共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the influence of climatic and non-climatic factors on geochemical signals in corals is critical for assessing coral-derived records of tropical climate variability. Porites microatolls form large, disk-shaped colonies constrained in their upward growth by exposure at or close to mean spring low water level, and occur on Indo-Pacific reefs. Microatolls appear suitable for paleoclimate reconstruction, however the systematics of the microatoll chemistry-climate relationship are yet to be characterized. In this study, the δ18O signal in Porites microatolls from well-flushed reef flats on Kiritimati (Christmas) Island, central Pacific was investigated for intra-coral (growth aspect and extension rate effects) and between-coral effects, and to explore the climate signal contained within their skeletons. Samples for δ18O analysis were taken from six individual transects from different positions within Porites microatoll XM22. The results show that: (1) the average standard deviation for the mean δ18O values of transects that represent the same time periods is 0.03‰, and is within measurement error for a single analysis (0.04‰); (2) the average standard deviation for time-equivalent, near-monthly samples along the transects within the same microatoll is 0.07‰ and; (3) comparison of the average δ18O values of records for different microatolls from across Kiritimati Island show only a small between-coral differences of 0.04‰ and 0.11‰ for different time periods. These differences in mean δ18O are within the range for intra- and inter-colony differences in seasonal and interannual δ18O reported for dome-shaped Porites. Based on these results, a stacked microatoll δ18O record was constructed for the period 1978-2007 for comparison with published coral δ18O records for nearby dome-shaped Porites. There is a systematic offset between the two types of records, which is probably due to variations in δ18O seawater across Kiritimati Island. Despite the offset, all records show similar amplitudes for the seasonal-cycle of δ18O, and there is a strong correlation (r = −0.71) between microatoll δ18O and local sea surface temperature (SST). The δ18O-SST slope relationship for microatolls is −0.15‰/°C, very similar to that reported for fast-growing domed corals (−0.18‰ to −0.22‰/°C). Statistical analysis of the stacked microatoll δ18O record shows that it is correlated with both local and large-scale climate variables (primarily SST) at semiannual, annual and interannual timescales. Our results show that the signal reproducibility and fidelity of skeletal δ18O in coral microatolls is comparable to that observed for more conventional coral growth forms. Longer-lived, and fossil, Porites microatolls, where they have grown in suitably flushed environments, are likely to contain δ18O signals that can significantly extend instrumental records of tropical climate variability. 相似文献
2.
Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea 总被引:1,自引:0,他引:1
Stewart J. Fallon Jamie C. White†Malcolm T. McCulloch 《Geochimica et cosmochimica acta》2002,66(1):45-62
In 1989 open-cut gold mining commenced on Misima Island in Papua New Guinea (PNG). Open-cut mining by its nature causes a significant increase in sedimentation via the exposure of soils to the erosive forces of rain and runoff. This increased sedimentation affected the nearby fringing coral reef to varying degrees, ranging from coral mortality (smothering) to relatively minor short-term impacts. The sediment associated with the mining operation consists of weathered quartz feldspar, greenstone, and schist. These rocks have distinct chemical characteristics (rare earth element patterns and high abundances of manganese, zinc, and lead) and are entering the near-shore environment in considerably higher than normal concentrations. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), we analyzed eight colonies (two from high sedimentation, two transitional, two minor, and two unaffected control sites) for Y, La, Ce, Mn, Zn, and Pb. All sites show low steady background levels prior to the commencement of mining in 1988. Subsequently, all sites apart from the control show dramatic increases of Y, La, and Ce associated with the increased sedimentation as well as rapid decreases following the cessation of mining. The elements Zn and Pb exhibit a different behavior, increasing in concentration after 1989 when ore processing began and one year after initial mining operations. Elevated levels of Zn and Pb in corals has continued well after the cessation of mining, indicating ongoing transport into the reef of these metals via sulfate-rich waters. Rare earth element (REE) abundance patterns measured in two corals show significant differences compared to Coral Sea seawater. The corals display enrichments in the light and middle REEs while the heavy REEs are depleted relative to the seawater pattern. This suggests that the nearshore seawater REE pattern is dominated by island sedimentation. Trace element abundances of Misima Island corals clearly record the dramatic changes in the environmental conditions at this site and provide a basis for identifying anthropogenic influences on corals reefs. 相似文献
3.
Peter K. Swart 《Earth》1983,19(1):51-80
The present theories on the fractionation of stable isotopes in scleractinian corals are critically discussed in the light of data available on primary productivity, respiration and stable isotope chemistry. These data support a model of fractionation in which the carbon and oxygen isotopes are decoupled. Calcification occurs from a reservoir of carbon dioxide derived from both organic and inorganic sources. Photosynthesis preferentially fixes13C and thereby leaves behind13C. Increases in the rate of photosynthesis therefore also enrich the carbon isotope ratio of the skeleton. From theoretical considerations, photosynthesis has little effect on the oxygen isotope ratio of the skeleton, a fact confirmed by available data. The process of respiration adds depleted carbon and oxygen to the calcification reservoirs. The varying correlations between carbon and oxygen isotopes seen in hermatypic corals are caused by changes in the relationship between photosynthesis and respiration at different geographical localities. The isotopic compositions in the skeletons of non-zooxanthellate corals, which show a consistent positive correlation, can also be explained by the above scenario. 相似文献
4.
Erin F. Owen Alan D. Wanamaker Jr. Bernd R. Schöne 《Geochimica et cosmochimica acta》2008,72(19):4687-4698
The relationship between stable isotope composition (δ13C and δ18O) in seawater and in larval shell aragonite of the sea scallop, Placopecten magellanicus, was investigated in a controlled experiment to determine whether isotopes in larval shell aragonite can be used as a reliable proxy for environmental conditions. The linear relationship between δ13CDIC and δ13Caragonite (r2 = 0.97, p < 0.0001, RMSE = 0.18) was:
δ13CDIC=1.15(±0.05)∗δ13Caragonite-0.85(±0.04) 相似文献
5.
A. Juillet-Leclerc S. Reynaud C. Rollion-Bard J.P. Cuif Y. Dauphin D. Blamart C. Ferrier-Pags D. Allemand 《Geochimica et cosmochimica acta》2009,73(18):5320-5332
In order to identify vital effect on oxygen isotopic ratio, we analyzed at micrometer size scale skeleton microstructures of a scleractinian coral Acropora, cultured under constant conditions. Measurements focused on the two crystalline units highlighted different isotopic signatures. Massive crystals (centers of calcification: COC) exhibit quasi-constant lowest values whereas fibers, the dominant units exhibit scattered distribution with amplitude of up to 5‰. Fiber oxygen isotopic ratios (δ18O) range from values similar to instantaneous deposition to equilibrium value. By comparing data obtained on the Acropora specimen and deep-sea corals grown under well constrained conditions, we infer that the scattered δ18O aragonite fibers indicate precipitation through kinetic precipitation. Thus, we argue for inherent biological feature typical to all coral genera. Modalities of COC formation remain ignored.The different isotopic signature of two mineral microstructures present in close proximity in coral skeleton can only be explained by compartment depositions related to different organic environments. Indeed, multiple secondary electron microscopy (SEM) observations favor interaction between mineral and organic matrix surface. Moreover, atomic forcing microscopy (AFM) investigations demonstrated thermodynamic changes induced by mineralization in presence of organic compounds. The combination of our results with previous published ones from biological studies, allows us proposing a consistent model of fiber skeleton formation. The prerequisite step of mineral growth unit precipitation would be initiated by organic matrix secretion, which defines spatial extension. Specific carriers supply ionic compounds of the crystals to ensure local supersaturation. However, possibly controlled by organic molecules, ionic amount would be limited, implying the supersaturation decline over the time. This could explain the progressive decrease of the coral growth rate. In this case, vital effect should not only bias isotopic fractionation through biological activity but the mechanism of skeleton deposition is imposed by specific chemical and/or physical conditions due to the presence of organic molecules. These conclusions derive from observations performed at high resolution.Therefore, isotopic ratio measured on millimeter scale for paleoclimatic purposes, result of the average of strongly heterogeneous values. It could explain vital effects shown by geochemical time series derived from tropical coral skeleton, including the high species and/or colony variability. 相似文献
6.
Density, δ18O and δ13C were measured along two tracks, one close to the central growth axis and the other, ∼20ℴ off the axis, in a coral (Porites lutea) collected from the Stanley Reef, Central Great Barrier Reef, Australia. The δ18O variations in the coral are well correlated with sea surface temperature changes. The common variances between the two tracks
were about 60% in the δ18O, δ{13}C, and the skeletal density variations. Part of the noise (40%) could be due to the difficulty of sampling exactly
time contemporaneous parts of each band along the two tracks and part of it could be due to genuine intraband variability.
In spite of the intraband variability, the time series obtained from the two tracks are similar, indicating that the dominant
causative factor for the isotopic variations is external, i.e., the environmental conditions that prevail during the growth
of the coral; density band formation does not appear to be directly controlled by the sea surface temperature. 相似文献
7.
John W. Valley Peter D. Kinny Daniel J. Schulze Michael J. Spicuzza 《Contributions to Mineralogy and Petrology》1998,133(1-2):1-11
The oxygen isotope ratios of Phanerozoic zircons from kimberlite pipes in the Kaapvaal Craton of southern Africa and the
Siberian Platform vary from 4.7 to 5.9‰ VSMOW. High precision, accurate analyses by laser reveal subtle pipe-to-pipe differences
not previously suspected. These zircons have distinctive chemical and physical characteristics identifying them as mantle-derived
megacrysts similar to zircons found associated with diamond, coesite, MARID xenoliths, Cr-diopside, K-richterite, or Mg-rich
ilmenite. Several lines of evidence indicate that these 18O values are unaltered by kimberlite magmas during eruption and represent compositions preserved since crystallization in
the mantle, including: U/Pb age, large crystal size, and the slow rate of oxygen exchange in non-metamict zircon. The average
18O of mantle zircons is 5.3‰, ∼0.1 higher and in equilibrium with values for olivine in peridotite xenoliths and oceanic basalts.
Zircon megacrysts from within 250 km of Kimberley, South Africa have average 18O=5.32±0.17 (n=28). Small, but significant, differences among other kimberlite pipes or groups of pipes may indicate isotopically distinct
reservoirs in the sub-continental lithosphere or asthenosphere, some of which are anomalous with respect to normal mantle
values of 5.3±0.3. Precambrian zircons (2.1–2.7 Ga) from Jwaneng, Botswana have the lowest values yet measured in a mantle
zircon, 18O=3.4 to 4.7‰. These zircon megacrysts originally crystallized in mafic or ultramafic rocks either through melting and metasomatism
associated with kimberlite magmatism or during metamorphism. The low 18O zircons are best explained by subduction of late Archean ocean crust that exchanged with heated seawater prior to underplating
as eclogite and to associated metasomatism of the mantle wedge. Smaller differences among other pipes and districts may result
from variable temperatures of equilibration, mafic versus ultramafic hosts, or variable underplating. The narrow range in
zircon compositions found in most pipes suggests magmatic homogenization. If this is correct, these zircons document the existence
of significant quantities of magma in the sub-continental mantle that was regionally variable in 18O and this information restricts theories about the nature of ancient subduction.
Received: 8 August 1997 / Accepted: 6 May 1998 相似文献
8.
John P. Bucci William J. Showers Jay F. Levine 《Geochimica et cosmochimica acta》2009,73(11):3234-3247
The modern invasive bivalve Corbicula fluminea was collected in 2006 from three sites with different land uses located in a North Carolina River Basin. The primary objective was to describe the δ18O and δ13C profiles of C. fluminea shells under various land use conditions. An additional aim was to evaluate whether growth patterns of C. fluminea form seasonally. Annual shell growth patterns were measured from the umbo to the margin and co-varied with estimates of ambient water temperature, corresponding to seasonal variation. The C. fluminea growth patterns as translucent bands (slower growth) appeared to form during winter months and opaque bands (rapid growth) formed during summer. A mixed model analysis (ANOVA) showed a significant site level effect of δ18O and δ13C profiles examined among sites (F = 17.1; p = 0.003). A second model showed a borderline significant site effect among profiles with variability more pronounced at the urban site, Crabtree Creek (p = 0.085). Previous habitat assessment ratings and water chemistry measurements suggested that the urban site was more impacted by storm water runoff. Understanding δ18O and δ13CSHELL profiles and shell growth patterns of the invasive bivalve (C. fluminea) may help establish a framework for using these animals as biomonitors to record water temperature and nutrient pollution. 相似文献
9.
James R. Rustad 《Organic Geochemistry》2009,40(6):720-723
Carbon isotope compositions for the 20 standard amino acids are calculated using high-level molecular orbital and density functional theory methods. In agreement with measurements of the isotopic compositions of amino acids in a cyanobacterium [Macko, S.A., Fogel, M.L., Hare, P.E., Hoering, T.C., 1987. Isotope fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chemical Geology 65, 79–92] the calculations give heavy signatures for aspartic acid + asparagine, serine, glutamine + glutamic acid and light signatures for leucine and isoleucine. The relative intramolecular enrichment of 13C in carboxyl groups is often much less than measured [Abelson, P.H., Hoering, T.C., 1961. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proceedings of the National Academy of Sciences, USA 47, 623–632]. Fractionations predicted from density functional calculations often differ by several per mil from those predicted from molecular orbital calculations. 相似文献
10.
B. K?sakürek A. Eisenhauer E.C. Hathorne J. Erez 《Geochimica et cosmochimica acta》2011,75(2):427-5818
Specimens of two species of planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera, were grown under controlled laboratory conditions at a range of temperatures (18-31 °C), salinities (32-44 psu) and pH levels (7.9-8.4). The shells were examined for their calcium isotope compositions (δ44/40Ca) and strontium to calcium ratios (Sr/Ca) using Thermal Ionization Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Although the total variation in δ44/40Ca (∼0.3‰) in the studied species is on the same order as the external reproducibility, the data set reveals some apparent trends that are controlled by more than one environmental parameter. There is a well-defined inverse linear relationship between δ44/40Ca and Sr/Ca in all experiments, suggesting similar controls on these proxies in foraminiferal calcite independent of species. Analogous to recent results from inorganically precipitated calcite, we suggest that Ca isotope fractionation and Sr partitioning in planktic foraminifera are mainly controlled by precipitation kinetics. This postulation provides us with a unique tool to calculate precipitation rates and draws support from the observation that Sr/Ca ratios are positively correlated with average growth rates. At 25 °C water temperature, precipitation rates in G. siphonifera and G. ruber are calculated to be on the order of 2000 and 3000 μmol/m2/h, respectively. The lower δ44/40Ca observed at ?29 °C in both species is consistent with increased precipitation rates at high water temperatures. Salinity response of δ44/40Ca (and Sr/Ca) in G. siphonifera implies that this species has the highest precipitation rates at the salinity of its natural habitat, whereas increasing salinities appear to trigger higher precipitation rates in G. ruber. Isotope effects that cannot be explained by precipitation rate in planktic foraminifera can be explained by a biological control, related to a vacuolar pathway for supply of ions during biomineralization and a pH regulation mechanism in these vacuoles. In case of an additional pathway via cross-membrane transport, supplying light Ca for calcification, the δ44/40Ca of the reservoir is constrained as −0.2‰ relative to seawater. Using a Rayleigh distillation model, we calculate that calcification occurs in a semi-open system, where less than half of the Ca supplied by vacuolization is utilized for calcite precipitation. Our findings are relevant for interpreting paleo-proxy data on δ44/40Ca and Sr/Ca in foraminifera as well as understanding their biomineralization processes. 相似文献
11.
Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget 总被引:2,自引:0,他引:2
Carbon isotope values of 260 Precambrian limestones and dolomites (most of them being substantially unaltered) have yielded an overall mean of vs. PDB; the corresponding oxygen values average at vs. SMOW. Like the overall mean, the δ 13C values furnished by individual carbonate occurrences are, as a rule, fairly “modern” and almost constant as from the very beginning of the sedimentary record. A remarkable exception are the “heavy” dolomites of the Middle Precambrian Lomagundi Group, Rhodesia, with vs. PDB. As a result of our measurements, the sporadic occurrence in the geological past of anomalously heavy carbonates seems to be established.The approximate constancy around zero per mill of the δ 13C values of marine carbonates through geologic time would imply a corresponding constancy of the relative proportion of organic carbon in the total sedimentary carbon reservoir since about 3.3 · 109 y ago (with Corg/Ctotal ? 0.2). Utilizing this ratio and current models for the accumulation of the sedimentary mass as a function of time, we get a reasonable approximation for the absolute quantity of organic carbon buried in sediments and, accordingly, of photosynthetic oxygen released. Within the constraints of our model (based on a terrestrial degassing constant λ = 1.16 · 10?9 y?1) close to 80% of the amount of oxygen contained in the present oxygen budget should have been released prior to 3 · 109 y ago. Since geological evidence indicates an O2-deficient environment during the Early and most parts of the Middle Precambrian, there is reason to believe that the distribution of this oxygen between the “bound” and the “molecular” reservoir was different from that of today (with effective O2-consuming reactions bringing about an instantaneous transfer to the crust of any molecular oxygen released). Accordingly, the amount of Corg in the ancient sedimentary reservoir as derived from our isotope data is just a measure of the gross amount of photosynthetic oxygen produced, withholding any information as to how this oxygen was partitioned between the principal geochemical reservoirs. As a whole, the carbon isotope data accrued provide evidence of an extremely early origin of life on Earth since the impact of organic carbon on the geochemical carbon cycle can be traced back to almost 3.5 · 109y. 相似文献
12.
UWE BRAND 《Sedimentology》1982,29(1):139-147
The aragonitic molluscs and lime-mud of the Pennsylvanian Buckhorn asphalt (Deese Group) of southern Oklahoma precipitated calcium carbonate in oxygen and carbon isotopic equilibrium with ambient sea-water. In addition, δ18O values indicate that the pelecypods precipitated their shells during the warmer months of the year. The coiled nautiloids probably precipitated their shells in the warm surface water and throughout the year. For the orthocone nautiloids, the δ18O values suggest that they precipitated their shells in deeper/cooler water. The low-Mg calcite brachiopods of the Mississippian Lake Valley Formation of New Mexico precipitated shells in oxygen and carbon isotopic equilibrium with ambient sea-water. The δ18O and δ13C values of the Buckhorn and Lake Valley faunas, in conjunction with other published results, suggest that Carboniferous sea-water was, on a average, depleted in δ18O by 1·5 ± 2‰, PDB, relative to Recent sea-water. However, the δ13C value of +2.6 ± 2‰, PDB, for average Carboniferous sea-water is similar to that of Recent ocean water. Early diagenetic alteration of metastable carbonates probably occurs in a meteoric-sea-water mixing zone. In this zone the oxygen and carbon isotopic compositions of these components are increased by about 2-4‰, PDB over their marine composition. 相似文献
13.
Matthew B.J. Lindsay David W. BlowesPeter D. Condon Carol J. Ptacek 《Applied Geochemistry》2011,26(7):1169-1183
A field-scale experiment was conducted to evaluate various organic C sources as amendments for passive treatment of tailings pore water. Varied mixtures of peat, spent-brewing grain (SBG) and municipal biosolids (MB) were assessed for the potential to promote dissimilatory sulfate reduction (DSR) and metal-sulfide precipitation. Five amended cells and one control were constructed in the vadose zone of a sulfide- and carbonate-rich tailings deposit, and the geochemistry, microbiology and mineralogy were monitored for 4 a. Increases in pore-water concentrations of dissolved organic C (DOC) and decreases in aqueous SO4 concentrations of >2500 mg L−1 were observed in cells amended with peat + SBG and peat + SBG + MB. Removal of SO4 was accompanied by shifts in δ34S-SO4 values of >+30‰, undersaturation of pore water with respect to gypsum [CaSO4·2H2O], and increased populations of SO4-reducing bacteria (SRB). Decreases in aqueous concentrations of Zn, Mn, Ni, Sb and Tl were observed for these cells relative to the control. Organic C introduction also supported growth of Fe-reducing bacteria (IRB) and increases in Fe and As concentrations. Enhanced Fe and As mobility occurred in all cells; however, maximum concentrations were observed in cells amended with MB. Subsequent decreases in Fe and As concentrations were attributed to DSR and metal-sulfide precipitation. The common presence of secondary Zn-S and Fe-S phases was observed by field emission-scanning electron microscopy (FE-SEM) and energy dispersive X-ray (EDS) spectroscopy. Selective extractions indicated that large decreases in water-soluble SO4 occurred in cells that supported DSR. Furthermore, amendments that supported DSR generally were characterized by slight decreases in solid-phase concentrations of extractable metal(loid)s. Amendment of tailings with organic C amendments that supported ongoing DOC production and DSR was essential for sustained treatment. 相似文献
14.
Hubert Wierzbowski 《International Journal of Earth Sciences》2002,91(2):304-314
15.
Calcite fossils from New Zealand and New Caledonia provide insight into the Permian to Jurassic climatic history of Southern High Latitudes (southern HL) and Triassic Southern Intermediate Latitudes (southern IL). These results permit comparison with widely studied, coeval sections in Low Latitudes (LL) and IL. Oxygen isotope ratios of well-preserved shell materials indicate a partially pronounced Sea Surface Temperature (SST) gradient in the Permian, whereas for the Triassic no indication of cold climates in the southern HL is found. The Late Jurassic of New Zealand is characterized by a slight warming in the Oxfordian–Kimmeridgian and a subsequent cooling trend in the Tithonian. Systematic variations in the δ13C values of southern HL samples are in concert with those from LL sections and confirm the global nature of the carbon isotope signature and changes in the long-term carbon cycle reported earlier.Systematic changes of Sr/Ca ratios in Late Triassic brachiopods, falling from 1.19 mmol/mol in the Oretian (early Norian) to 0.67 mmol/mol in the Warepan (late Norian) and subsequently increasing to 1.10 mmol/mol in the Otapirian (~ Rhaetian), are observed. Also Sr/Ca ratios of Late Jurassic belemnite genera Belemnopsis and Hibolithes show synchronous changes in composition that may be attributed to secular variations in the seawater Sr/Ca ratio. For the two belemnite genera an increase from 1.17 mmol/mol in the Middle Heterian (~ Oxfordian) to 1.78 mmol/mol in the Mangaoran (~ late Middle Tithonian) and a subsequent decrease to 1.51 mmol/mol in the Waikatoan (~ Late Tithonian) is documented. 相似文献
16.
Seasonal variability of soil phosphate stable oxygen isotopes in rainfall manipulation experiments 总被引:2,自引:0,他引:2
Alon Angert Tal Weiner Federica Tamburini Stefano M. Bernasconi 《Geochimica et cosmochimica acta》2011,75(15):4216-4227
Phosphorus (P) availability limits productivity in many ecosystems worldwide. As a result, improved understanding of P cycling through soil and plants is much desirable. The use of the oxygen isotopes associated to phosphate can be used to study the cycle of P in terrestrial systems. However, changes with time in the oxygen isotopes associated to available P have not yet been evaluated under field conditions. Here we present the variations in available-P oxygen isotopes, based on resin extractions, in a semi-arid site that included plots in which the amount of rainfall reaching the soil was modified. In addition, the oxygen isotopes in the less dynamic fraction which is extractable by HCl, were also measured. The δ18O of the HCl-extractable phosphate shows no seasonal pattern and corresponds to the average value of the available phosphate of 16.5‰. This value is in the expected range for equilibration with soil water at the prevailing temperatures in the site. The δ18O values of resin-extractable P showed a range of 14.5-19.1‰ (SMOW), and evidence of seasonal variability, as well as variability induced by rainfall manipulation experiments. We present a framework for analyzing the isotopic ratios in soil phosphate and explain the variability as mainly driven by phosphate equilibration with soil water, and by the isotopic effects associated with extracellular mineralization. Additional isotopic effects result from fractionation in uptake, and the input to the soil of phosphate equilibrated in leaves. These results suggest that the δ18O of resin-extractable P is an interesting marker for the rate of biological P transformations in soil systems. 相似文献
17.
Numerical modeling of the terrestrial oxygen budget based on the revised δ13Ccarb record by Veizeret al. (1980) has shown that total photosynthetic oxygen has varied between ±7% and ±10% of its average reservoir size (~3.2 × 1022 g) during the last 800 myr as a result of oscillations of the sedimentary reservoir of organic carbon. Calculated curves of oxygen evolution display a distinct minimum in the Early Paleozoic framed by two maxima in the Latest Proterozoic and the Mesozoic. The sympathetic relationship observed between the curves of total oxygen evolution and respective functions for the partial reservoir of sulfate-bound oxygen suggests that the O2 required for an additional conversion of sulfide to sulfate was most probably provided by excess burial of organic carbon, the results of the modeling thus adding credence to current interpretations proposed for the negative correlation between the secular and trends. 相似文献
18.
Few global syntheses of oxygen and carbon isotope composition of pedogenic carbonates have been attempted,unlike marine carbonates.Pedogenic carbonates represent in-situ indicators of the climate conditions prevailing on land.The δ~(18)O and δ~(13)C values of pedogenic carbonates are controlled by local and global factors,many of them not affecting the marine carbonates largely used to probe global climate changes.We compile pedogenic oxygen and carbon isotopic data(N= 12,167) from Cretaceous to Quaternary-aged paleosols to identify potential trends through time and tie them to possible controlling factors.While discrete events such as the PaleoceneEocene Thermal Maximum are clearly evidenced,our analysis reveals an increasing complexity in the distribution of the δ~(18)O vs δ~(13)C values through the Cenozoic.As could be expected,the rise of C_4 plants induces a shift towards higher δ~(13)C values during the Neogene and Quaternary.We also show that the increase in global hypsometry during the Neogene plays a major role in controlling the δ~(18)O and δ~(13)C values of pedogenic carbonates by increasing aridity downwind of orographic barriers.Finally,during the Quaternary,an increase of 3‰ inδ~(18)O values is recorded both by the pedogenic carbonates and the marine foraminifera suggesting that both indicators may be used to track global climate signal. 相似文献
19.
The carbonates in martian meteorite ALH84001 preserve a record of aqueous processes on Mars at 3.9 Ga, and have been suggested to contain signatures of ancient martian life. The conditions of the carbonate formation environment are critical for understanding possible evidence for life on Mars, the history of water on Mars, and the evolution of the martian atmosphere. Despite numerous studies of petrographic relationships, microscale oxygen isotope compositions, microscale chemical compositions, and other minerals associated with the carbonates, formation models remain relatively unconstrained. Microscale carbon isotope analyses of ALH84001 carbonates reveal variable δ13C values ranging from +27 to +64‰. The isotopic compositions are correlated with chemical composition and extent of crystallization such that the Mg-poor, early-formed carbonates are relatively 13C depleted and the Mg-rich, later forming carbonates, are 13C enriched. These data are inconsistent with many of the previously proposed environments for carbonate formation, and a new set of hypotheses are proposed. Specifically, two new models that account for the data involve low temperature (<100°C) aqueous processes: (1) the carbonates formed during mixing of two fluids derived from separate chemical and isotopic reservoirs; or (2) the carbonates formed from high pH fluids that are exposed to a CO2-rich atmosphere and precipitate carbonate, similar to high pH springs on Earth. 相似文献
20.
Ajoy K Bhaumik Shiv Kumar Shilpi Ray G K Vishwakarma Anil K Gupta Pushpendra Kumar Kalachand Sain 《Journal of Earth System Science》2017,126(5):72
Stable isotopes of benthic foraminifera have widely been applied in micropalaeontological research to understand vital effects in foraminifera. Isotopic fractionations are mainly controlled by ontogeny, bottom/pore water chemistry, habitat preference, kinetic effect and respiration. Discontinuous abundance of a species for isotopic analysis has forced us to select multiple species from down-core samples. Thus standardisation factors are required to convert isotopic values of one species with respect to other species. The present study is pursued on isotopic values of different pairs of benthic foraminifera from the Krishna–Godavari basin and Peru offshore to understand habitat-wise isotopic variation and estimation of isotopic correction factors for the paired species (Cibicides wuellerstorfi–Bulimina marginata, Ammonia spp.–Loxostomum amygdalaeformis and Bolivina seminuda–Nonionella auris). Infaunal species (B. marginata, Ammonia spp. and N. auris) show a lighter carbon isotopic excursion with respect to the epifaunal to shallow infaunal forms (C. wuellerstorfi, L. amygdalaeformis and B. seminuda). These lighter \(\updelta ^{13}\) \(\hbox {C}\) values are related to utilisation of \(\hbox {CO}_{2}\) produced by anaerobic remineralisation of organic matter. However, enrichment of \(\updelta ^{18}\) \(\hbox {O}\) for the deeper microhabitat (bearing lower pH and decreased \({\hbox {CO}_{3}}^{2-})\) is only recorded in case of B. marginata. It is reverse in case of N. auris and related to utilisation of respiratory \(\hbox {CO}_{2}\) and internal dissolve inorganic carbon pool. Estimation of interspecies isotopic correction factors for the species pairs (\(\updelta ^{13}\) \(\hbox {C}\) of C. wuellerstorfi–B. marginata, L. amygdalaeformis–Ammonia spp., N. auris–B. seminuda) and \(\updelta ^{18}\) \(\hbox {O}\) of C. wuellerstorfi–B. marginata are statistically reliable and may be used in palaeoecological studies. 相似文献