首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The kinetics of calcite precipitation in the presence of alginate was investigated using the constant composition technique. In the concentration range investigated (0.0002-0.005 g L−1), alginate inhibits calcite precipitation. The extent of inhibition increased with increased alginate concentration and decreased solution supersaturation. Alginate adsorption, derived from normalized calcite precipitation rates, is described satisfactorily by the Langmuir adsorption model. At lowest supersaturation, alginate adsorption onto calcite probably reaches its maximal uptake of 7.5E-4 g m−2, corresponding to surface coverage of one molecule for each 200-300 nm2, depending on the molecular mass of alginate. This means that one alginate molecule can be bound over 100-150 Ca surface sites. Initially, on the surface of the inhibited calcite, XPS identified alginate but after further time in solution, when the system had recovered, XPS demonstrated that it disappeared from the surface, presumably buried under the newly formed calcite. The alginate affinity constant decreases with increasing supersaturation, evidence for incomplete adsorption. A simple model based on competition between growth and desorption effectively describes the observed change in the adsorption constant.  相似文献   

2.
The Dead Sea brine is supersaturated with respect to gypsum (Ω = 1.42). Laboratory experiments and evaluation of historical data show that gypsum nucleation and crystal growth kinetics from Dead Sea brine are both slower in comparison with solutions at a similar degree of supersaturation. The slow kinetics of gypsum precipitation in the Dead Sea brine is mainly attributed to the low solubility of gypsum which is due to the high Ca2+/SO42− molar ratio (115), high salinity (∼280 g/kg) and to Na+ inhibition.Experiments with various clay minerals (montmorillonite, kaolinite) indicate that these minerals do not serve as crystallization seeds. In contrast, calcite and aragonite which contain traces of gypsum impurities do prompt precipitation of gypsum but at a considerable slower rate than with pure gypsum. This implies that transportation inflow of clay minerals, calcite and local crystallization of minerals in the Dead Sea does not prompt significant heterogeneous precipitation of gypsum. Based on historical analyses of the Dead Sea, it is shown that over the last decades, as inflows to the lake decreased and its salinity increased, gypsum continuously precipitated from the brine. The increasing salinity and Ca2+/SO42− ratio, which results from the precipitation of gypsum, lead to even slower kinetics of nucleation and crystal growth, which resulted in an increasing degree of supersaturation with respect to gypsum. Therefore, we predict that as the salinity of the Dead Sea brine continues to increase (accompanied by Dead Sea water level decline), although gypsum will continuously precipitate, the degree of supersaturation will increase furthermore due to progressively slower kinetics.  相似文献   

3.
Distribution coefficients, as a function of precipitation rate, were determined for the metals Sr2+, Co2+, Mn2+ and Cd2+in calcite. A pH-stat was used to maintain a constant degree of-saturation, and hence precipitation rate, during each coprecipitation run. The precipitation rate was proportional to the degree of supersaturation and the mass of seed crystal introduced. Distribution coefficients (λ) as a function of rate were determined using radioactive isotopes for solutions with saturations Ω = 1 to Ω = 5.5. Strontium distribution coefficients increased with increasing precipitation rate, while Co, Mn and Cd distribution coefficients decreased with increasing precipitation rate. The following rate expressions (at 25°C) were derived: logλSr = 0.249 log R ?1.57logλMn = ?0.266 log R + 1.35logλCo = ?0.173 log R + 0.68logλCd = ?0.194 log R + 1.46 where R is the observed precipitation rate in nmoles CaCO3 per mg seed crystal per min.In separate experiments the uptake of radioactive isotopes was monitored during the recrystallization of calcite seed crystals. Rates of recrystallization were from 100 to 10, 000 times slower than the pH-stat experiments, but yielded distribution coefficients consistent with the above rate expressions.Using gross estimates of biogenic crystal growth rates, aragonite to calcite transformation rates, and the above Sr rate expression, biogenic calcite and diagenetic calcite Sr contents are estimated. These experiments indicate that in addition to solution composition, precipitation rate is a significant factor influencing the trace metal content of naturally occurring calcite.  相似文献   

4.
《Applied Geochemistry》1998,13(2):177-184
Calcium carbonate is one of the most common and important scale-forming minerals in oilfield produced water, but the kinetics of CaCO3 precipitation has been ignored in most scale prediction models because of the lack of reliable precipitation rate model. There are none in the open literature for oilfield conditions (temperature > 100°C, pressure > 200 bar and salinity > 0.5 mol kg− 1). In this work the kinetics of calcite (CaCO3) precipitation from high salinity waters (up to 2 mol kg−1) have been studied by a pH-free-drift method in a closed water system. This method. is much easier to operate than the often used steady-state method. The experimental results indicate that the calcite precipitation rate is not only affected by the solution CaCO3 saturation level, but also by the solution pH, ionic strength and the concentration ratios of Ca to HCO3− ions (CCa2+/CHCO3). When the concentration ratios of Ca to HCO3 ions are close to their chemical stoichiometric ratio of 0.5, the calcite growth from a supersaturated solution is believed to be surface reaction controlled. However, at higher CCa2+CHCO3 ratios, the transportation of the lattice ions to calcite crystal surface has to be considered.  相似文献   

5.
Marine organisms must possess strategies enabling them to initiate calcite precipitation despite the unfavorable conditions for inorganic precipitation in surface seawater. These strategies are poorly understood. Here we compare two potential strategies of marine calcifyers to manipulate seawater chemistry in order to initiate calcite precipitation: Removal of Mg2+ and H+ ions from seawater solutions. An experimental setup was used to monitor the onset of inorganic precipitation on seed crystals as a function of the Mg2+ concentration and pH in artificial seawater. We focused on precipitation rates typical for biogenic calcification in planktonic foraminifera (∼10−3 mol m−2 h−1) and time scales typical for the initiation of calcification in these organisms (minutes to hours). We find that the carbonate ion concentration has to increase by a factor of ∼13 when [Mg2+] increases from 0 to 53 mmol kg−1 in order to maintain a typical biogenic precipitation rate. Model calculations for the energy requirement for various scenarios of Mg2+ and H+ removal including Ca2+ exchange and CO2 diffusion are presented. We conclude that the more cost-effective strategy to initiate calcite precipitation in foraminifera is H+ removal, rather than Mg2+ removal.  相似文献   

6.
Rate-controlled calcium isotope fractionation in synthetic calcite   总被引:1,自引:0,他引:1  
The isotopic composition of Ca (Δ44Ca/40Ca) in calcite crystals has been determined relative to that in the parent solutions by TIMS using a double spike. Solutions were exposed to an atmosphere of NH3 and CO2, provided by the decomposition of (NH4)2CO3, following the procedure developed by previous workers. Alkalinity, pH and concentrations of CO32−, HCO3, and CO2 in solution were determined. The procedures permitted us to determine Δ(44Ca/40Ca) over a range of pH conditions, with the associated ranges of alkalinity. Two solutions with greatly different Ca concentrations were used, but, in all cases, the condition [Ca2+]>>[CO32−] was met. A wide range in Δ(44Ca/40Ca) was found for the calcite crystals, extending from 0.04 ± 0.13‰ to −1.34 ± 0.15‰, generally anti-correlating with the amount of Ca removed from the solution. The results show that Δ(44Ca/40Ca) is a linear function of the saturation state of the solution with respect to calcite (Ω). The two parameters are very well correlated over a wide range in Ω for each solution with a given [Ca]. The linear correlation extended from Δ(44Ca/40Ca) = −1.34 ± 0.15‰ to 0.04 ± 0.13‰, with the slopes directly dependent on [Ca]. Solutions, which were vigorously stirred, showed a much smaller range in Δ(44Ca/40Ca) and gave values of −0.42 ± 0.14‰, with the largest effect at low Ω. It is concluded that the diffusive flow of CO32− into the immediate neighborhood of the crystal-solution interface is the rate-controlling mechanism and that diffusive transport of Ca2+ is not a significant factor. The data are simply explained by the assumptions that: a) the immediate interface of the crystal and the solution is at equilibrium with Δ(44Ca/40Ca) ∼ −1.5 ± 0.25‰; and b) diffusive inflow of CO32− causes supersaturation, thus precipitating Ca from the regions exterior to the narrow zone of equilibrium. The result is that Δ(44Ca/40Ca) is a monotonically increasing (from negative values to zero) function of Ω. We consider this model to be a plausible explanation of most of the available data reported in the literature. The well-resolved but small and regular isotope fractionation shifts in Ca are thus not related to the diffusion of very large hydrated Ca complexes, but rather due to the ready availability of Ca in the general neighborhood of the crystal-solution interface. The largest isotopic shift which occurs as a small equilibrium effect is then subdued by supersaturation precipitation for solutions where [Ca2+]>>[CO32−] + [HCO3]. It is shown that there is a clear temperature dependence of the net isotopic shifts that is simply due to changes in Ω due to the equilibrium “constants” dependence on temperature, which changes the degree of saturation and hence the amount of isotopically unequilibrated Ca precipitated. The effects that are found in natural samples, therefore, will be dependent on the degree of diffusive inflow of carbonate species at or around the crystal-liquid interface in the particular precipitating system, thus limiting the equilibrium effect.  相似文献   

7.
The kinetics of spontaneous precipitation of CaCO3 from aqueous solution in the presence of dissolved silica was investigated by recording pH as a function of time. The presence of dissolved silica, at concentrations below saturation with respect to the amorphous phase, decreases induction time for CaCO3 nucleation, but does not affect CaCO3 polymorphism. For a “pure” system without silica, the surface free energy, σ, determined from classical nucleation theory is 42 mJ m−2. This agrees well with values reported in the literature for vaterite and indicates some degree of heterogeneous nucleation, which can occur because of the relatively low degree of supersaturation used for the experiments. In the presence of 1 and 2 mM silica, σ is 37 and 34 mJ m−2, indicating an increasing degree of heterogeneous nucleation as the amount of polymeric silica increases. The ratio of Ca2+ to CO32− activity was a governing parameter for determining which CaCO3 polymorph precipitated. At high Ca2+ to CO32− activity ratios, almost all initial solid was vaterite, whereas at low ratios, a mixture of vaterite and calcite was observed. In solutions with low Ca2+ to CO32− activity ratios, the presence of silica at concentrations above saturation with respect to amorphous silica led to formation of only calcite and strongly influenced the crystalline structure and morphology of the precipitates. At high Ca2+ to CO32− ratios, system behaviour did not differ from that without silica.  相似文献   

8.
The kinetics of calcite precipitation induced in response to the hydrolysis of urea by Bacillus pasteurii at different temperatures in artificial groundwater (AGW) was investigated. The hydrolysis of urea by B. pasteurii exhibited a temperature dependence with first order rate constants of 0.91 d−1 at 20°C, 0.18 d−1 at 15°C, and 0.09 d−1 at 10°C. At all temperatures, the pH of the AGW increased from 6.5 to 9.3 in less than 1 d. Dissolved Ca2+ concentrations decreased in an asymptotic fashion after 1 d at 20°C and 15°C, and 2 d at 10°C. The loss of Ca2+ from solution was accompanied by the development of solid phase precipitates that were identified as calcite by X-ray diffraction. The onset of calcite precipitation at each temperature occurred after similar amounts of urea were hydrolyzed, corresponding to 8.0 mM NH4+. Specific rate constants for calcite precipitation and critical saturation state were derived from time course data following a second-order chemical affinity-based rate law. The calcite precipitation rate constants and critical saturation states varied by less than 10% between the temperatures with mean values of 0.16 ± 0.01 μmoles L−1 d−1 and 73 ±3, respectively. The highest calcite precipitation rates (ca. 0.8 mmol L−1 d−1) occurred near the point of critical saturation. While unique time course trajectories of dissolved Ca2+ concentrations and saturation state values were observed at different temperatures, calcite precipitation rates all followed the same asymptotic profile decreasing with saturation state regardless of temperature. This emphasizes the fundamental kinetic dependence of calcite precipitation on saturation state, which connects the otherwise dissimilar temporal patterns of calcite precipitation that evolved under the different temperature and biogeochemical regimes of the experiments.  相似文献   

9.
Partitioning of Ni in calcite, CaCO3, was evaluated with the aim of collecting data on partition and distribution coefficients and to enhance understanding about the interaction of Ni with the calcite surface and further incorporation into the bulk. This information will aid in the interpretation of geological processes for safety assessment of waste repositories and contamination of groundwater. Coprecipitation experiments were carried out by the constant addition method at 25 °C and pCO2 = 1 and 10−3.5 atm. Ni was moderately partitioned from solution into calcite. For dilute solid solutions (XNi < 0.001), Ni partition coefficients were estimated to be ∼1 and found to be weakly dependent on calcite precipitation rate in the range of 3-230 nmol m−2 s−1. Ni molar fraction in the solid is directly proportional to Ni concentration in the solution. The fit of the data to such a model is good evidence that Ni is taken up as a true solid solution, not simply by physical trapping.  相似文献   

10.
11.
Mineralization of organic matter and the subsequent dissolution of calcite were simulated for surface sediments of the upper continental slope off Gabon by using microsensors to measure O2, pH, pCO2 and Ca2+ (in situ), pore-water concentration profiles of NO3, NH4+, Fe2+, and Mn2+ and SO42− (ex situ), as well as sulfate reduction rates derived from incubation experiments. The transport and reaction model CoTReM was used to simulate the degradation of organic matter by O2, NO3, Fe(OH)3 and SO42−, reoxidation reactions involving Fe2+ and Mn2+, and precipitation of FeS. Model application revealed an overall rate of organic matter mineralization amounting to 50 μmol C cm−2 yr−1, of which 77% were due to O2, 17% to NO3 and 3% to Fe(OH)3 and 3% to SO42−. The best fit for the pH profile was achieved by adapting three different dissolution rate constants of calcite ranging between 0.01 and 0.5% d−1 and accounting for different calcite phases in the sediment. A reaction order of 4.5 was assumed in the kinetic rate law. A CaCO3 flux to the sediment was estimated to occur at a rate of 42 g m−2 yr−1 in the area of equatorial upwelling. The model predicts a redissolution flux of calcite amounting to 36 g m−2 yr−1, thus indicating that ∼90% of the calcite flux to the sediment is redissolved.  相似文献   

12.
Cleaved surfaces of dolomite were studied using ex-situ X-ray photoelectron spectroscopy (XPS) following exposure of the surfaces to various experimental conditions. Dolomite samples exposed to air, to a highly undersaturated solution (0.1 M NaCl, pH = 9), and to solution with a supersaturation (−Δμ/kT) of 5.5 (pH = 9) were investigated with semiquantitative methods of analysis to ascertain the degree of non-stoichiometry resulting at the dolomite surface from reactive conditions. It was found that the dolomite cleavage surface in undersaturated solution was not altered significantly from the stoichiometric surface termination. The composition of the cleaved surface after exposure to supersaturated solution, a surface known to have self-limiting growth characteristics under similar conditions, was found to be Ca2+ rich (CaxMg2 − x(CO3)2, 1.7 > x > 1.3). The observations, while underscoring differences in hydration/dehydration kinetics of the two alkaline earth cations, suggest that achievement of equilibrium at dolomite-water interfaces may be subject to significant barriers from both undersaturated and supersaturated solutions.  相似文献   

13.
Geochemical controls on a calcite precipitating spring   总被引:2,自引:0,他引:2  
A small spring fed stream was found to precipitate calcite by mainly inorganic processes and in a nonuniform manner. The spring water originated by rainwater falling in a 0.8 km2 basin, infiltrating, and dissolving calcite and dolomite followed by dissolution of gypsum or anhydrite. The Ca2+/Mg2+ indicates that calcite is probably precipitated in the subsurface from a supersaturated solution. This water emerges from the spring still about 5 times supersaturated with respect to calcite and continues calcite precipitation. When 10 times supersaturation is reached, due to CO2 degassing the precipitation is more rapid. The calcite accumulation from the stream with a flow of 5 l/s is calculated to be 12600 kg/yr with the highest rates in areas where CO2 degassing is the greatest. The non-equilibrium, as shown by the high calcite supersaturation, is also reflected in a variable partitioning pattern for Sr2+ between the water and calcite.  相似文献   

14.
In the present study, a mixed-flow steady-state bio-reactor was designed to biomineralize CO2 as a consequence of photosynthesis from active Synechococcus sp. Dissolved CO2, generated by constant air bubbling of inorganic and cyanobacteria stock solutions, was the only source of inorganic carbon. The release of hydroxide ion by cyanobacteria from photosynthesis maintained highly alkaline pH conditions. In the presence of Ca2+ and carbonate species, this led to calcite supersaturation under steady state conditions. Ca2+ remained constant throughout the experiments showing the presence of steady state conditions. Similarly, the Synechococcus sp. biomass concentration remained stable within uncertainty. A gradual pH decrease was observed for the highest Ca2+ condition coinciding with the formation of CaCO3. The high degree of supersaturation, under steady-state conditions, contributed to the stabilization of calcite and maintained a constant driving force for the mineral nucleation and growth. For the highest Ca2+ condition a fast crystal growth rate was consistent with rapid calcite precipitation as suggested further by affinity calculations. Although saturation state based kinetic precipitation models cannot accurately reflect the controls on crystal growth kinetics or reliably predict growth mechanisms, the relatively reaction orders obtained from modeling of calcite precipitation rates as function of decreasing carbonate concentration suggest that the precipitation occurred via surface-controlled rate determining reactions. These high reaction orders support in addition the hypothesis that crystal growth proceeded through complex surface controlled mechanisms. In conclusion, the steady state supersaturated conditions generated by a constant cyanobacteria biomass and metabolic activity strongly suggest that these microorganisms could be used for the development of efficient CO2 sequestration methods in a controlled large-scale environment.  相似文献   

15.
Reactive-transport models are developed here that produce dolomite via two scenarios: primary dolomite (no CaCO3 dissolution involved) versus secondary dolomite (dolomitization, involving CaCO3 dissolution). Using the available dolomite precipitation rate kinetics, calculations suggest that tens of meters of thick dolomite deposits cannot form at near room temperature (25-35°C) by inorganic precipitation mechanism, though this mechanism will provide dolomite aggregates that can act as the nuclei for dolomite crystallization during later dolomitization stage. Increase in supersaturation, Mg+2/Ca+2 ratio and CO3-2 on the formation of dolomite at near room temperature are subtle except for temperature.This study suggests that microbial mediation is needed for appreciable amount of primary dolomite formation. On the other hand, reactive-transport models depicting dolomitization (temperature range of 40 to 200°C) predicts the formation of two adjacent moving coupled reaction zones (calcite dissolution and dolomite precipitation) with sharp dolomitization front, and generation of >20% of secondary porosity. Due to elevated temperature of formation, dolomitization mechanism is efficient in converting existing calcite into dolomite at a much faster rate compared to primary dolomite formation.  相似文献   

16.
Dissolution and precipitation rates of brucite (Mg(OH)2) were measured at 25°C in a mixed-flow reactor as a function of pH (2.5 to 12), ionic strength (10−4 to 3 M), saturation index (−12 < log Ω < 0.4) and aqueous magnesium concentrations (10−6 to 5·10−4 M). Brucite surface charge and isoelectric point (pHIEP) were determined by surface titrations in a limited residence time reactor and electrophoretic measurements, respectively. The pH of zero charge and pHIEP were close to 11. A two-pK, one site surface speciation model which assumes a constant capacitance of the electric double layer (5 F/m2) and lack of dependence on ionic strength predicts the dominance of >MgOH2+ species at pH < 8 and their progressive replacement by >MgOH° and >MgO as pH increases to 10-12. Rates are proportional to the square of >MgOH2+ surface concentration at pH from 2.5 to 12. In accord with surface speciation predictions, dissolution rates do not depend on ionic strength at pH 6.5 to 11. Brucite dissolution and precipitation rates at close to equilibrium conditions obeyed TST-derived rate laws. At constant saturation indices, brucite precipitation rates were proportional to the square of >MgOH2+ concentration. The following rate equation, consistent with transition state theory, describes brucite dissolution and precipitation kinetics over a wide range of solution composition and chemical affinity:
  相似文献   

17.
The chemical and isotopic composition of speleothem calcite and particularly that of stalagmites and flowstones is increasingly exploited as an archive of past environmental change in continental settings. Despite intensive research, including modelling and novel approaches, speleothem data remain difficult to interpret. A possible way foreword is to apply a multi-proxy approach including non-conventional isotope systems. For the first time, we here present a complete analytical dataset of magnesium isotopes (δ26Mg) from a monitored cave in NW Germany (Bunker Cave). The data set includes δ26Mg values of loess-derived soil above the cave (−1.0 ± 0.5‰), soil water (−1.2 ± 0.5‰), the carbonate hostrock (−3.8 ± 0.5‰), dripwater in the cave (−1.8 ± 0.2‰), speleothem low-Mg calcite (stalactites, stalagmites; −4.3 ± 0.6‰), cave loam (−0.6 ± 0.1‰) and runoff water (−1.8 ± 0.1‰) in the cave, respectively. Magnesium-isotope fractionation processes during weathering and interaction between soil cover, hostrock and solute-bearing soil water are non-trivial and depend on a number of variables including solution residence times, dissolution rates, adsorption effects and potential neo-formation of solids in the regolith and the carbonate aquifer. Apparent Mg-isotope fractionation between dripwater and speleothem low-Mg calcite is about 1000lnαMg-cc-Mg(aq) = −2.4‰. A similar Mg-isotope fractionation (1000lnαMg-cc-Mg(aq) ≈ −2.1‰) is obtained by abiogenic precipitation experiments carried out at aqueous Mg/Ca ratios and temperatures close to cave conditions. Accordingly, 26Mg discrimination during low-Mg calcite formation in caves is highly related to inorganic fractionation effects, which may comprise dehydration of Mg2+ prior to incorporation into calcite, surface entrapment of light isotopes and reaction kinetics. Relevance of kinetics is supported by a significant negative correlation of Mg-isotope fractionation with the precipitation rate for inorganic precipitation experiments.  相似文献   

18.
The dissolution of siderite (FeCO3) and rhodochrosite (MnCO3) under oxic and anoxic conditions is investigated at 298 K. The anoxic dissolution rate of siderite is 10−8.65 mol m−2 s−1 for 5.5 < pH < 12 and increases as [H+]0.75 for pH < 5.5. The pH dependence is consistent with parallel proton-promoted and water hydrolysis dissolution pathways. Atomic force microscopy (AFM) reveals a change in pit morphology from rhombohedral pits for pH > 4 to pits elongated at one vertex for pH < 4. Under oxic conditions the dissolution rate decreases to below the detection limit of 10−10 mol m−2 s−1 for 6.0 < pH < 10.3, and hillock precipitation preferential to steps is observed in concurrent AFM micrographs. X-ray photoelectron spectroscopy (XPS) and thermodynamic analysis identify the precipitate as ferrihydrite. At pH > 10.3, the oxic dissolution rate is as high as 10−7.5 mol m−2 s−1, which is greater than under the corresponding anoxic conditions. A fast electron transfer reaction between solution O2 or [Fe3+(OH)4] species and surficial >FeII hydroxyl groups is hypothesized to explain the dissolution kinetics. AFM micrographs do not show precipitation under these conditions. Anoxic dissolution of rhodochrosite is physically observed as rhombohedral pit expansion for 3.7 < pH < 10.3 and is chemically explained by parallel proton- and water-promoted pathways. The dissolution rate law is 10−4.93[H+] + 10−8.45 mol m−2 s−1. For 5.8 < pH < 7.7 under oxic conditions, the AFM micrographs show a tabular precipitate growing by preferential expansion along the a-axis, though the macroscopic dissolution rate is apparently unaffected. For pH > 7.7 under oxic conditions, the dissolution rate decreases from 10−8.45 to 10−9.0 mol m−2 s−1. Flattened hillock precipitates grow across the entire surface without apparent morphological influence by the underlying rhodochrosite surface. XPS spectra and thermodynamic calculations implicate the precipitate as bixbyite for 5.8 < pH < 7.7 and MnOOH (possibly feitnkechtite) for pH >7.7.  相似文献   

19.
The calcium isotopic compositions (δ44Ca) of 30 high-purity nannofossil ooze and chalk and 7 pore fluid samples from ODP Site 807A (Ontong Java Plateau) are used in conjunction with numerical models to determine the equilibrium calcium isotope fractionation factor (αs−f) between calcite and dissolved Ca2+ and the rates of post-depositional recrystallization in deep sea carbonate ooze. The value of αs−f at equilibrium in the marine sedimentary section is 1.0000 ± 0.0001, which is significantly different from the value (0.9987 ± 0.0002) found in laboratory experiments of calcite precipitation and in the formation of biogenic calcite in the surface ocean. We hypothesize that this fractionation factor is relevant to calcite precipitation in any system at equilibrium and that this equilibrium fractionation factor has implications for the mechanisms responsible for Ca isotope fractionation during calcite precipitation. We describe a steady state model that offers a unified framework for explaining Ca isotope fractionation across the observed precipitation rate range of ∼14 orders of magnitude. The model attributes Ca isotope fractionation to the relative balance between the attachment and detachment fluxes at the calcite crystal surface. This model represents our hypothesis for the mechanism responsible for isotope fractionation during calcite precipitation. The Ca isotope data provide evidence that the bulk rate of calcite recrystallization in freshly-deposited carbonate ooze is 30-40%/Myr, and decreases with age to about 2%/Myr in 2-3 million year old sediment. The recrystallization rates determined from Ca isotopes for Pleistocene sediments are higher than those previously inferred from pore fluid Sr concentration and are consistent with rates derived for Late Pleistocene siliciclastic sediments using uranium isotopes. Combining our results for the equilibrium fractionation factor and recrystallization rates, we evaluate the effect of diagenesis on the Ca isotopic composition of marine carbonates at Site 807A. Since calcite precipitation rates in the sedimentary column are many orders of magnitude slower than laboratory experiments and the pore fluids are only slightly oversaturated with respect to calcite, the isotopic composition of diagenetic calcite is likely to reflect equilibrium precipitation. Accordingly, diagenesis produces a maximum shift in δ44Ca of +0.15‰ for Site 807A sediments but will have a larger impact where sedimentation rates are low, seawater circulates through the sediment pile, or there are prolonged depositional hiatuses.  相似文献   

20.
We present a weathering mass balance of the presently glaciated Rhône and Oberaar catchments, located within the crystalline Aar massif (central Switzerland). Annual chemical and physical weathering fluxes are calculated from the monthly weighted means of meltwater samples taken from July, 1999 to May, 2001 and are corrected for precipitation inputs. The meltwater composition issuing from the Oberaar and Rhône catchments is dominated by calcium, which represents 81% and 55% of the total cation flux respectively (i.e. 555 and 82-96 keq km−2 yr−1). The six to seven times higher Ca2+ denudation flux from the Oberaar catchment is attributed to the presence of a strongly foliated gneissic zone. The gneissic zone has an elevated calcite content (as reflected by the 4.6 times higher calcite content of the suspended sediments from Oberaar compared to Rhône) and a higher mechanical erosion rate (resulting in a higher flux of suspended sediment). The mean flux of suspended calcite of the Oberaar meltwaters during the ablation period is 7 times greater than that of the Rhône meltwaters. Taking the suspended calcite as a proxy for the total (including sub-glacial sediments) weathering calcite surface area, it appears that the available surface area is an important factor in controlling weathering rates. However, we also observe an increased supply of protons for carbonate dissolution in the Oberaar catchment, where the sulphate denudation flux is six times greater. Carbonic acid is the second important source of protons, and we calculate that three times as much atmospheric CO2 is drawn down (short term) in the Oberaar catchment. Silica fluxes from the two catchments are comparable with each other, but are 100 kmol km2 yr−1 lower than fluxes from physically comparable, non-glaciated basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号