months (−9‰ to −10‰ VPDB). A multi-year trend of decreasing water availability during the study period is not reflected in a response of cave water carbon chemistry suggesting that rainfall amount may not be a significant controlling factor of the carbon chemistry. Coupled cave air winter ventilation/summer stagnation and varying CO2 fluxes through the soil horizon and epikarst exert the strongest influence on seasonal [DIC] and δ13CDIC variability. Measured values of high [DIC] and low δ13CDIC from cave waters collected during the summer/early fall closely approximate isotopic equilibrium conditions. Conversely, low [DIC] and high δ13CDIC values during winter/early months indicate kinetically enhanced isotopic fractionations within the cave waters. The kinetically enhanced isotopic fractionation of partitioned between degassed CO2 and precipitated CaCO3(1000lnα[(CO2-HCO3)+(CaCO3(AR)-HCO3)]/2) is greater by about a factor of two (−6.7 ± 0.3‰) relative to the same isotopic fractionation under equilibrium conditions (−3.1‰).On the basis of 14C mass balance and paired 14C-U/Th measurements we estimate that on average about ∼23% of C delivered annually by the drips to the aragonite stalagmites is derived from 14C-dead dolomite cap while the remainder of ∼77% is derived from 14C-live biomass. δ13C measurements of aragonite (n = 12) sampled from the tips of active speleothems during the summer months are consistent with theoretical aragonite δ13C values calculated using the shallow pool summer/early fall data thus confirming the δ13C seasonality in both drips and coeval aragonite. δ13C values of an active stalagmite section spanning the last 200 years show a normal distribution with a mean of −7.1 ± 1.2‰ (n = 81) and a mode of −7‰ to −8‰ that are statistically indistinguishable from the annual mean and mode of all dripwaters. Thus secular time-series δ13C records of stalagmites at DeSoto Caverns with resolving power >10−1 year will likely carry the imprints of drip annual means that record climate-driven δ13C seasonal biases.  相似文献   

13.
The suitability of speleothems for interpreting palaeoclimate is typically determined by using either the Hendy Test, overlapping analysis or long‐term cave environment monitoring. However, in many cases, these methods are not applicable, because a speleothem lacks clearly traceable layers for the Hendy Test, it is difficult to obtain an overlapping speleothem nearby, or long‐term cave monitoring is impractical. The authors propose a multiple cave deposit approach to assess the suitability of speleothems for palaeoclimate study. Speleothems collected from two sites within Raccoon Mountain Cave, Tennessee (USA) exhibit remarkable spatial variation (δ13C: ?10·3‰ to ?2·2‰) over a relatively short distance (ca 260 m). Drip water δ18O values exhibit a seasonal precipitation signal at Site 1 and an annual signal at Site 2. Combining field observations, water isotope analysis and trace‐element data, the authors propose that the speleothem formation at Site 1 and Site 2 tapped distinct sources of CO2: (i) CO2 derived from overlying soils for Site 1; and (ii) limestone dissolved inorganic carbon induced by ground water dissolution for Site 2. Using fresh cave deposits (modern speleothem) δ13C (100% C3 vegetation) as an analogue, a simple model was developed to estimate land surface vegetation for speleothems. The speleothem formation temperature estimated using fresh cave deposit δ18O values generally reflects the mean annual temperature in this region. This study indicates that spatial variations in carbon isotopes could be caused by different carbon sources dominating in different parts of the cave, which should be taken into consideration by researchers when using speleothem δ13C values to reconstruct temporal palaeo‐vegetation changes. This study demonstrates a practical sampling strategy for verifying suitability of speleothems for palaeo‐vegetation and palaeo‐temperature reconstructions by analysing multiple cave deposits, especially for cases in which the Hendy Test, parallel sampling and long‐term monitoring of cave environment are not feasible.  相似文献   

14.
Understanding the relationship between stable isotope signals recorded in speleothems (δ13C and δ18O) and the isotopic composition of the carbonate species in the soil water is of great importance for their interpretation in terms of past climate variability. Here the evolution of the carbon isotope composition of soil water on its way down to the cave during dissolution of limestone is studied for both closed and open-closed conditions with respect to CO2.The water entering the cave flows as a thin film towards the drip site. CO2 degasses from this film within approx. 10 s by molecular diffusion. Subsequently, chemical and isotopic equilibrium is established on a time scale of several 10-100 s. The δ13C value of the drip water is mainly determined by the isotopic composition of soil CO2. The evolution of the δ18O value of the carbonate species is determined by the long exchange time Tex, between oxygen in carbonate and water of several 10,000 s. Even if the oxygen of the CO2 in soil water is in isotopic equilibrium with that of the water, dissolution of limestone delivers oxygen with a different isotopic composition changing the δ18O value of the carbonate species. Consequently, the δ18O value of the rainwater will only be reflected in the drip water if it has stayed in the rock for a sufficiently long time.After the water has entered the cave, the carbon and oxygen isotope composition of the drip water may be altered by CO2-exchange with the cave air. Exchange times, , of about 3000 s are derived. Thus, only drip water, which drips in less than 3000 s onto the stalagmite surface, is suitable to imprint climatic signals into speleothem calcite deposited from it.Precipitation of calcite proceeds with time constants, τp, of several 100 s. Different rate constants and equilibrium concentrations for the heavy and light isotopes, respectively, result in isotope fractionation during calcite precipitation. Since Tex ? τp, exchange with the oxygen in the water can be neglected, and the isotopic evolution of carbon and oxygen proceed analogously. For drip intervals Td < 0.1τp the isotopic compositions of both carbon and oxygen in the solution evolve linearly in time. The calcite precipitated at the apex of the stalagmite reflects the isotopic signal of the drip water.For long drip intervals, when calcite is deposited from a stagnant water film, long drip intervals may have a significant effect on the isotopic composition of the DIC. In this case, the isotopic composition of the calcite deposited at the apex must be determined by averaging over the drip interval. Such processes must be considered when speleothems are used as proxies of past climate variability.  相似文献   

15.
Cai, B., Zhu, J., Ban, F. & Tan, M. 2011: Intra‐annual variation of the calcite deposition rate of drip water in Shihua Cave, Beijing, China and its implications for palaeoclimatic reconstructions. Boreas, Vol. 40, pp. 525–535. 10.1111/j.1502‐3885.2010.00201.x. ISSN 0300‐9483. Monthly in situ monitoring of the calcite deposition rate, drip‐water chemistry and surrounding cave environment was carried out at Shihua Cave, Beijing, China, through two hydrological years (from January 2006 to February 2008) to determine the seasonal variability and mechanisms of stalagmite growth in Shihua Cave. Calcite deposition rates exhibit significant intra‐annual variation, with the lowest values during the summer monsoonal rainy season (July–August) and peak values from autumn to spring. The temporal change in the calcite deposition rate is negatively correlated with the drip rate, cave‐air PCO2 (CO2 partial pressure) and Ca concentration, and positively correlated with the pH of the feeding drip water. The seasonal recharge regime of drip water is likely to be the primary control on the drip‐water quality and quantity, which, in turn, control the calcite deposition rate in Shihua Cave. During the summer rainy season, periodic and intense rainstorms increase the drip rate and cave‐air PCO2, leading to drip water with a lower pH and saturation index of calcite, thereby reducing the calcite precipitation. It seems that the high cave‐air PCO2 is the dominant control on the calcite deposition rate during the rainy season. Our previous study on the dissolved organic carbon of drip water concluded that the thin luminescent bands in stalagmite laminae from Shihua Cave form during the rainy season. The lower calcite deposition rate during the rainy season further supports this suggestion. The significant intra‐seasonal variability of the calcite deposition rate implies that the seasonal bias of δ18O of stalagmites should be considered when stalagmite δ18O is used as a high‐resolution palaeoclimatic archive.  相似文献   

16.
Many Recent and fossil freshwater tufa stromatolites contain millimetre‐scale, alternating laminae of dense micrite and more porous or sparry crystalline calcites. These alternating laminae have been interpreted to represent seasonally controlled differences in the biotic activity of microbes, and/or seasonally controlled changes in the rate of calcification. Either way, couplets of these microbially mediated alternating calcified laminae are generally agreed to represent annual seasonality. Combined stable isotope (δ18O and δ13C) and trace element (Mg, Sr, Ba) geochemistry from Recent tufa stromatolites show that seasonal climatic information is available from these calcites. Variability in δ18O (and in one case Mg concentration) has been shown to be controlled primarily by stream temperature change, usually driven by solar insolation. In arid climates, seasonal evaporation can also cause δ18O enrichment by at least 1‰. Variability in δ13C results potentially from: (1) seasonal change in plant uptake of 12C‐enriched CO2; (2) seasonal change in degassing of 12C‐enriched CO2 in the aquifer system; and (3) precipitation of calcite along the aquifer or river flow path, a process that increases δ13C of dissolved inorganic carbon (DIC) in the remaining water. Mechanisms 2 and 3 are linked because calcite precipitates in aquifers where degassing occurs, e.g. air pockets. The latter mechanism for δ13C enrichment has also been shown to cause sympathetic variation between trace element/Ca ratios and δ13C because trace elements with partition coefficients much greater than 1 (e.g. Sr, Ba) remain preferentially in solution. Since degassing in air pockets will be enhanced during decreased recharge when water saturation of the aquifer is lowest, sympathetic variation in trace element/Ca ratios and δ13C is a possible index of recharge and therefore precipitation intensity. High‐resolution geochemical data from well‐dated tufa stromatolites have great potential for Quaternary palaeoclimate reconstructions, possibly allowing recovery of annual seasonal climatic information including water temperature variation and change in rainfall intensity. However, careful consideration of diagenetic effects, particularly aggrading neomorphism, needs to be the next step. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Tufas, which are freshwater carbonates, are potential archives of terrestrial paleoclimate. Time series of stable isotopic compositions commonly show regular seasonal patterns controlled by temperature-dependent processes, and some perturbation intrinsic to the locality. We examined three tufa-depositing sites in southwestern Japan with similar temperate climates, to understand the origin of local characteristics in the isotopic records. Seasonal change in the oxygen isotope is principally reflected by temperature-dependent fractionation between water and calcite but was perturbed after heavy rainfalls overwhelming the stability of the δ18O value of the groundwater at one site. Isotopic mass balance indicates an undersaturated and relatively small aquifer at this locality. Water δ18O values at the other two sites were stable, reflecting a regular seasonal change in the δ18O value of tufa. Perturbation of the δ13C values in tufa is largely due to CO2 degassing from the stream, which significantly increases the δ13C values of dissolved inorganic carbon (DIC). At a site with remarkably high pCO2 in springwater and a sensitive response of flow rate to rainfall, the amount of CO2 degassing changed distinctly with flow rate. In contrast, the other two sites having low pCO2 springwater reflect a regular seasonal pattern of δ13C in DIC and tufa specimens.  相似文献   

18.
Monitoring and sampling of main plants,soil CO2,soil water,bedrock,spring water,drip water and its corresponding speleothem were performed at four cave systems of Guizhou,Southwest China,from April 2003 to May 2004,in order to understand stable carbon isotope ratios variations of dissolved inorganic Carbon(DIC) in cave percolation waters(δ13CDIC) and their implications for paleoclimate.Stable carbon isotopic compositions and ions(Ca,Mg,Sr,SO4,Cl etc.) were measured for all samples.The results indicate that there are significant differences among the δ13CDIC values from inter-cave,even inter-drip of intra-cave in the four caves.The δ13CDIC values from the Liangfeng Cave(LFC) is lightest among the four caves,where vegetation type overlying the cave is primary forest dominated by tall trees with lighter average δ13C value(–29.9‰).And there are remarkable differences in δ13CDIC values of different drip waters in the Qixing Cave(QXC) and Jiangjun Cave(JJC),up to 6.9‰ and 7.8‰,respectively.Further analyses show that the δ13CDIC values in cave drip waters are not only controlled by vegetation biomass overlying the cave,but also hydro-geochemical processes.Therefore,accurate interpreting of δ13C recorded in speleothems cannot be guaranteed if these effects of the above mentioned factors are not taken into consideration.  相似文献   

19.
Fluid inclusions found trapped in speleothems (cave deposited travertine) are interpreted as samples of seepage water from which enclosing calcium carbonate was deposited. The inclusions are assumed to have preserved their D/H ratios since the time of deposition. Initial 18O/16O ratios can be inferred from δD because rain- and snow-derived seepage waters fall on the meteoric water line (δD = 8δ18O + 10). Estimates of temperature of deposition of the carbonate can be calculated from inclusion D/H ratios and δ18O of enclosing calcite in Pleistocene speleothems. For most speleothems investigated (0–200,000 yr old) δ18O of calcite appears to have decreased with increasing temperature of deposition indicating that the dominant cause of climate-dependent change in δ18O of calcite was the change in Kcw, the isotope fractionation equilibrium constant, with temperature; δ18O of meteoric precipitation generally increased with increasing temperature, but not sufficiently to compensate for the decrease in Kcw.  相似文献   

20.
We derive equations describing the evolution of the carbon and oxygen isotope composition of the bicarbonate in a calcite precipitating solution on the surface of a stalagmite using a classical Rayleigh approach. The combined effects of calcite precipitation, degassing of CO2 and the buffering effect of the water reservoir are taken into account. Whereas δ13C shows a progressive increase to a final constant value, δ18O shows an initial isotopic enrichment, which exponentially decays due to the buffering effect of the water reservoir. The calculated evolution is significantly different for both carbon and oxygen isotopes than derived in a recent paper [Dreybrodt W. (2008) Evolution of the isotopic composition of carbon and oxygen in a calcite precipitating H2O-CO2-CaCO3 solution and the related isotopic composition of calcite in stalagmites. Geochim. Cosmochim. Acta72, 4712-4724.].Furthermore, we discuss the isotopic evolution of the bicarbonate in the solution for long residence times on the stalagmite surface, i.e., for t. The equilibrium isotope ratio of the bicarbonate is then determined by isotopic exchange between the cave atmosphere and the bicarbonate in the solution and can be calculated by equilibrium isotope fractionation. For strongly ventilated caves exchange with the cave atmosphere will result in higher δ13C and δ18O values than those observed in a pure Rayleigh distillation scenario, for sparsely ventilated caves it will result in lower δ13C and δ18O values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号