首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microbial reduction of Fe(III) in clay minerals is an important process that affects properties of clay-rich materials and iron biogeochemical cycling in natural environments. Microbial reduction often ceases before all Fe(III) in clay minerals is exhausted. The factors causing the cessation are, however, not well understood. The objective of this study was to assess the role of biogenic Fe(II) in microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Bioreduction experiments were performed in batch systems, where lactate was used as the sole electron donor, Fe(III) in clay minerals as the sole electron acceptor, and Shewanella putrefaciens CN32 as the mediator with and without an electron shuttle (AQDS). Our results showed that bioreduction activity ceased within two weeks with variable extents of bioreduction of structural Fe(III) in clay minerals. When fresh CN32 cells were added to old cultures (6 months), bioreduction resumed, and extents increased. Thus, cessation of Fe(III) bioreduction was not necessarily due to exhaustion of bioavailable Fe(III) in the mineral structure, but changes in cell physiology or solution chemistry, such as Fe(II) production during microbial reduction, may have inhibited the extent of bioreduction. To investigate the effect of Fe(II) inhibition on CN 32 reduction activity, a typical bioreduction process (consisting of lactate, clay, cells, and AQDS in a single tube) was separated into two steps: (1) AQDS was reduced by cells in the absence of clay; (2) Fe(III) in clays was reduced by biogenic AH2DS in the absence of cells. With this method, the extent of Fe(III) reduction increased by 45-233%, depending on the clay mineral involved. Transmission electron microscopy observation revealed a thick halo surrounding cell surfaces that most likely resulted from Fe(II) sorption/precipitation. Similarly, the inhibitory effect of Fe(II) sorbed onto clay surfaces was assessed by presorbing a certain amount of Fe(II) onto clay surfaces followed by AH2DS reduction of Fe(III). The reduction extent consistently decreased with an increasing amount of presorbed Fe(II). The relative reduction extent [i.e., the reduction extent normalized to that when the amount of presorbed Fe(II) was zero] was similar for all clay minerals studied and showed a systematic decrease with an increasing clay-presorbed Fe(II) concentration. These results suggest a similar inhibitory effect of clay-sorbed Fe(II) for different clay minerals. An equilibrium thermodynamic model was constructed with independently estimated parameters to evaluate whether the observed cessation of Fe(III) reduction by AH2DS was due to exhaustion of reaction free energy. Model-calculated reduction extents were, however, over 50% higher than experimentally measured, indicating that other factors, such as blockage of the electron transfer chain and mineralogy, restricted the reduction extent. Another important result of this study was the relative reducibility of Fe(III) in different clays: nontronite > chlorite > illite. This order was qualitatively consistent with the differences in the crystal structure and layer charge of these minerals.  相似文献   

2.
To assess the dynamics of microbially mediated U-clay redox reactions, we examined the reduction of iron(III)-rich nontronite NAu-2 and uranium(VI) by Shewanella oneidensis MR-1. Bioreduction experiments were conducted with combinations and varied concentrations of MR-1, nontronite, U(VI) and the electron shuttle anthraquinone-2,6-disulfonate (AQDS). Abiotic experiments were conducted to quantify U(VI) sorption to NAu-2, the reduction of U(VI) by chemically-reduced nontronite-Fe(II), and the oxidation of uraninite, U(IV)O2(s), by nontronite-Fe(III). When we incubated S. oneidensis MR-1 at lower concentration (0.5 × 108 cell mL−1) with nontronite (5.0 g L−1) and U(VI) (1.0 mM), little U(VI) reduction occurred compared to nontronite-free incubations, despite the production of abundant Fe(II). The addition of AQDS to U(VI)- and nontronite-containing incubations enhanced both U(VI) and nontronite-Fe(III) reduction. While U(VI) was completely reduced by S. oneidensis MR-1 at higher concentration (1.0 × 108 cell mL−1) in the presence of nontronite, increasing concentrations of nontronite led to progressively slower rates of U(VI) reduction. U(VI) enhanced nontronite-Fe(III) reduction and uraninite was oxidized by nontronite-Fe(III), demonstrating that U served as an effective electron shuttle from S. oneidensis MR-1 to nontronite-Fe(III). The electron-shuttling activity of U can explain the lack or delay of U(VI) reduction observed in the bulk solution. Little U(VI) reduction was observed in incubations that contained chemically-reduced nontronite-Fe(II), suggesting that biologic U(VI) reduction drove U valence cycling in these systems. Under the conditions used in these experiments, we demonstrate that iron-rich smectite may inhibit or delay U(VI) bioreduction.  相似文献   

3.
Aluminum, one of the most abundant elements in soils and sediments, is commonly found co-precipitated with Fe in natural Fe(III) (hydr)oxides; yet, little is known about how Al substitution impacts bacterial Fe(III) reduction. Accordingly, we investigated the reduction of Al substituted (0-13 mol% Al) goethite, lepidocrocite, and ferrihydrite by the model dissimilatory Fe(III)-reducing bacterium (DIRB), Shewanella putrefaciens CN32. Here we reveal that the impact of Al on microbial reduction varies with Fe(III) (hydr)oxide type. No significant difference in Fe(III) reduction was observed for either goethite or lepidocrocite as a function of Al substitution. In contrast, Fe(III) reduction rates significantly decreased with increasing Al substitution of ferrihydrite, with reduction rates of 13% Al-ferrihydrite more than 50% lower than pure ferrihydrite. Although Al substitution changed the minerals’ surface area, particle size, structural disorder, and abiotic dissolution rates, we did not observe a direct correlation between any of these physiochemical properties and the trends in bacterial Fe(III) reduction. Based on projected Al-dependent Fe(III) reduction rates, reduction rates of ferrihydrite fall below those of lepidocrocite and goethite at substitution levels equal to or greater than 18 mol% Al. Given the prevalence of Al substitution in natural Fe(III) (hydr)oxides, our results bring into question the conventional assumptions about Fe (hydr)oxide bioavailability and suggest a more prominent role of natural lepidocrocite and goethite phases in impacting DIRB activity in soils and sediments.  相似文献   

4.
Uranium mill tailings were anaerobically incubated in the presence of H2 with Alteromonas putrefaciens, a bacterium known to couple the oxidation of H2 and organic compounds to the reduction of Fe(III) oxides. There was a direct correlation between the extent of Fe(III) reduction and the accumulation of dissolved226Ra. In sterile tailings in which Fe(III) was not reduced, there was negligible leaching of226Ra. The behavior of Ba was similar to that of Ra in inoculated and sterile systems. These results demonstrate that under anaerobic conditions, microbial reduction of Fe(III) may result in the release of dissolved226Ra from uranium mill tailings.  相似文献   

5.
Clay minerals and methanogens are ubiquitous and co-exist in anoxic environments, yet it is unclear whether methanogens are able to reduce structural Fe(III) in clay minerals. In this study, the ability of methanogen Methanosarcina barkeri to reduce structural Fe(III) in iron-rich smectite (nontronite NAu-2) and the relationship between iron reduction and methanogenesis were investigated. Bioreduction experiments were conducted in growth medium using three types of substrate: H2/CO2, methanol, and acetate. Time course methane production and hydrogen consumption were measured by gas chromatography. M. barkeri was able to reduce structural Fe(III) in NAu-2 with H2/CO2 and methanol as substrate, but not with acetate. The extent of bioreduction, as measured by the 1,10-phenanthroline method, was 7-13% with H2/CO2 as substrate, depending on nontronite concentration (5-10 g/L). The extent was higher when methanol was used as a substrate, reaching 25-33%. Methanogenesis was inhibited by Fe(III) reduction in the H2/CO2 culture, but enhanced when methanol was used. High charge smectite and biogenic silica formed as a result of bioreduction. Our results suggest that methanogens may play an important role in biogeochemical cycling of iron in clay minerals and may have important implications for the global methane budget.  相似文献   

6.
曾强  董海良  汪丹 《岩石学报》2019,35(1):193-203
粘土矿物在地表环境中广泛存在,并且与环境中的有机质紧密结合在一起。前人的研究发现,粘土矿物的可膨胀层间域可以有效地保存有机质,防止其在微生物诱导的氧化还原环境的波动的环境中被矿化。然而这一过程在高温条件下是否同样成立尚属未知。本文选取一种代表性有机质12-氨基十二酸(ALA)与典型含铁粘土矿物绿脱石(NAu-2)合成有机质-粘土矿物复合体,在两株高温-超高温铁还原细菌的作用后,通过多种水化学和矿物学的表征手段,研究其矿物结构的变化、有机质的结合稳定性和脱附情况。结果发现细菌对绿脱石结构铁的还原过程中造成的矿物结构的破坏(还原性溶解)是控制ALA从NAu-2中脱附的主要原因。高温条件也会略微促进ALA从NAu-2的层间域中脱附出来。总体来说,受限于微生物对结构铁的还原程度(30%),最终在结构铁还原反应结束后还是有相当大量的ALA在层间保存了下来。这一结果证明了粘土矿物的层间域在高温条件下同样也能够作为有机质保存的有效场所。  相似文献   

7.
A <2.0-mm fraction of a mineralogically complex subsurface sediment containing goethite and Fe(II)/Fe(III) phyllosilicates was incubated with Shewanella putrefaciens (strain CN32) and lactate at circumneutral pH under anoxic conditions to investigate electron acceptor preference and the nature of the resulting biogenic Fe(II) fraction. Anthraquinone-2,6-disulfonate (AQDS), an electron shuttle, was included in select treatments to enhance bioreduction and subsequent biomineralization. The sediment was highly aggregated and contained two distinct clast populations: (i) a highly weathered one with “sponge-like” internal porosity, large mineral crystallites, and Fe-containing micas, and (ii) a dense, compact one with fine-textured Fe-containing illite and nano-sized goethite, as revealed by various forms of electron microscopic analyses. Approximately 10-15% of the Fe(III)TOT was bioreduced by CN32 over 60 d in media without AQDS, whereas 24% and 35% of the Fe(III)TOT was bioreduced by CN32 after 40 and 95 d in media with AQDS. Little or no Fe2+, Mn, Si, Al, and Mg were evident in aqueous filtrates after reductive incubation. Mössbauer measurements on the bioreduced sediments indicated that both goethite and phyllosilicate Fe(III) were partly reduced without bacterial preference. Goethite was more extensively reduced in the presence of AQDS whereas phyllosilicate Fe(III) reduction was not influenced by AQDS. Biogenic Fe(II) resulting from phyllosilicate Fe(III) reduction remained in a layer-silicate environment that displayed enhanced solubility in weak acid. The mineralogic nature of the goethite biotransformation product was not determined. Chemical and cryogenic Mössbauer measurements, however, indicated that the transformation product was not siderite, green rust, magnetite, Fe(OH)2, or Fe(II) adsorbed on phyllosilicate or bacterial surfaces. Several lines of evidence suggested that biogenic Fe(II) existed as surface associated phase on the residual goethite, and/or as a Fe(II)-Al coprecipitate. Sediment aggregation and mineral physical and/or chemical factors were demonstrated to play a major role on the nature and location of the biotransformation reaction and its products.  相似文献   

8.
Desferrioxamine-B (DFOB) is a bacterial trihydroxamate siderophore and probably the most studied to date. However, the manner in which DFOB adsorbs at mineral surfaces and promotes dissolution is still under discussion. Here we investigated the adsorption and dissolution reactions in the goethite-DFOB system using both in situ infrared spectroscopic and quantitative analytical methods. Experiments were carried out at a total DFOB concentration of 1 μmol/m2, at pH 6, and in the absence of visible light. Our infrared spectroscopic results indicated that the adsorption of DFOB was nearly complete after a 4-h reaction time. In an attempt to determine the coordination mode at the goethite surface, we compared the spectrum of adsorbed DFOB after a 4-h reaction time to the spectra of model aqueous species. However, this approach proved too simplistic in the case of such a complex ligand as DFOB, and we suggest that a more detailed investigation (IR in D2O, EXAFS of adsorbed model complexes) is needed to elucidate the structure of the adsorbed siderophore. Between a 4-h and 4-day reaction time, we observed the growth of carboxylate stretching bands at 1548 and 1404 cm−1, which are indicators of DFOB hydrolysis. Acetate, a product of DFOB hydrolysis at its terminal hydroxamate group, was quantified by ion chromatography. Its rate of formation was linear and nearly the same as the rate of Fe(III) dissolution. The larger hydrolysis product, a hydroxylamine fragment, was not detected by LC-MS. However, a signal due to the oxidized form of this fragment, a nitroso compound, was found to increase linearly with time, which is an indirect indication for Fe(III) reduction. Based on these findings, we propose that DFOB undergoes metal-enhanced hydrolysis at the mineral surface followed by the reduction of surface Fe(III). While Fe(II) was not detected in solution, this is likely because it remains adsorbed at the goethite surface or becomes buried in the goethite crystal by electron conduction. Taking into account the extent and similarity between the rates of hydrolysis and dissolution, we suggest that a reductive mechanism could play an important part in the dissolution of goethite by DFOB. This possibility has not been considered previously in the absence of light and at circumneutral pH.  相似文献   

9.
The biologically-mediated reduction of synthetic samples of the Fe(III)-bearing minerals hematite, goethite, lepidocrocite, feroxhyte, ford ferrihydrite, akaganeite and schwertmannite by Geobacter sulfurreducens has been investigated using microbiological techniques in conjunction with X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). This combination of approaches offers unique insights into the influence of subtle variations in the crystallinity of a given mineral on biogeochemical processes, and has highlighted the importance of (oxyhydr)oxide crystallite morphology in determining the changes occurring in a given mineral phase. Problems arising from normalising the biological Fe(III) reduction rates relative to the specific surface areas of the starting materials are also highlighted. These problems are caused primarily by particle aggregation, and compounded when using spectrophotometric assays to monitor reduction. For example, the initial rates of Fe(III) reduction observed for two synthetic feroxyhytes with different crystallinities (as shown by XRD and TEM studies) but almost identical surface areas, differ substantially. Both microbiological and high-resolution TEM studies show that hematite and goethite are susceptible to limited amounts of Fe(III) reduction, as evidenced by the accumulation of Fe(II) during incubation with G. sulfurreducens and the growth of nodular structures on crystalline goethite laths during incubation. Lepidocrocite and akaganeite readily transform into mixtures of magnetite and goethite, and XRD data indicate that the proportion of magnetite increases within the transformation products as the crystallinity of the starting material decreases. The presence of anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle increases both the initial rate and longer term extent of biological Fe(III) reduction for all of the synthetic minerals examined. High-resolution XPS indicates subtle but measurable differences in the Fe(III):Fe(II) ratios at the mineral surfaces following extended incubation. For example, for a poorly crystalline schwertmannite, deconvolution of the Fe2p3/2 peak suggests that the Fe(III):Fe(II) ratio of the near-surface regions varies from 1.0 in the starting material to 0.9 following 144 h of incubation with G.sulfurreducens, and to 0.75 following the same incubation period in the presence of 10 μM AQDS. These results have important implications for the biogeochemical cycling of iron.  相似文献   

10.
We have determined the extent of Se isotope fractionation induced by reduction of selenate by sulfate interlayered green rust (GRSO4), a Fe(II)-Fe(III) hydroxide-sulfate. This compound is known to reduce selenate to Se(0), and it is the only naturally relevant abiotic selenate reduction pathway documented to date. Se reduction reactions, when they occur in nature, greatly reduce Se mobility and bioavailability. Se stable isotope analysis shows promise as an indicator of Se reduction, and Se isotope fractionation by various Se reactions must be known in order to refine this tool. We measured the increase in the 80Se/76Se ratio of dissolved selenate as lighter isotopes were preferentially consumed during reduction by GRSO4. Six different experiments that used GRSO4 made by two methods, with varying solution compositions and pH, yielded identical isotopic fractionations. Regression of all the data yielded an instantaneous isotope fractionation of 7.36 ± 0.24‰. Selenate reduction by GRSO4 induces much greater isotopic fractionation than does bacterial selenate reduction. If selenate reduction by GRSO4 occurs in nature, it may be identifiable on the basis of its relatively large isotopic fractionation.  相似文献   

11.
Equilibrium and kinetic Fe isotope fractionation between aqueous ferrous and ferric species measured over a range of chloride concentrations (0, 11, 110 mM Cl) and at two temperatures (0 and 22°C) indicate that Fe isotope fractionation is a function of temperature, but independent of chloride contents over the range studied. Using 57Fe-enriched tracer experiments the kinetics of isotopic exchange can be fit by a second-order rate equation, or a first-order equation with respect to both ferrous and ferric iron. The exchange is rapid at 22°C, ∼60-80% complete within 5 seconds, whereas at 0°C, exchange rates are about an order of magnitude slower. Isotopic exchange rates vary with chloride contents, where ferrous-ferric isotope exchange rates were ∼25 to 40% slower in the 11 mM HCl solution compared to the 0 mM Cl (∼10 mM HNO3) solutions; isotope exchange rates are comparable in the 0 and 110 mM Cl solutions.The average measured equilibrium isotope fractionations, ΔFe(III)-Fe(II), in 0, 11, and 111 mM Cl solutions at 22°C are identical within experimental error at +2.76±0.09, +2.87±0.22, and +2.76±0.06 ‰, respectively. This is very similar to the value measured by Johnson et al. (2002a) in dilute HCl solutions. At 0°C, the average measured ΔFe(III)-Fe(II) fractionations are +3.25±0.38, +3.51±0.14 and +3.56±0.16 ‰ for 0, 11, and 111 mM Cl solutions. Assessment of the effects of partial re-equilibration on isotope fractionation during species separation suggests that the measured isotope fractionations are on average too low by ∼0.20 ‰ and ∼0.13 ‰ for the 22°C and 0°C experiments, respectively. Using corrected fractionation factors, we can define the temperature dependence of the isotope fractionation from 0°C to 22°C as: where the isotopic fractionation is independent of Cl contents over the range used in these experiments. These results confirm that the Fe(III)-Fe(II) fractionation is approximately half that predicted from spectroscopic data, and suggests that, at least in moderate Cl contents, the isotopic fractionation is relatively insensitive to Fe-Cl speciation.  相似文献   

12.
High iron concentrations create water quality problems for municipal use in glacial drift aquifer units. The chemical evolution of oxic groundwater in shallow aquifer units to anoxic groundwater in deeper aquifer units, in which soluble Fe(II) is stable, is attributed to coupled reduction of Fe(III) on aquifer solids with oxidation of organic carbon. The objective of this study was to characterize the distribution of organic carbon in aquifer and aquitard sediments to determine the availability of potential electron donors to drive these reactions. To do this, four complete rotasonic cores in a glacial aquifer/aquitard system were sampled at close intervals for analyses of grain-size distribution and organic carbon content. The results indicate significantly higher organic carbon concentrations in diamicton (till) units that function as aquitards, relative to coarse-grained aquifer units. In addition, readily reducible iron content in the diamicton units and lower aquifer unit materials is sufficient to produce far more dissolved iron than is present in the aquifer. Groundwater evolves to the level of iron reduction as a terminal electron-accepting process as it moves downward through aquitard units along flow paths from upland recharge areas to downgradient discharge areas. Deeper aquifer units are therefore unlikely to contain groundwater with low iron concentration.  相似文献   

13.
Cordierite has the ideal formula (Mg,Fe)2Al4Si5O18 .x(H2O,CO2), but it must contain some Fe3+ to account for its blue color and strong pleochroism. The site occupation and concentration of Fe3+ in two Mg-rich natural cordierites have been investigated by EPR and 57Fe Mössbauer spectroscopy. In addition, powder IR spectroscopy, X-ray diffraction, and TEM examination were used to characterize the samples. Single-crystal and powder EPR spectra indicate that Fe3+ is located on T11 in natural cordierites and not in the channels. The amount in Mg-rich cordierites is very small with an upper limit set by Mössbauer spectroscopy giving less than 0.004 cations per formula unit (pfu). Fe3+ in cordierite can, therefore, be considered insignificant for most petrologic calculations. Heat-treating cordierite in air at 1,000?°C for 2?days causes an oxidation and/or loss of Fe2+ on T11, together with an expulsion of Na+ from the channels, whereas heating at the Fe–FeO buffer produces little Fe3+ in cordierite. Heating at 1,000?°C removes all class I H2O, but small amounts of class II H2O remain as shown by the IR measurements. No evidence for channel Fe2+ or Fe3+ in the heat-treated samples was found. The blue color in cordierite arises from a broad absorption band (E//b and weaker with E//a) around 18,000?cm?1 originating from charge-transfer between Fe2+ in the octahedron and Fe3+ in the edge-shared T11 tetrahedron. It therefore appears that all natural cordierites contain some tetrahedral Fe3+. The brown color of samples heated in air may be due to the formation of very small amounts of submicroscopic magnetite and possibly hematite. These inclusions in cordierite can only be identified through TEM study.  相似文献   

14.
Fe(III) complexed by organic ligands (Fe(III)L) is the primary form of dissolved Fe in marine and coastal environments. Superoxide, typically produced in biological and photochemical processes, is one of the reducing agents that contributes to transformation of Fe(III)L to bioavailable, free dissolved Fe(II) (Fe(II)′). In this work, the kinetics of superoxide-mediated Fe(II)′ formation from Fe(III)L in a simulated coastal water system were investigated and a comprehensive kinetic model was developed using citrate and fulvic acid as exemplar Fe-binding ligands. To simulate a coastal environment in laboratory experiments, Fe(III)L samples with various ligand/Fe ratios were incubated for 5 min to 1 week in seawater medium. At each ratio and incubation time, the rate of superoxide-mediated Fe(II)′ formation was determined in the presence of the strong Fe(II) binding ligand ferrozine by spectrophotometrically measuring the ferrous-ferrozine complex generated at a constant concentration of superoxide. The Fe(II)′ formation rate generally decreased with incubation time, as Fe(III)L gradually dissociated to form less reactive Fe(III) oxyhydroxide. However, when the ligand/Fe ratio was sufficiently high, the dissociation of Fe(III)L (and subsequent Fe precipitation) was suppressed and Fe(II)′ was formed at a higher rate. The rate of Fe(II)′ produced during the experiment was explained by the kinetic model. The model confirmed that both the ligand/Fe ratio and incubation time have a significant effect on the pathway via which Fe(II)′ is formed from Fe(III)-fulvic acid complexes.  相似文献   

15.
Fe(II)-Fe(III) redox behavior has been studied in the presence of catechol under different pH, ionic media, and organic compound concentrations. Catechol undergoes oxidation in oxic conditions producing semiquinone and quinone and reduces Fe(III) in natural solutions including seawater (SW). It is a pH-dependent process. Under darkness, the amount of Fe(II) generated is smaller and is related to less oxidation of catechol. The Fe(II) regeneration is higher at lower pH values both in SW with log k = 1.86 (M−1 s−1) at pH 7.3 and 0.26 (M−1 s−1) at pH 8.0, and in NaCl solutions with log k of 1.54 (M−1 s−1) at pH 7.3 and 0.57 (M−1 s−1) at pH 8.0. At higher pH values, rate constants are higher in NaCl solutions than in SW. This is due to the complexation of Mg(II) present in the media with the semiquinone that inhibits the formation of a second Fe(II) through the reaction of this intermediate with other center Fe(Cat)+.  相似文献   

16.
The Chemical Speciation of Fe(III) in Freshwaters   总被引:1,自引:0,他引:1  
Dialysis and chemical speciation modelling have been used to calculate activities of Fe3+ for a range of UK surface waters of varying chemistry (pH 4.3–8.0; dissolved organic carbon 1.7–40.3 mg l−1) at 283 K. The resulting activities were regressed against pH to give the empirical model: . Predicted Fe3+ activities are consistent with a solid–solution equilibrium with hydrous ferric oxide, consistent with some previous studies on Fe(III) solubility in the laboratory. However, as has also sometimes been observed in the laboratory, the slope of the solubility equation is lower than the theoretical value of 3. The empirical model was used to predict concentrations of Fe in dialysates and ultrafiltrates of globally distributed surface and soil/groundwaters. The predictions were improved greatly by the incorporation of a temperature correction for , consistent with the temperature dependence of previously reported hydrous ferric oxide solubility. The empirical model, incorporating temperature effects, may be used to make generic predictions of the ratio of free and complexed Fe(III) to dissolved organic matter in freshwaters. Comparison of such ratios with observed Fe:dissolved organic matter ratios allows an assessment to be made of the amounts of Fe present as Fe(II) or colloidal Fe(III), where no separate measurements have been made. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Interpretation of the origins of iron-bearing minerals preserved in modern and ancient rocks based on measured iron isotope ratios depends on our ability to distinguish between biological and non-biological iron isotope fractionation processes. In this study, we compared 56Fe/54Fe ratios of coexisting aqueous iron (Fe(II)aq, Fe(III)aq) and iron oxyhydroxide precipitates (Fe(III)ppt) resulting from the oxidation of ferrous iron under experimental conditions at low pH (<3). Experiments were carried out using both pure cultures of Acidothiobacillus ferrooxidans and sterile controls to assess possible biological overprinting of non-biological fractionation, and both SO42− and Cl salts as Fe(II) sources to determine possible ionic/speciation effects that may be associated with oxidation/precipitation reactions. In addition, a series of ferric iron precipitation experiments were performed at pH ranging from 1.9 to 3.5 to determine if different precipitation rates cause differences in the isotopic composition of the iron oxyhydroxides. During microbially stimulated Fe(II) oxidation in both the sulfate and chloride systems, 56Fe/54Fe ratios of residual Fe(II)aq sampled in a time series evolved along an apparent Rayleigh trend characterized by a fractionation factor αFe(III)aq-Fe(II)aq ∼ 1.0022. This fractionation factor was significantly less than that measured in our sterile control experiments (∼1.0034) and that predicted for isotopic equilibrium between Fe(II)aq and Fe(III)aq (∼1.0029), and thus might be interpreted to reflect a biological isotope effect. However, in our biological experiments the measured difference in 56Fe/54Fe ratios between Fe(III)aq, isolated as a solid by the addition of NaOH to the final solution at each time point under N2-atmosphere, and Fe(II)aq was in most cases and on average close to 2.9‰ (αFe(III)aq-Fe(II)aq ∼ 1.0029), consistent with isotopic equilibrium between Fe(II)aq and Fe(III)aq. The ferric iron precipitation experiments revealed that 56Fe/54Fe ratios of Fe(III)aq were generally equal to or greater than those of Fe(III)ppt, and isotopic fractionation between these phases decreased with increasing precipitation rate and decreasing grain size. Considered together, the data confirm that the iron isotope variations observed in our microbial experiments are primarily controlled by non-biological equilibrium and kinetic factors, a result that aids our ability to interpret present-day iron cycling processes but further complicates our ability to use iron isotopes alone to identify biological processing in the rock record.  相似文献   

18.
The Fe(II)-catalysed transformation of synthetic schwertmannite, ferrihydrite, jarosite and lepidocrocite to more stable, crystalline Fe(III) oxyhydroxides is prevented by high, natural concentrations of Si and natural organic matter (NOM). Adsorption isotherms demonstrate that Si adsorbs to the iron minerals investigated and that increasing amounts of adsorbed Si results in a decrease in isotope exchange between aqueous Fe(II) and the Fe(III) mineral. This suggests that the adsorption of Si inhibits the direct adsorption of Fe(II) onto the mineral surface, providing an explanation for the inhibitory effect of Si on the Fe(II)-catalysed transformation of Fe(III) minerals. During the synthesis of lepidocrocite and ferrihydrite, the presence of equimolar concentrations of Si and Fe resulted in the formation of 2-line ferrihydrite containing co-precipitated Si in both cases. Isotope exchange experiments conducted with this freeze-dried Si co-precipitated ferrihydrite species (Si-ferrihydrite) demonstrated that the rate and extent of isotope exchange between aqueous Fe(II) and solid 55Fe(III) was very similar to that of 2-line ferrihydrite formed in the absence of Si and which had not been allowed to dry. In contrast to un-dried ferrihydrite formed in the absence of Si, Si-ferrihydrite did not transform into a more crystalline Fe(III) mineral phase over the 7-day period of investigation. Reductive dissolution studies using ascorbic acid demonstrated that both dried Si-ferrihydrite and un-dried 2-line ferrihydrite were very reactive, suggesting these species may be major contributors to the rapid release of dissolved iron following flooding and the onset of conditions conducive to reductive dissolution in acid sulphate soil environments.  相似文献   

19.
We investigated Fe(III)-precipitates formed from Fe(II) oxidation in water at pH 7 as a function of dissolved Fe(II), As(III), phosphate, and silicate in the absence and presence of Ca. We used transmission electron microscopy (TEM), including selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDX) to characterize the morphology, structure and elemental composition of the precipitates. Results from our companion X-ray absorption spectroscopy (XAS) study suggested that the oxidation of Fe(II) leads to the sequential formation of distinct polymeric units in the following order: Fe(III)-phosphate oligomers in the presence of phosphate, silicate-rich hydrous ferric oxide (HFO-Si) at high Si/Fe (>0.5) or 2-line ferrihydrite (2L-Fh) at lower Si/Fe (∼0.1-0.5), and lepidocrocite (Lp) in the absence of phosphate at low Si/Fe (<0.1). Results from this study show that the size of the polymeric units increased along the same sequence and that the aggregation of these polymeric units resulted in spherical particles with characteristic surface textures changing from smooth to coarse. The diameter of the spherical particles increased from 15 to 380 nm as the molar ratio (P + Si + As)/Fe(II) in the starting solution decreased and larger spherical particles precipitated from Ca-containing than from Ca-free solutions. These trends suggested that the size of the spherical particles was controlled by the charge of the polymeric units. Spherical particles coagulated into flocs whose size was larger in the presence than in the absence of Ca. Further observations pointed to the importance of Fe(II) oxidation and polymerization versus polymer aggregation and floc formation kinetics in controlling the spatial arrangement of the different polymeric units within Fe(III)-precipitates. The resulting structural and compositional heterogeneity of short-range-ordered Fe(III)-precipitates likely affects their colloidal stability and their chemical reactivity and needs to be considered when addressing the fate of co-transformed trace elements such as arsenic.  相似文献   

20.
The production of metallic iron in silicate melts by the chemical reactions, 2Ti3+(melt) + Fe2+(melt) → 2Ti4+(melt) + Fe0(crystal)2Cr2+(melt) + Fe2+(melt) → 2Cr3+(melt) + Fe0(crystal)2Eu2+(melt)+ Fe2+(melt) → 2Eu3+(melt) + Fe0(crystal) has been demonstrated under experimental conditions in a simplified basaltic liquid, Such reactions may occur in lunar basalts and other reduced systems, and, thus, may aid in the understanding of the reduced nature of lunar basalts. The reactions were studied in a glass-forming Na-Ca-Mg-Al-silicate composition at a melt temperature of 1250°C and an imposed oxygen fugacity at the C/CO buffer (1 atm total pressure). Microtitrations of individually-doped samples were used in the quantitative assessment of their redox ratios and for the calibration of visible and near-infrared spectral absorptions. These spectral absorptions were then applied to the evaluation of the mutual redox interactions in dual-doped samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号