首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the adsorption of Cu(II) onto goethite (α-FeOOH), hematite (α-Fe2O3) and lepidocrocite (γ-FeOOH) from pH 2-7. EXAFS spectra show that Cu(II) adsorbs as (CuO4Hn)n−6 and binuclear (Cu2O6Hn)n−8 complexes. These form inner-sphere complexes with the iron (hydr)oxide surfaces by corner-sharing with two or three edge-sharing Fe(O,OH)6 polyhedra. Our interpretation of the EXAFS data is supported by ab initio (density functional theory) geometries of analogue Fe2(OH)2(H2O)8Cu(OH)4and Fe3(OH)4(H2O)10Cu2(OH)6 clusters. We find no evidence for surface complexes resulting from either monodentate corner-sharing or bidentate edge-sharing between (CuO4Hn)n−6 and Fe(O,OH)6 polyhedra. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed even though we are supersaturated with respect to CuO and Cu(OH)2. Having identified the bidentate (FeOH)2Cu(OH)20 and tridentate (Fe3O(OH)2)Cu2(OH)30 surface complexes, we are able to fit the experimental copper(II) adsorption data to the reactions
  相似文献   

2.
We measured the adsorption of V(V) onto goethite (α-FeOOH) under oxic (PO2 = 0.2 bar) atmospheric conditions. EXAFS spectra show that V(V) adsorbs by forming inner-sphere complexes as VO2(OH)2 and VO3(OH). We predicted the relative energies and geometries of VO2(O, OH)2-FeOOH surface complexes using ab initio calculations of the geometries and energetics of analogue Fe2(OH)2(H2O)6O2VO2(O, OH)2 clusters. The bidentate corner-sharing complex is predicted to be substantially (57 kJ/mol) favoured energetically over the hypothetical edge-sharing bidentate complex. Fitting the EXAFS spectra using multiple scattering shows that only the bidentate corner-sharing complex is present with Fe-V and V-O distances in good agreement with those predicted. We find it important to include multiple scattering in the fits of our EXAFS data otherwise spurious V-Fe distances near 2.8 Å result which may be incorrectly attributed to edge-sharing complexes. We find no evidence for monodentate complexes; this agrees with predicted high energies of such complexes. Having identified the Fe2O2V(OH)2+ and Fe2O2VO(OH)0 surface complexes, we are able to fit the experimental vanadium(V) adsorption data to the reactions
  相似文献   

3.
The soluble and insoluble hydrolysis products of palladium were investigated in aqueous solutions of 0.6 mol kg−1 NaCl at 298.2 K. Potentiometric titrations of millimolal palladium(II) solutions were used to monitor hydrolysis reactions of the mononuclear PdCl3OH2− and species. Spectrophotometric titrations were also used to corroborate the speciation change and to extract the correlative molar absorption coefficients for the PdCl3OH2− species in the 210-320 nm range. Longer-term potentiometric titrations systematically yielded precipitates which matured over a period of 6 weeks and resulted in a more extensive release of protons to the solution. Precipitation experiments in the 3-11 pH range showed the dominant precipitating phase to be Pd(OH)1.72Cl0.28. EXAFS measurements yielded an average of 3.50 O and 0.50 Cl atoms per Pd atom with a Pd-O distance of 2.012 Å and a Pd-Cl distance of 2.185 Å. Speciation modeling of proton and palladium mass balance data of experiments for palladium concentrations ranging from 0.047 to 10.0  mmol kg−1 required the presence of polynuclear complexes containing 3-9 palladium atoms. The existence of such complexes is moreover supported by previous investigations of palladium hydroxide chains of the type [Pd(OH)1.72Cl0.28]n, that are coiled and/or aggregated into nanometer-sized (15-40 Å) spheroids.  相似文献   

4.
The thermodynamic stability constants for the hydrolysis and formation of mercury (Hg2+) chloride complexes
have been used to calculate the activity coefficients for Hg(OH) n (2–n)+ and HgCl n (2–n)+ complexes using the Pitzer specific interaction model. These values have been used to determine the Pitzer parameters for the hydroxide and chloro complexes and C ML). The values of and have been determined for the neutral complexes (Hg(OH)2 and HgCl2). The resultant parameters yield calculated values for the measured values of log to  ±0.01 from I  =  0.1 to 3 m at 25°C. Since the activity coefficients of and are in reasonable agreement with the values for Pb(II), we have estimated the effect of temperature on the chloride constants for Hg(II) from 0 to 300°C and I = 0–6 m using the Pitzer parameters for complexes. The resulting parameters can be used to examine the speciation of Hg(II) with Cl in natural waters over a wide range of conditions.  相似文献   

5.
Thorium(IV) sorption onto hematite (-Fe2O3) was examined as a function of pH and ionic strength. Sorption behaved Langmuirian over an eleven order of magnitude range in adsorption densities, : 10–12 to 10–1 moles Th sorbed per mole hematite sites, indicating that the overall free energy of Th adsorption is independent of adsorption density. Modeling of Th sorption was conducted with the Triple Layer Model of Davis and Leckie; reactions considered included solution-phase hydroxy and carbonato complexes of thorium, and carbonate/hematite surface complexes. The entire Th sorption isotherm can be modeled with a single surface complex formation reaction
  相似文献   

6.
Comparative concentrations of carbonate and hydroxide complexes in natural solutions can be expressed in terms of reactions with bicarbonate that have no explicit pH dependence (). Stability constants for this reaction with n = 1 were determined using conventional formation constant data expressed in terms of hydroxide and carbonate. Available data indicate that stability constants appropriate to seawater at 25 °C expressed in the form are on the order of 104.2 for a wide range of cations (Mz+) with z = +1, +2 and +3. Φ1 is sufficiently large that species appear to substantially dominate MOHz−1 species in seawater. Evaluations of comparative stepwise carbonate and hydroxide stability constant behavior leading to the formation of n = 2 and n = 3 complexes suggest that carbonate complexes generally dominate hydroxide complexes in seawater, even for cations whose inorganic speciation schemes in seawater are currently presumed to be strongly dominated by hydrolyzed forms (). Calculated stability constants, and , indicate that the importance of carbonate complexation is sufficiently large that carbonate and hydroxide complexes would be generally comparable even if calculated Φ2 and Φ3 values are overestimated by two or more orders of magnitude. Inclusion of mixed ligand species in carbonate-hydroxide speciation models allows cation complexation intensities (MT/[Mz+]) to be expressed in the following form:
  相似文献   

7.
Bacteria are very efficient sorbents of trace metals, and their abundance in a wide variety of natural aqueous systems means biosorption plays an important role in the biogeochemical cycling of many elements. We measured the adsorption of Cu(II) to Bacillus subtilis as a function of pH and surface loading. Adsorption edge and XAS experiments were performed at high bacteria-to-metal ratio, analogous to Cu uptake in natural geologic and aqueous environments. We report significant Cu adsorption to B. subtilis across the entire pH range studied (pH ∼2-7), with adsorption increasing with pH to a maximum at pH ∼6. We determine directly for the first time that Cu adsorbs to B. subtilis as a (CuO5Hn)n−8 monodentate, inner-sphere surface complex involving carboxyl surface functional groups. This Cu-carboxyl complex is able to account for the observed Cu adsorption across the entire pH range studied. Having determined the molecular adsorption mechanism of Cu to B. subtilis, we have developed a new thermodynamic surface complexation model for Cu adsorption that is informed by and consistent with EXAFS results. We model the surface electrostatics using the 1pK basic Stern approximation. We fit our adsorption data to the formation of a monodentate, inner-sphere RCOOCu+ surface complex. In agreement with previous studies, this work indicates that in order to accurately predict the fate and mobility of Cu in complex biogeochemical systems, we must incorporate the formation of Cu-bacteria surface complexes in reactive transport models. To this end, this work recommends log K RCOOCu+ = 7.13 for geologic and aqueous systems with generally high B. subtilis-to-metal ratio.  相似文献   

8.
Fluid inclusions were synthesized in a piston-cylinder apparatus under mineral-buffered conditions over a range of Cl concentration (0.29 to 11.3 mol kg−1), temperature (525 to 725 °C), and pressure (0.3 to 1.7 GPa). All fluids were buffered by the mineral assemblage native copper + cuprite + talc + quartz. In situ fluid composition was determined by analysing individual fluid inclusions by LA-ICPMS and independently analysing the quench solution. The solubility data provide basic information necessary to model the high temperature behaviour of Cu in magmatic-hydrothermal systems. Copper concentrations up to ∼15 wt% were measured at 630 °C and 0.34 GPa. These results give an upper limit for Cu in natural fluids and support field-based observations of similar high Cu concentrations in fluids at near-magmatic conditions. Experimental evidence indicates that Cu+ may form neutral chloride complexes with the general stoichiometry with n up to 4, though n ? 2 is typical for the majority of the experimental conditions. At high pressure (>∼0.5 GPa) there is evidence that hydroxide species, e.g., CuOH0, become increasingly important and may predominate over copper(I)-chloride complexes. The roles of fluid mixing, cooling and decompression in ore-forming environments are also discussed.  相似文献   

9.
Boric acid, B(OH)3, forms complexes in aqueous solution with a number of bidentate O-containing ligands, HL, where H2L is C2O4H2 (oxalic acid), C3O4H4 (malonic acid), C2H6O2 (ethylene glycol), C6H6O2 (catechol), C10H8O2 (dioxynaphthalene) and C2O3H4 (glycolic acid). McElligott and Byrne [McElligott, S., Byrne, R.H., 1998. Interaction of and in seawater: Formation of . Aquat. Geochem.3, 345-356.] have also found B(OH)3 to form an aqueous complex with . Recently Lemarchand et al. [Lemarchand, E., Schott, J., Gaillardeet, J., 2005. Boron isotopic fractionation related to boron sorption on humic acid and the structure of surface complexes formed. Geochim. Cosmochim. Acta69, 3519-3533] have studied the formation of surface complexes of B(OH)3 on humic acid, determining 11B NMR shifts and fitted values of formation constants, and 11B, 10B isotope fractionations for a number of surface complexation models. Their work helps to clarify both the nature of the interaction of boric acid with the functional groups in humic acid and the nature of some of these coordinating sites on the humic acid. The determination of isotope fractionations may be seen as a form of vibrational spectroscopy, using the fractionating element as a local probe of the vibrational spectrum. We have calculated quantum mechanically the structures, stabilities, vibrational spectra, 11B NMR spectra and 11B,10B isotope fractionations of a number of complexes B(OH)2L formed by reactions of the type:
  相似文献   

10.
Sorption of U(VI) to goethite is a fundamental control on the mobility of uranium in soil and groundwater. Here, we investigated the sorption of U on goethite using EXAFS spectroscopy, batch sorption experiments and DFT calculations of the energetics and structures of possible surface complexes. Based on EXAFS spectra, it has previously been proposed that U(VI), as the uranyl cation , sorbs to Fe oxide hydroxide phases by forming a bidentate edge-sharing (E2) surface complex, >Fe(OH)2UO2(H2O)n. Here, we argue that this complex alone cannot account for the sorption capacity of goethite (α-FeOOH). Moreover, we show that all of the EXAFS signal attributed to the E2 complex can be accounted for by multiple scattering. We propose that the dominant surface complex in CO2-free systems is a bidentate corner-sharing (C2) complex, (>FeOH)2UO2(H2O)3 which can form on the dominant {101} surface. However, in the presence of CO2, we find an enhancement of UO2 sorption at low pH and attribute this to a (>FeO)CO2UO2 ternary complex. With increasing pH, U(VI) desorbs by the formation of aqueous carbonate and hydroxyl complexes. However, this desorption is preceded by the formation of a second ternary surface complex (>FeOH)2UO2CO3. The three proposed surface complexes, (>FeOH)2UO2(H2O)3, >FeOCO2UO2, and (>FeOH)2UO2CO3 are consistent with EXAFS spectra. Using these complexes, we developed a surface complexation model for U on goethite with a 1-pK model for surface protonation, an extended Stern model for surface electrostatics and inclusion of all known UO2-OH-CO3 aqueous complexes in the current thermodynamic database. The model gives an excellent fit to our sorption experiments done in both ambient and reduced CO2 environments at surface loadings of 0.02-2.0 wt% U.  相似文献   

11.
We report new experimental data of Cu diffusivity in granite porphyry melts with 0.01 and 3.9 wt% H2O at 0.15–1.0 GPa and 973–1523 K. A diffusion couple method was used for the nominally anhydrous granitic melt, whereas a Cu diffusion-in method using Pt95Cu5 as the source of Cu was applied to the hydrous granitic melt. The diffusion couple experiments also generate Cu diffusion-out profiles due to Cu loss to Pt capsule walls. Cu diffusivities were extracted from error function fits of the Cu concentration profiles measured by LA-ICP-MS. At 1 GPa, we obtain \({D_{{\text{Cu, dry, 1 GPa}}}}=\exp \left[ {( - {\text{13.89}} \pm {\text{0.42}}) - \frac{{{\text{12878}} \pm {\text{540}}}}{T}} \right],\) and \({D_{{\text{Cu, 3}}{\text{.9 wt\% }}{{\text{H}}_{\text{2}}}{\text{O}},{\text{ 1 GPa}}}}=\exp \left[ {( - 16.31 \pm 1.30) - \frac{{{\text{8148}} \pm {\text{1670}}}}{T}} \right],\) where D is Cu diffusivity in m2/s and T is temperature in K. The above expressions are in good agreement with a recent study on Cu diffusion in rhyolitic melt using the approach of Cu2S dissolution. The observed pressure effect over 0.15–1.0 GPa can be described by an activation volume of 5.9 cm3/mol for Cu diffusion. Comparison of Cu diffusivity to alkali diffusivity and its variation with melt composition implies fourfold-coordinated Cu+ in silicate melts. Our experimental results indicate that in the formation of porphyry Cu deposits, the diffusive transport of magmatic Cu to sulfide liquids or fluid bubbles is highly efficient. The obtained Cu diffusivity data can also be used to assess whether equilibrium Cu partitioning can be reached within certain experimental durations.  相似文献   

12.
Proton binding constants for the edge and basal surface sites of kaolinite were determined by batch titration experiments at 25 °C in the presence of 0.1 M, 0.01 M and 0.001 M solutions of NaNO3 and in the pH range 3-9. By optimizing the results of the titration experiments, the ratio of the edge sites to the basal surface sites was found to be 6:1. The adsorption of Cd(II), Cu(II), Ni(II), Zn(II) and Pb(II) onto kaolinite suspensions was investigated using batch adsorption experiments and results suggested that in the lower pH range the metallic cations were bound through non-specific ion exchange reactions on the permanently charged basal surface sites (X). Adsorption on these sites was greatly affected by ionic strength. With increasing pH, the variable charged edge sites (SOH) became the major adsorption sites and inner-sphere specifically adsorbed monodentate complexes were believed to be formed. The effect of ionic strength on the extent of adsorption of the metals on the variable charged edge sites was much less than those on the permanently charged sites. Two binding constants, log K(X2Me) and log K(SOMe), were calculated by optimizing these constants in the computer program FITEQL. A model combining non-specific ion exchange reactions and inner-sphere specific surface complexations was developed to predict the adsorption of heavy metals onto kaolinite in the studied pH range. Linear free energy relationships were found between the edge site binding constants and the first hydrolysis constants of the metals.  相似文献   

13.
The transport and deposition of copper in saline hydrothermal fluids are controlled by the stability of copper(I) complexes with ligands such as chloride. Despite their role in the formation of most hydrothermal copper deposits, the nature and stability of Cu(I) chloride complexes in highly saline brines remains controversial. We present new X-ray absorption data (P = 600 bar, T = 25-400 °C, salinity up to 17.2 m Cl), which indicate that the linear (x = 1, 2) complexes are stable up to supercritical conditions. Distorted trigonal planar complexes predominate at room temperature and at high salinity (>3 m LiCl): subtle changes in the XANES spectrum with increasing salinity may reflect geometric distortions of this complex. Similar changes were observed in UV-Vis data [Liu, W., Brugger, J., McPhail, D.C., Spiccia, L., 2002. A spectrophotometric study of aqueous copper(I) chloride complexes in LiCl solutions between 100 °C and 250 °C. Geochim. Cosmochim. Acta66, 3615-3633], and were erroneously interpreted as a new species, . Our XAS data and ab-initio XANES calculations show that this tetrahedral species is not present to any significant degree in our solutions. The stability of the complexe decreases with increasing temperature; under supercritical conditions and in brines under magmatic-hydrothermal conditions (e.g., 15.58 m Cl, 400 °C, 600 bar), only the linear Cu(I) chloride complexes were observed. This result and the instability of the complex are also consistent with the recent ab-initio molecular dynamic calculations of Sherman [Sherman D. M.(2007) Complexation of Cu+ in hydrothermal NaCl brines: ab-initio molecular dynamics and energetics. Geochim. Cosmochim. Acta71, 714-722]. This study illustrates the power of the quantitative nature of XANES and EXAFS measurements for deciphering the speciation of weak transition metal complexes up to magmatic-hydrothermal conditions.The systematic XANES data are used to retrieve the formation constant for at 150 °C, which is in good agreement with the reinterpretation of the UV-Vis data of Liu et al. (Liu et al., 2002). At high temperatures (?400 °C), the solubility of chalcopyrite in equilibrium with hematite-magnetite-pyrite and K-feldspar-muscovite-quartz calculated with the new properties is lower than that calculated using the previous model, and the calculated solubilities are at the lower end of the range of values measured in brine inclusions from porphyry copper systems.  相似文献   

14.
The crystal chemistry of paratacamite has been re-evaluated by studying a crystal from the holotype specimen BM86958 of composition Cu3.71Zn0.29(OH)6Cl2 using single-crystal X-ray diffraction at 100, 200, 300, 353, 393 and 423 K. At 300 K paratacamite has space group $R\bar{3}$ with unit-cell parameters a 13.644 and c 14.035 Å and exhibits a pronounced subcell, a′ = ½a and c′ = c, analogous to that of the closely related mineral herbertsmithite, Cu3Zn(OH)6Cl2. Between 353 and 393 K, paratacamite undergoes a reversible phase transformation to the herbertsmithite-like substructure, space group $R\bar{3}m$ , unit-cell parameters a 6.839 and c 14.072 Å (393 K). The transformation is characterised by a gradual reduction in intensity of superlattice reflections, which are absent at 393 and 443 K. On cooling from 443 to 300 K at ~10 K min?1, the superlattice reflections reappear and the refined structures ( $R\bar{3}$ ) of the initial and recovered 300 K states are almost identical. The complete reversibility of the transformation establishes that paratacamite of composition Cu3.71Zn0.29(OH)6Cl2 is thermodynamically stable at ambient temperatures. The nature of the rhombic distortion of the M(2)O6 octahedron is discussed by considering two possibilities that are dependent upon the nature of cation substitution in the interlayer sites.  相似文献   

15.
Copper biogeochemistry is largely controlled by its bonding to natural organic matter (NOM) for reasons not well understood. Using XANES and EXAFS spectroscopy, along with supporting thermodynamic equilibrium calculations and structural and steric considerations, we show evidence at pH 4.5 and 5.5 for a five-membered Cu(malate)2-like ring chelate at 100-300 ppm Cu concentration, and a six-membered Cu(malonate))1-2-like ring chelate at higher concentration. A “structure fingerprint” is defined for the 5.0-7.0 Å−1 EXAFS region which is indicative of the ring size and number (i.e., mono- vs. bis-chelate), and the distance and bonding of axial oxygens (Oax) perpendicular to the chelate plane formed by the four equatorial oxygens (Oeq) at 1.94 Å. The stronger malate-type chelate is a C4 dicarboxylate, and the weaker malonate-type chelate a C3 dicarboxylate. The malate-type chelate owes its superior binding strength to an -OH for -H substitution on the α carbon, thus offering additional binding possibilities. The two new model structures are consistent with the majority of carboxyl groups being clustered and α-OH substitutions common in NOM, as shown by recent infrared and NMR studies. The high affinity of NOM for Cu(II) is explained by the abundance and geometrical fit of the two types of structures to the size of the equatorial plane of Cu(II). The weaker binding abilities of functionalized aromatic rings also is explained, as malate-type and malonate-type structures are present only on aliphatic chains. For example, salicylate is a monocarboxylate which forms an unfavorable six-membered chelate, because the OH substitution is in the β position. Similarly, phthalate is a dicarboxylate forming a highly strained seven-membered chelate.Five-membered Cu(II) chelates can be anchored by a thiol α-SH substituent instead of an alcohol α-OH, as in thio-carboxylic acids. This type of chelate is seldom present in NOM, but forms rapidly when Cu(II) is photoreduced to Cu(I) at room temperature under the X-ray beam. When the sample is wet, exposure to the beam can reduce Cu(II) to Cu(0). Chelates with an α-amino substituent were not detected, suggesting that malate-like α-OH dicarboxylates are stronger ligands than amino acids at acidic pH, in agreement with the strong electronegativity of the COOH clusters. However, aminocarboxylate Cu(II) chelates may form after saturation of the strongest sites or at circumneutral pH, and could be observed in NOM fractions enriched in proteinaceous material. Overall, our results support the following propositions:
(1)
The most stable Cu-NOM chelates at acidic pH are formed with closely-spaced carboxyl groups and hydroxyl donors in the α-position; oxalate-type ring chelates are not observed.
(2)
Cu(II) bonds the four equatorial oxygens to the heuristic distance of 1.94 ± 0.01 Å, compared to 1.97 Å in water. This shortening increases the ligand field strength, and hence the covalency of the Cu-Oeq bond and stability of the chelate.
(3)
The chelate is further stabilized by the bonding of axial oxygens with intra- or inter-molecular carboxyl groups.
(4)
Steric hindrances in NOM are the main reason for the absence of Cu-Cu interactions, which otherwise are common in carboxylate coordination complexes.
  相似文献   

16.
The paper reports new findings of avdoninite from deposits of active fumaroles in the Second Scoria Cone at the Northern Breach of the Great Fissure Tolbachik Eruption, Tolbachik Volcano, Kamchatka Peninsula, Russia. The crystal structure of the mineral has been determined for the first time, which has allowed reliable determination of its space group and unit cell dimensions, refinement of its formula K2Cu5-Cl8(OH)4 · 2H2O, and correct indexing of its X-ray powder diffraction pattern. Avdoninite is monoclinic, space group P21/c, a = 11.592(2), b = 6.5509(11), c = 11.745(2) Å, β = 91.104(6)°, V = 891.8(3) Å3, Z = 2. The crystal structure of this mineral has been determined on a single crystal R 1 [F > 4σ (F)] = 0.063. It is based on sheets of copper–oxo-chloride complexes [Cu5Cl8(OH)4]2– parallel to (100). The K+ cation and H2O molecules are interlayers.  相似文献   

17.
In solution thermodynamics, and more recently in surface chemistry, it is well established that relationships can be found between the free energies of formation of aqueous or surface metal complexes and thermodynamic properties of the metal ions or ligands. Such systematic dependencies are commonly termed linear free energy relationships (LFER). A 2 site protolysis non-electrostatic surface complexation and cation exchange (2SPNE SC/CE) model has been used to model “in house” and literature sorption edge data for eleven elements: Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) to provide surface complexation constants for the strong sites on montmorillonite. Modelling a further 4 sets of sorption isotherms for Ni(II), Zn(II), Eu(III) and U(VI) provided complexation constants for the weak sites. The protolysis constants and site capacities derived for the 2SPNE SC/CE model in previous work were fixed in all of the calculations. Cation exchange was modelled simultaneously to provide selectivity coefficients. Good correlations between the logarithms of strong SKx−1 and weak W1Kx−1 site binding constants on montmorillonite and the logarithm of the aqueous hydrolysis constants OHKx were found which could be described by the following equations: Strong (≡SSOH) sites:
SlogKX−1=8.1±0.3+(0.90±0.02)logOHKX  相似文献   

18.
Chloride and hydrosulfide are the principal ligands assumed to govern transport of copper in hydrothermal fluids. Existing solubility experiments suggest that Cu(I)-hydrosulfide complexes are dominant compared to chloride complexes at low salinities in alkaline solutions (H2S(aq)/HS pH buffer), and may be important in transporting Cu in low density magmatic vapors, potentially controlling the liquid-vapor partitioning of Cu. This study provides the first in situ evidence of the solubility of copper sulfides and the nature and structure of the predominant Cu species in sulfur-containing fluids at temperatures up to 592 °C and pressures of 180-600 bar. XANES and EXAFS data show that at elevated T (?200 °C), Cu solubility occurs via a linear Cu complex. At 428 °C in alkaline solutions, Cu is coordinated by two sulfur atoms in a distorted linear coordination (angle ∼150-160°). This geometry is consistent with the species predicted by earlier solubility studies. In addition, in situ measurements of the solubility of chalcocite in 2 m NaHS solutions performed in this study are in remarkably good agreement with the solubilities calculated using available thermodynamic data for Cu(I)-hydrosulfide complexes, also supporting the interpretation of speciation in these studies and validating the extrapolation of low-T thermodynamic properties for to high P-T. Data on phase separation for the 2 m NaHS solution show that while significant amounts of copper can be partitioned into the vapor phase, there is no indication for preferential partitioning of Cu into the vapor. This is consistent with recent partitioning experiments conducted in autoclaves by Pokrovski et al. (2008a) and Simon et al. (2006). XANES data suggest that the species present in the low density phase is very similar to that present in the high density liquid, i.e., , although Cu(HS)(H2S)0 cannot be excluded on the basis of XAS data.  相似文献   

19.
We have characterized the adsorption of Suwannee River humic acid (SRHA) and Cu(II) on calcite from preequilibrated solutions at pH 8.25. Sorption isotherms of SRHA on calcite follow Langmuir-type behavior at SRHA concentrations less than 15 mg C L−1, whereas non-Langmuirian uptake becomes evident at concentrations greater than 15 mg C L−1. The adsorption of SRHA on calcite is rapid and mostly irreversible, with corresponding changes in electrostatic properties. At pH 8.25, Cu(II) uptake by calcite in the presence of dissolved SRHA decreases with increasing dissolved SRHA concentration, suggesting that formation of Cu-SRHA aqueous complexes is the primary factor controlling Cu(II) sorption at the calcite surface under the conditions of our experiments. We also observed that surface-bound SRHA has little influence on Cu(II) uptake by calcite, suggesting that Cu(II) coordinates to calcite surface sites rather than to surface-bound SRHA.Cu K-edge X-ray absorption near edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) spectroscopic results show that the local coordination of Cu adsorbed at the calcite surface is very similar in the presence and absence of SRHA. Ca backscatterers at ∼3.90 Å indicate that Cu(II) forms tetragonally distorted inner-sphere adsorption complexes in both binary and ternary systems. Subtle differences in the XANES and EXAFS between binary sorption samples and ternary sorption samples, however, prevent us from ruling out the formation of ternary Cu-SRHA surface complexes. Our findings demonstrate that SRHA plays an important role in controlling the fate and transport of Cu(II) in calcite-bearing systems.  相似文献   

20.
The thermodynamics of dilute Eu-calcite solid solutions formed under widely different pH-pCO2 conditions at T = 25°C and p = 1 bar were investigated using three sets of Eu(III) uptake experiments, two of which were taken from the literature: (a) recrystallization in synthetic cement pore water at pH ∼ 13 and pCO2 ∼ 10−13 bar (this work); (b) coprecipitation in 0.1 M NaClO4 at pH ∼ 6 and pCO2 ∼ 1 bar; (c) coprecipitation in synthetic seawater at pH ∼ 8 and pCO2 ranging from 3 × 10−4 to 0.3 bar.Solid solution formation was modeled using the Gibbs energy minimization (GEM) method. In a first step (“forward” modeling), we tested ideal binary solid solution models between calcite and the Eu end-members Eu2(CO3)3, EuNa(CO3)2, Eu(OH)CO3 or Eu(OH)3, for which solids with independently measured solubility products exist. None of these four binary solid solutions was capable of reproducing all three experimental datasets simultaneously. In a second step (“inverse” modeling), ideal binary solid solutions were constructed between calcite and the candidate Eu end-members EuO(OH), EuH(CO3)2 and EuO(CO3)0.5, for which no independent solubility products are available. For each single data point and each of these end-members, a free energy of formation with inherent activity coefficient term ( = Gαo + RT lnγα) was estimated from “dual thermodynamic” GEM calculations. The statistical mean of was then calculated for each of the three datasets. A specific end-member was considered to be acceptable if a standard deviation of ± 2 kJ mol−1 or less resulted for each single dataset, and if the mean -values calculated for the three datasets coincided. No binary solid solution with any of the seven above mentioned end-members proved to satisfy these criteria.The third step in our analysis involved consideration of ternary solid solutions with CaCO3 as the major end-member and any two of the seven considered Eu trace end-members. It was found that the three datasets can only be reproduced simultaneously with the ternary ideal solid solution EuH(CO3)2 - EuO(OH) - CaCO3, setting = −1773 kJ mol−1 and = −955 kJ mol−1, whereas all other end-member combinations failed. Our results are consistent with time-resolved laser fluorescence data for Cm(III) and Eu(III) indicating that two distinct species are incorporated in calcite: one partially hydrated, the other completely dehydrated. In conclusion, our study shows that substitution of trivalent for divalent cations in carbonate crystal structures is a more complex process than the classical isomorphic divalent-divalent substitution and may need consideration of multicomponent solid solution models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号