首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper investigates the importance of bending–buckling interaction in seismic design of piles in liquefiable soils using numerical techniques. A pseudo-static analysis has been performed using a well documented case history, where the pile–soil interaction is modelled as a beam on nonlinear winkler foundation (BNWF). Six possible analytical methods, three force based and three displacement based, are performed in which the pile is subjected to both lateral and axial load. Three out of six analysis cases did not predict the failure of the piles when analysed only for bending (i.e., lateral loads only). The buckling analysis showed that the pile was also safe against pure buckling during full liquefaction. Further, two out of those three cases which did not predict failure in bending were reanalysed for bending–buckling interaction (i.e., lateral and axial loads acting simultaneously). These combined analyses showed a more realistic behaviour of pile response and did predict the pile failure. Hence, it can be concluded that if a pile is designed for bending and buckling criteria separately and safe for these individual design criteria, it may fail due to their combined effect.  相似文献   

2.
Recent research has demonstrated that axial load alone can cause a slender pile to fail by forming a plastic hinge, if soil surrounding the pile liquefies in an earthquake. This failure mechanism is due to buckling instability. Lateral loads from lateral spreading of the surrounding soil and/or inertia and imperfection inherent in a pile result in increased deflection, which can promote more rapid collapse. These effects are secondary to the basic requirement so that axially loaded piles passing through liquefiable soils should be checked against Euler's buckling in addition to the bending mechanism of failure, i.e. incorporation of PΔ effect. While fewer large diameter piles are currently being used in modern construction practice (which performed better in liquefiable areas rather than multiple small diameter piles), there are many pile-supported structures where buckling considerations were not taken into account and therefore may need retrofitting. This paper develops a probabilistic tool which can be used for assessing the likelihood of a buckling failure of existing piled foundations due to a scenario earthquake. This tool can equally serve as a valuable decision-support tool for implementing earthquake risk mitigation measures. A case study is presented to show the applicability of the method.  相似文献   

3.
Raked piles are believed to behave better than vertical piles in a laterally flowing liquefied ground. This paper aims at numerically simulating the response of raked pile foundations in liquefying ground through nonlinear finite element analysis. For this purpose, the OpenSees computer package was used. A range of sources have been adopted in the definition of model components whose validity is assessed against case studies presented in literature. Experimental and analytical data confirmed that the backbone force density–displacement (p–y) curve simulating lateral pile response is of acceptable credibility for both vertical and raked piles. A parametric investigation on fixed-head piles subject to lateral spreading concluded that piles exhibiting positive inclination impart lower moment demands at the head while those inclined negatively perform better at liquefaction boundaries (relative to vertical piles). Further studies reveal substantial axial demand imposed upon negatively inclined members due to the transfer of gravity and ground-induced lateral forces axially down the pile. Extra care must be taken in the design of such members in soils susceptible to lateral spreading such that compressive failure (i.e. pile buckling) is avoided.  相似文献   

4.
Observations of pile foundation performance during previous earthquakes have shown that pile failure has been caused by lateral ground movements resulting from soil liquefaction. The recognition that lateral ground movements may play a critical role in pile performance during an earthquake has important implications for design and risk assessment, and requires that analytical models be devised to evaluate these potential problems.In this paper, parametric studies were conducted to estimate the maximum bending moments induced in piles subjected to lateral ground displacement. The results are summarized in charts using dimensionless parameters.The analyses reveal that the existence of a nonliquefiable layer at the ground surface can affect significantly the maximum bending moment of the pile. When a relatively thick nonliquefiable layer exists above a liquefiable layer, neither the material nonlinearity of the soil nor loss of soil stiffness within the liquefiable layer significantly affect the maximum bending moment. When the thickness of the liquefiable soils is greater than about three times that of an overlying intact layer, soil stiffness in the liquefiable layer must be chosen carefully when evaluating the maximum bending moment.  相似文献   

5.
A Study of Piles during Earthquakes: Issues of Design and Analysis   总被引:1,自引:0,他引:1  
The seismic response of pile foundations is a very complex process involving inertial interaction between structure and pile foundation, kinematic interaction between piles and soils, seismically induced pore-water pressures (PWP) and the non-linear response of soils to strong earthquake motions. In contrast, very simple pseudo-static methods are used in engineering practice to determine response parameters for design. These methods neglect several of the factors cited above that can strongly affect pile response. Also soil–pile interaction is modelled using either linear or non-linear springs in a Winkler computational model for pile response. The reliability of this constitutive model has been questioned. In the case of pile groups, the Winkler model for analysis of a single pile is adjusted in various ways by empirical factors to yield a computational model for group response. Can the results of such a simplified analysis be adequate for design in all situations?The lecture will present a critical evaluation of general engineering practice for estimating the response of pile foundations in liquefiable and non-liquefiable soils during earthquakes. The evaluation is part of a major research study on the seismic design of pile foundations sponsored by a Japanese construction company with interests in performance based design and the seismic response of piles in reclaimed land. The evaluation of practice is based on results from field tests, centrifuge tests on model piles and comprehensive non-linear dynamic analyses of pile foundations consisting of both single piles and pile groups. Studies of particular aspects of pile–soil interaction were made. Piles in layered liquefiable soils were analysed in detail as case histories show that these conditions increase the seismic demand on pile foundations. These studies demonstrate the importance of kinematic interaction, usually neglected in simple pseudo-static methods. Recent developments in designing piles to resist lateral spreading of the ground after liquefaction are presented. A comprehensive study of the evaluation of pile cap stiffness coefficients was undertaken and a reliable method of selecting the single value stiffnesses demanded by mainstream commercial structural software was developed. Some other important findings from the study are: the relative effects of inertial and kinematic interactions between foundation and soil on acceleration and displacement spectra of the super-structure; a method for estimating whether inertial interaction is likely to be important or not in a given situation and so when a structure may be treated as a fixed based structure for estimating inertial loads; the occurrence of large kinematic moments when a liquefied layer or naturally occurring soft layer is sandwiched between two hard layers; and the role of rotational stiffness in controlling pile head displacements, especially in liquefiable soils. The lecture concludes with some recommendations for practice that recognize that design, especially preliminary design, will always be based on simplified procedures.  相似文献   

6.
凌贤长  唐亮  苏雷  徐鹏举 《地震学刊》2011,(5):490-495,500
评述了我国液化场地和侧向扩流场地桥梁桩基抗震设计规范。总结了中日两国液化场地和侧向扩流场地桥梁桩基的抗震设计方法与技术细节,阐述了日本规范中液化场地和侧向扩流场地桥梁桩基抗震设计中的液化地基土反力折减系数的确定方法,以及土体液化侧向扩流对桩作用力的计算模式。指出我国规范中在液化和侧向扩流场地桩的抗震分析方法、不同土层分界处桩的抗震措施、桩的竖向承载力及桩的屈曲稳定性分析等方面存在的主要问题,据此给出了亟待改进的初步建议。这对我国桥梁工程的抗震安全性具有重要意义,可供我国工程技术人员参考借鉴。  相似文献   

7.
Soil liquefaction induced by earthquakes frequently cause costly damage to pile foundations. However, various aspects of the dynamic behavior and failure mechanisms of piles in liquefiable soils still remain unclear. This paper presents a shake-table experiment conducted to investigate the dynamic behavior of a reinforced-concrete (RC) elevated cap pile foundation during (and prior to) soil liquefaction. Particular attention was paid to the failure mechanism of the piles during a strong shaking event. The experimental results indicate that decreasing the frequency and increasing the amplitude of earthquake excitation increased the pile bending moment as well as the speed of the excess pore pressure buildup in the free-field. The critical pile failure mode in the conducted testing configuration was found to be of the bending type, which was also confirmed by a representative nonlinear numerical model of the RC pile. The experimental results of this study can be used to calibrate numerical models and provide insights on seismic pile analysis and design.  相似文献   

8.
Bridges are a part of vital infrastructure,which should operate even after a disaster to keep emergency services running.There have been numerous bridge failures during major past earthquakes due to liquefaction.Among other categories of failures,mid span collapse(without the failure of abutments)of pile supported bridges founded in liquefiable deposits are still observed even in most recent earthquakes.This mechanism of collapse is attributed to the effects related to the differential elongation of natural period of the individual piers during liquefaction.A shake table investigation has been carried out in this study to verify mechanisms behind midspan collapse of pile supported bridges in liquefiable deposits.In this investigation,a typical pile supported bridge is scaled down,and its foundations pass through the liquefiable loose sandy soil and rest in a dense gravel layer.White noise motions of increasing acceleration magnitude have been applied to initiate progressive liquefaction and to characterize the dynamic features of the bridge.It has been found that as the liquefaction of the soil sets in,the natural frequency of individual bridge support is reduced,with the highest reduction occurring near the central spans.As a result,there is differential lateral displacement and bending moment demand on the piles.It has also been observed that for the central pile,the maximum bending moment in the pile will occur at a higher elevation,as compared to that of the interface of soils of varied stiffness,unlike the abutment piles.The practical implications of this research are also highlighted.  相似文献   

9.
Results from a benchmark test on full-scale piles are used to investigate the response of piles to lateral spreading. In the experiment, two single piles, a relatively flexible pile that moves together with the surrounding soil and a relatively stiff pile that does not follow the ground movement have been subjected to large post-liquefaction ground displacement simulating piles in laterally spreading soils. The observed response of the piles is first presented and then the results are used to examine the lateral loads on the pile from a non-liquefied soil at the ground surface and to evaluate the stiffness characteristics of the spreading soils. The measured ultimate lateral pressure from the crust soil on the stiff pile was about 4.5 times the Rankine passive pressure. The back-calculated stiffness of the liquefied soil was found to be in the range between 1/30 and 1/80 of the initial stiffness of the soil showing gradual decrease in the course of lateral spreading.  相似文献   

10.
Lateral movement of sloping ground due to flow liquefaction has caused many pile foundations to fail, especially those in ports and harbor structures. Several researchers have found and verified that the behavior of liquefied soils can be simulated appropriately by modeling the liquefied soils as viscous fluid. In this study, the influence of the lateral movement of liquefied sloping ground on the behavior of piles was analyzed on the assumption that the flow of liquefied soils can be treated as viscous fluid flow. Sinking ball tests and pulling bar tests were performed to measure the viscosity of liquefied Jumoonjin sand. Then, the behavior of a single pile installed in liquefiable infinite slopes consisting of sand was investigated by numerical analyses. The liquefied sand behaved as non-Newtonian fluid, whose viscosity decreased with increasing shear strain rate. Furthermore, the flow of liquefied soils had a crucial effect on the stability of piles installed in the sloping ground.  相似文献   

11.
对由碎石桩和CFG桩构成的多桩型复合地基的作用机理进行分析,通过数值模拟,对多桩型复合地基的动力特性进行研究,探讨桩型配比、桩径、桩长、CFG桩桩体刚度和碎石桩桩体渗透性等设计参数对多桩型复合地基动力特性的影响。研究结果表明:相同条件下地震期多桩型复合地基的动变形小于碎石桩复合地基而大于CFG桩复合地基,震后沉降量相对较小,在工程设计时碎石桩与CFG桩的桩型配比宜为4∶5;随桩体长度、桩体直径和CFG桩刚度的增加,多桩型复合地基地震期的竖向动变形逐渐减小;随碎石桩桩体渗透性的增加,多桩型复合地基中的超动孔隙水压力减小,震后沉降量降低。  相似文献   

12.
A case study is presented of the interaction between the bending due to laterally spreading forces and axial-load induced settlement on the piled foundations of the Kandla Port and Customs Tower located in Kandla Port, India, during the 2001 Bhuj earthquake. The 22 m tall tower had an eccentric mass at the roof and was supported on a piled-raft foundation that considerably tilted away as was observed in the aftermath of the earthquake. The soil at the site consists of 10 m of clay overlaid by a 12 m deep sandy soil layer. Post-earthquake investigation revealed the following: (a) liquefaction of the deep sandy soil strata below the clay layer; (b) settlement of the ground in the vicinity of the building; (c) lateral spreading of the nearby ground towards the sea front. The foundation of the tower consists of 0.5 m thick concrete mat and 32 piles. The piles are 18 m long and therefore passes through 10 m of clayey soil and rested on liquefiable soils. Conventional analysis of a single pile or a pile group, without considering the raft foundation would predict a severe tilting and/or settlement of the tower eventually leading to a complete collapse. It has been concluded that the foundation mat over the non-liquefied crust shared a considerable amount of load of the superstructure and resisted the complete collapse of the building.  相似文献   

13.
Owing to their simplicity and reasonable accuracy, Beam on Nonlinear Winkler Foundation (BNWF) models are widely used for the analysis of laterally loaded piles. Their main drawback is idealizing the soil continuum with discrete uncoupled springs representing the soil reactions to pile movement. Static py curves, obtained from limited full-scaled field tests, are generally used as a backbone curve of the model. However, these empirically derived p–y curves could not incorporate the effects of various pile properties and soil continuity. The strain wedge method (SWM) has been improved to assess the nonlinear p–y curve response of laterally loaded piles based on a three-dimensional soil–pile interaction through a passive wedge developed in front of the pile. In this paper, the SWM based p–y curve is implemented as the backbone curves of developed BNWF model to study the nonlinear response of single pile under cyclic lateral loading. The developed nonlinear model is capable of accounting for various important soil–pile interaction response features such as soil and pile yielding, cyclic degradation of soil stiffness and strength under generalized loading, soil–pile gap formation with soil cave-in and recompression, and energy dissipation. Some experimental tests are studied to verify the BNWF model and examine the effect of each factor on the response of laterally loaded pile embedded in sand and clay. The experimental data and computed results agree well, confirming the model ability to predict the response of piles under one-way and two-way cyclic loading. The results show that the developed model can satisfactorily simulate the pile stiffness hardening due to soil cave in and sand densification as observed in the experiment. It is also concluded from the results that the gap formation and soil degradation have significant effects on the increase of lateral pile-head deflection and maximum bending moment of the pile in cohesive soils.  相似文献   

14.
In seismic-prone zones with liquefiable deposit piles are routinely used to support structures (buildings/bridges). In this paper, a unified buckling and dynamic approach is taken to characterize this vibration. The pile–soil system is modelled as Euler–Bernoulli beam resting against an elastic support with axial load and a pile head mass with rotary inertia. The emphasis here is to obtain a simple expression that can be used by practicing engineers to obtain the fundamental frequency of the structure–pile–soil system. An approximate method based on an equivalent single-degree-of-freedom model has been proposed. Natural frequencies obtained from the exact analytical method are compared with approximate results. Proposed expressions are general as they are functions of non-dimensional parameters. It is shown that this simplified method captures the essential design features such as: (a) the continuous reduction of the first natural frequency of the structure–pile–soil system due to progressive reduction of soil stiffness due to liquefaction; (b) the reduction in the axial load-carrying capacity of the pile due to instability caused by liquefaction. The results derived in this paper have the potential to be directly applied in practice due to their simple yet general nature. An example problem has been taken to demonstrate the application of the method.  相似文献   

15.
This paper presents results of one-g shake-table tests on scoured pile-group-supported bridge models in saturated (liquefiable) and dry (nonliquefiable) sands. The primary objective is to reveal the influence of liquefaction on seismic demands and failure mechanism of scoured bridges. To this end, two identical models, each consisting of a 2 × 2 reinforced concrete pile-group with a center-to-center spacing of 3 times pile diameter, a cap and a single pier with a lumped iron block, were constructed and embedded into saturated and dry sands, respectively, with the same scour depth of 4 times pile diameter. Typical test results, including excess pore pressure, acceleration and displacement demands are interpreted first, followed by the focus on curvature demands and associated seismic failure mechanism identification. Finally, inertial and kinematic effects on pile curvature demands are estimated using cross-correlation analyses. Results show that near-pile liquefied soils exhibit more remarkable dilation tendency as compared to far field. For bridges under the given scour depth, soil liquefaction tends to significantly affect the failure modes via transferring damage positions from pier bottom to pile head and meanwhile from underground pile to pile head. In addition, pile group effects appear to be significant in nonliquefiable soils while to be relatively inessential in liquefied soils. Moreover, the inertial effect is more prominent in nonliquefiable soils, while the kinematic effect itself generally appears to be more significant in liquefiable soils. The test results can be used to validate numerical models for future studies.  相似文献   

16.
A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to simulate the experiment. A recently developed multi-surface elasto-plastic constitutive model and a fully coupled dynamic inelastic FE formulation(u-p) are used to model the liquefaction behavior of the sand. The soil domains are discretized using a solid-fl uid fully coupled(u-p) 20-8 noded brick element. The pile is simulated using beam-column elements. Upon careful calibration, very good agreement is obtained between the computed and the measured dynamic behavior of the ground and the pile. A parametric analysis is also conducted on the model to investigate the effect of pile-pinning, pile diameter, pile stiffness, ground inclination angle, superstructure mass and pile head restraints on the ground improvement. It is found that the pile foundation has a noticeable pinning effect that reduces the lateral soil displacement. It is observed that a larger pile diameter and fi xed pile head restraints contribute to decreasing the lateral pile deformation; however, a higher ground inclination angle tends to increase the lateral pile head displacements and pile stiffness, and superstructure mass seems to effectively infl uence the lateral pile displacements.  相似文献   

17.
While seismic codes do not allow plastic deformation of piles, the Kobe earthquake has shown that limited structural yielding and cracking of piles may not be always detrimental. As a first attempt to investigate the consequences of pile yielding in the response of a pile-column supported bridge structure, this paper explores the soil–pile-bridge pier interaction to seismic loading, with emphasis on structural nonlinearity. The pile–soil interaction is modeled through distributed nonlinear Winkler-type springs and dashpots. Numerical analysis is performed with a constitutive model (Gerolymos and Gazetas 2005a, Soils Found 45(3):147–159, Gerolymos and Gazetas 2005b, Soils Found 45(4):119–132, Gerolymos and Gazetas 2006a, Soil Dyn Earthq Eng 26(5):363–376) materialized in the OpenSees finite element code (Mazzoni et al. 2005, OpenSees command language manual, p 375) which can simulate: the nonlinear behaviour of both pile and soil; the possible separation and gapping between pile and soil; radiation damping; loss of stiffness and strength in pile and soil. The model is applied to the analysis of pile-column supported bridge structures, focusing on the influence of soil compliance, intensity of seismic excitation, pile diameter, above-ground height of the pile, and above or below ground development of plastic hinge, on key performance measures of the pier as is: the displacement (global) and curvature (local) ductility demands and the maximum drift ratio. It is shown that kinematic expressions for performance measure parameters may lead to erroneous results when soil-structure interaction is considered.  相似文献   

18.
可液化场地大直径扩底桩-土动力相互作用p-y曲线研究对扩底桩抗震设计具有重要意义。基于有限差分程序FLAC~(3D),分别建立扩底桩和等直径桩的三维有限差分模型,通过在模型底部输入正弦波,得到可液化场地中不同埋深下扩底桩与等直径桩的桩-土动力相互作用p-y曲线,对两者的动力p-y曲线特征进行对比分析。结果表明:正弦波输入下扩底桩动力p-y曲线多呈倒"S"形,随着埋深增加,动力p-y曲线滞回圈面积及面积增长速度逐渐减小,斜率逐渐增大;扩底桩与等直径桩动力p-y曲线所围成的图形相似,两者动力p-y曲线斜率均随埋深增加逐渐增大,扩底桩动力p-y曲线滞回圈面积及面积增长速度在各埋深处均大于等直径桩,利于能量耗散,抗震性能更好。  相似文献   

19.
Most laterally loaded piles are flexible in the sense that they are not deformed over their entire lengths. Instead, pile deflections become negligible below an ‘active pile length’ La. This La is an important parameter that governs the overall behavior of a rigidly capped pile group. In the present approach, piles closely grouped together beneath a superstructure are viewed as a single equivalent upright beam whose stiffness matrix determines La. This idea is verified for different cases of pile spacing, and is further extended for nonlinear behavior of soils surrounding grouped piles.  相似文献   

20.
Modern seismic design codes stipulate that the response analysis should be conducted by considering the complete structural system including superstructure, foundation, and ground. However, for the development of seismic response analysis method for a complete structural system, it is first imperative to clarify the behavior of the soil and piles during earthquakes. In this study, full‐scale monotonic and reversed cyclic lateral loading tests were carried out on concrete piles embedded into the ground. The test piles were hollow, precast, prestressed concrete piles with an outer diameter of 300 mm and a thickness of 60 mm. The test piles were 26 m long. Three‐dimensional (3D) finite element analysis was then performed to study the behavior of the experimental specimens analytically. The study revealed that the lateral load‐carrying capacity of the piles degrades when subjected to cyclic loading compared with monotonic loading. The effect of the use of an interface element between the soil and pile surface in the analysis was also investigated. With proper consideration of the constitutive models of soil and pile, an interface element between the pile surface and the soil, and the degradation of soil stiffness under cyclic loading, a 3D analysis was found to simulate well the actual behavior of pile and soil. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号