首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
通过对淮北宿东矿区朱仙庄矿构造煤的宏观、微观特征的观察和研究,结合构造煤的形成环境,参照琚宜文的构造煤分类方案,将构造煤划分为8类:碎裂煤、碎斑煤、碎粒煤、碎粉煤、片状煤、鳞片煤、糜棱煤和非均质结构煤。同时,选取不同类型构造煤进行压汞实验,分析了不同变形级别煤样的孔隙分布特征、孔径结构的演化特征以及孔隙的类型和连通性。结果表明:构造煤的许多性质与其变形强度密切相关,朱仙庄矿构造煤变形从弱到强的顺序依次为片状煤、碎裂煤、碎斑煤、碎粒煤、鳞片煤、非均质结构煤、碎粉煤和糜棱煤。   相似文献   

2.
我国主要含煤区煤体结构特征及与渗透性关系的研究   总被引:2,自引:0,他引:2  
通过对我国主要含煤区的100多个煤层以及若干个钻孔煤心,进行宏观煤岩类型、煤体结构、煤裂隙以及与煤层渗透性等方面研究,结果表明a.我国煤体破坏程度由北向南、自西向东增强,从盆地中部向盆缘增强.我国中、西部和北部主要是原生结构煤,东部和南部以及盆缘构造煤发育.b.糜棱煤是地层构造变形强烈的产物,但构造变形强烈的地层不一定形成糜棱煤.c.碎裂煤的渗透率比原生结构煤高,碎粒煤和糜棱煤渗透率低.对于一个即有碎裂煤,又有碎粒煤和糜棱煤发育并交替出现的煤层,碎粒煤和糜棱煤在碎裂煤之间起着低渗透性的屏障作用,渗透性低的煤分层扼杀了渗透性高的煤分层,极大地降低了煤层渗透性.因此在有碎粒煤和糜棱煤发育的煤层,煤体结构对煤层渗透性的影响大于裂隙发育程度的影响,成为控制渗透性的首要因素.  相似文献   

3.
研究表明,弱变形脆性系列构造煤发育区往往是煤层气开发的有利区,而韧性变形的糜棱煤分布区则是矿井瓦斯突出的危险地带。因此,面向煤层气勘探与开发和瓦斯突出预测与评价是学科领域亟待解决的关键科学问题及技术难题,构造煤的研究日益受到人们的高度重视。较为系统地阐述了构造煤的概念与分类,不同类型构造煤的变形特征、孔—裂隙结构和化学结构研究方面的主要进展,指出构造煤韧性变形机制研究还十分薄弱,是有待深入研究的关键科学问题;煤变形过程中元素的迁移与聚集的构造—地球化学过程是值得探讨的新领域,有可能通过应力敏感元素的提炼,揭示其在不同应力—应变环境和不同类型构造煤中的分布和演化规律,从而成为构造煤分布和瓦斯突出具有指示意义的预测指标;不同类型构造煤和瓦斯富集区的地球物理响应特征及探测理论和解释方法研究应为未来重要的发展方向。  相似文献   

4.
采用煤质化验、XRD、SEM等测试手段,分析煤的化学组分、结构特征、显微构造等特征,结合古应力估算值、古温度和应变速率等结果,探讨了湖南新化地区煤变形变质特征与构造环境的关系。结果表明:煤样的d002值为3.36~3.39 nm,受天龙山构造挤压的局部应力场及叠加岩浆构造热的作用,煤逐渐转变为隐晶质石墨,结晶颗粒是由细小的鳞片组成的集合体,粒径集中在50~250 nm;石墨3R型含量随着煤化程度升高,石墨晶体开始增加,Rh相的数量减少;构造变形环境属于低温低围压高应变速率的浅层脆性-韧脆性构造域;天龙山岩体提供了构造热源,侧向挤压应力使寒婆坳向斜煤大分子结构有序化,层面间距减小,形成隐晶质石墨。   相似文献   

5.
基于黔西—滇东地区上二叠统80件煤样的压汞实验数据,结合煤层构造变形特征的矿井观测,探讨了煤中孔隙结构及其构造控制效应。结果表明,区内煤的孔隙度较高,以微孔和过渡孔为主,中孔和大孔发育的差异性加大。根据压汞曲线形态和阶段孔容的分布模式,将煤中孔隙结构划分为五种类型,即平行型、反S型、尖棱型、双S型和双弧线型。平行型和反S型的煤体结构主要为原生结构煤和碎裂煤,经构造改造后孔隙度和孔容均大幅增高,且连通性好;尖棱型为碎裂煤和碎斑煤,孔隙度和孔容均较高,连通性较好;双S型和双弧线型为糜棱煤、碎斑煤和揉皱煤,煤体破碎严重,孔隙连通性很差。构造变形所造成的煤的孔隙度和总孔容的整体增高和阶段孔容的差异性增长是煤储层孔隙结构分异的主要因素,且随着构造变形的增强其对煤体破坏的主要变形作用尺度有逐渐减小的趋势。  相似文献   

6.
宋昱  姜波  李凤丽  闫高原  么玉鹏 《地球科学》2018,43(5):1611-1622
构造煤纳米孔非均质性研究对于揭示煤层气赋存状态和传输特性具有重要意义.选取低-中煤级典型序列构造煤样品,基于高压压汞和低温液氮相结合的方法计算了构造煤基质压缩系数,并分析了Menger、热力学、Sierpinski和FHH分形模型对构造煤的适用性,进一步揭示了孔隙分形特征,糜棱煤的Menger分形曲线呈现三段式分布,而对于原生煤、碎裂煤、片状煤、鳞片煤和揉皱煤而言,Sierpinski模型、Menger模型、热力学模型以及FHH模型分段点分别为100 nm、72 nm、72 596 nm和8 nm.Menger模型分形维数大于3且拟合偏差较大,不适合表征构造煤的孔隙非均质性.Sierpinski模型适合于描述构造煤的纳米孔分形特征;FHH模型适合于表征原生煤及构造煤8~100 nm的孔隙非均质性.Sierpinski模型微米孔(>100 nm)的分形维数(Ds1)随着构造变形的增强先升高,而后降低,在片状煤中达到最高;Sierpinski模型纳米孔(< 100 nm,Ds2c)和FHH模型 < 8 nm的孔隙的非均质性随构造变形的增强逐渐升高.原生煤和脆性变形煤中,Ds1 > Ds2c,表明为微米孔非均质性强于纳米孔;鳞片煤中,Ds1接近于Ds2c;揉皱煤中,Ds1 < Ds2c,表明纳米孔的非均质性强于微米孔.   相似文献   

7.
煤的孔隙、物理化学结构差异对煤层气的吸附-解吸及产出特征有巨大影响。基于对不同煤体结构煤的孔隙、结构、力学性质的认识,利用现场实测资料,分析了煤体结构对煤层气产出的影响。结果表明:构造变形使煤的孔容和比表面积增大,吸附能力增强。含气量和损失量呈正相关关系;在含气量相同的情况下,逸散速率相对大小依次为:原生结构煤<碎裂煤<碎粒煤<糜棱煤。原生结构煤和碎裂煤的临界解吸压力大于糜棱煤。在0~45 min、45~95 min、95~185 min,平均解吸速率关系为:原生结构煤<碎裂煤<糜棱煤,而在185~485 min内,平均解吸速率关系反生改变,即:糜棱煤<原生结构煤<碎裂煤。在含气量大致相等时,原生结构煤和碎裂煤的解吸量及解吸时间明显大于糜棱煤。   相似文献   

8.
通过淮北宿临矿区不同类型构造煤中黄铁矿形态和分布的显微观测,结合常量及伴生元素分布特征分析,探讨了构造煤中黄铁矿的分布规律、形成机制及其地质控制作用。黄铁矿是典型的多期成因矿物,其分布受沉积环境和应力-应变环境共同作用,可划分为4 个形成阶段12 种类型;构造煤中的Co、Sb、Mn 等元素与黄铁矿关系密切,其分布反映应力-应变环境;进一步发现构造煤中的Hg 与硫化铁硫(Sp.d)呈良好相关性,随构造煤变形程度的增加呈“高-低-高”的演变趋势,受构造煤形成的动力学机制影响;构造煤中的黄铁矿可分为同生和后生两种模式,前者受控于沉积环境和古构造条件,而后者与构造改造和构造煤变形相关。分析认为,脆性变形阶段煤体结构的物理变化及过程为黄铁矿发育提供了赋存空间和条件,而韧性变形阶段中的动力变质和力化学作用为元素的迁移、散失及富集提供了动力,从而影响了黄铁矿的形成类型和分布。  相似文献   

9.
构造煤化学结构演化与瓦斯特性耦合机理   总被引:4,自引:0,他引:4       下载免费PDF全文
煤是对应力和应变非常敏感的一种特殊岩石,在不同的应力-应变环境和构造应力作用下,煤的物理结构、化学结构及其光性特征等都将发生显著变化,从而形成具有不同结构特征的、不同类型的构造煤。构造煤在变形的过程中,镜质组反射率将发生规律性变化,并被较为广泛地应用于煤田构造的定量研究,高温高压变形实验也证实了这一现象。为了深入探讨煤镜质组光性组构变化的微观机理,将X-射线衍射、顺磁共振和核磁共振等技术应用于不同类型构造煤以及高温高压实验变形煤的化学结构研究。研究表明,构造煤化学结构演化与镜质组反射率的演化具有密切的内在联系,镜质组反射率的光性异常是构造煤化学结构演化在物理光学性质上的具体体现。不同类型的构造煤由于物理和化学结构上的不同,导致瓦斯含量和透气性等瓦斯特性上的重大差异,糜棱煤特殊的物理和化学结构决定了其高含气量和低透气性的特征,是矿井瓦斯突出的危险地带,因此,可以通过构造煤分布规律的研究,进行矿井瓦斯富集与突出危险性的评价与预测,为矿井瓦斯灾害的研究提供新的思路和方法。  相似文献   

10.
南华北区两类不同还原型镜质组化学结构特征研究   总被引:1,自引:0,他引:1  
采用博里叶红外光谱和X射线衍射分析方法,探讨了南华北区两类不同还原型镜质组化学结构物差异和随煤阶的变化。较强 原型镜质组明显比同煤阶较弱还原型镜质组含有较多的脂类结构,较少的芳环结构。随煤阶的增高,镜质组结构向芳环晶化程度增强的方向演变,芳香度、面网间距、晶核高度和宽度及芳环层数等结构参数均呈规律性变化。  相似文献   

11.
煤孔隙结构是煤层气勘探开发与煤矿安全研究中的关键问题之一。构造煤相比于原生结构煤非均质性强,是煤储层研究中的热点和难点。采用原子力显微镜,结合NanoScope Analysis和Gwyddion分析软件,对脆性变形序列构造煤的孔隙结构和表面粗糙度特征进行研究。结果表明:构造作用整体上促进了脆性变形煤孔隙的发育,但不同脆性变形构造煤受构造作用影响的程度存在明显差异。根据煤受构造作用影响的程度,脆性变形煤孔隙结构演化可划分为强弱2个阶段:弱脆性变形阶段(原生结构煤—碎裂煤—片状煤—碎斑煤)构造作用对煤体的孔隙结构影响较小,平均孔数量缓慢增长,平均孔径缓慢减小,该阶段构造作用主要促进了100~200 nm大孔的发育;强脆性变形阶段(碎斑煤—碎粒煤—薄片煤)构造作用对煤体孔隙结构产生了显著影响,平均孔数量迅速增长,平均孔径迅速减小,这一阶段构造作用主要促进了10~50 nm介孔和50~100 nm大孔的发育。这表明脆性变形构造煤孔隙结构并非简单的线性演变。不同脆性变形煤的算术平均粗糙度和均方根粗糙度参数分别为3.00~6.05 nm和3.94~7.62 nm,其中,弱脆性变形阶段粗糙度整体较高且无明显变化,而强脆性变形阶段粗糙度迅速降低。通过AFM剖面分析,建立了煤表面孔隙形态的数学模型。基于该模型的算术平均粗糙度模拟结果表明,大孔是煤表面粗糙度的主要贡献者,构造作用主要通过影响煤中的孔隙结构,进而影响煤的表面粗糙度。   相似文献   

12.
煤的孔隙-裂隙结构特征是研究储层渗透性的关键问题。为了定量描述孔隙-裂隙结构的复杂程度,以黄陇侏罗纪煤田永陇矿区郭家河井田原生结构煤和碎裂结构煤为研究对象,基于压汞实验数据和扫描电镜(SEM)图像,采用Menger分形模型和计盒维数方法,分别计算不同煤体结构煤的孔隙-裂隙分形维数;同时采用不同孔径段的孔隙体积比作为权重值,计算得到孔隙综合分形维数,探讨孔隙-裂隙结构分形维数和渗透率之间的关系。研究结果表明,脆性构造变形作用对孔隙整体复杂性,裂隙孔、渗流孔复杂性以及微观裂隙复杂程度均具有积极改造作用,对吸附孔结构复杂性具有均一化作用;微观裂隙分形维数与渗透率具有较高非线性关系,脆性构造作用改造下形成的碎裂煤,其具有的孔隙-裂隙结构优势配比是决定储层高渗透性的关键。因此,建议优先考虑弱脆性变形的碎裂结构煤为主体的断层、向斜和背斜区域进行煤层气抽采。   相似文献   

13.
构造煤特有的孔裂隙系统决定了其不同类型具有独特的储层物性,而以脆性变形为主的碎裂煤发育区是煤层气勘探的有利区。根据贵州发耳煤矿9件煤样的显微镜观测和压汞实验数据,分析了构造煤微观变形和显微裂隙分形特征,进而对煤样孔隙渗透特征进行了研究。结果表明:碎裂煤显微裂隙信息维数分布在1.2~1.8;以信息维数为指标,可将碎裂煤划分为3类,信息维数分布范围分别为1.2~1.4、1.4~1.7和1.7~1.8;脆性构造变形增加了孔隙系统中大孔和中孔的孔容,构造变形越强烈,脆性系列构造煤的渗透性能越好。   相似文献   

14.
A number of studies have shown that development areas of weak deformation brittle series of tectonically deformed coal are often the favorable areas for coalbed methane development, and the distribution area of the mylonitic coal of ductile deformation is a danger zone of mine gas outburst. Therefore, faced with solving the key scientific issues and technical problems of the coal bed methane exploration and development and gas outburst prediction and evaluation, more and more attention has been paid to the research on tectonically deformed coal. This paper first systematically elaborated the main research progress on the concept and classification of tectonically deformed coals, their deformation characteristics, and the pore fissure structure and chemical structure. Then, it pointed out that there was a lack of research on the ductile deformation mechanism of coal, and this key scientific problem needs further research in the future. It seemed that the structural and geochemical process of chemical elements migration and accumulation during coal deformation was a new field which is worth exploring. Through refining stress sensitive elements, their distribution and evolution patterns in different stress-strain environments and different types of tectonically deformed coals might be revealed, and then they could become a predictive index which indicates the significance of distribution of tectonically deformed coals and gas outburst prediction. It was thought that geophysical response characteristics and research of detection theory and interpretation method of different types of tectonically deformed coal and gas enrichment area should be an important development direction in the future.  相似文献   

15.
A high rank coal was tested in terms of loading and unloading to characterize changes in the permeability and effective porosity of tectonically deformed coals. The coal sample, an anthracite, is subdivided into four types according to its structure, namely, the primary structure coal, cataclastic coal (the weakest deformation coal), granulated coal (the moderate deformation coal), and mylonitic coal (the intensest deformation coal); the latter three types are considered to be tectonic deformation coals. Permeability of tectonically deformed coals shows a negative exponential relation to stress. The intenser the structural deformation in coal is, the lower the permeability. Two evaluation parameters, namely, loss rate m (0.8318–0.9476) and damage rate n (0.447–0.6556), which are related to changes in permeability, increase with increasing structural deformation in coal. The cleat compressibility factor declines with increasing difference in effective stress and increases with increasing structural deformation in coal. This study proposes a calculation method for evaluating the porosity damage. Similar to the loss ratio and damage rate, this parameter (η) increases with increasing structural deformation in coal and reveals the relationship between the porosity damage and the structural deformation in coal.  相似文献   

16.
华北南部构造煤纳米级孔隙结构演化特征及作用机理   总被引:14,自引:2,他引:14  
构造煤是在构造应力作用下,煤体发生变形或破坏的一类煤,在世界主要产煤国家皆有分布。构造变形不同程度的改变着煤的大分子结构和化学成分,而且也影响到构造煤的纳米级孔隙结构(<10 0 nm ) ,它是煤层气的主要吸附空间。通过构造煤显微组分和镜质组油浸最大反射率的测定,采用液氮吸附法对不同变质变形环境、不同变形系列构造煤的纳米级孔隙分类、孔隙结构特征进行了深入系统的研究,并结合高分辨透射电子显微镜和X射线衍射对大分子结构和孔隙结构的分析,结果表明:不同类型构造煤纳米级孔径结构自然分类,可将孔径结构划分为过渡孔(15~10 0 nm )、微孔(5~15 nm )、亚微孔(2 .5~5 nm )和极微孔(<2 .5 nm ) 4类。低煤级变形变质环境中随着构造变形的增强,不同类型构造煤过渡孔孔容明显降低,微孔及其下孔径段孔容明显增多,可见亚微孔和极微孔,过渡孔的比表面积大幅度降低,而亚微孔的却增加得较快。从脆韧性变形煤至韧性变形煤,总孔体积、累积比表面积、N2 吸附量随着构造变形的增强,这些结构参数均迅速增加,但中值半径进一步下降。非均质结构煤孔隙参数与弱脆性变形煤相当。中、高煤级变形变质环境形成的各种类型构造煤与低煤级变质变形环境相比,孔隙参数的变化基本一致。但不同类型构造煤的变化又有所区别  相似文献   

17.
构造煤中煤层气扩散-渗流特征及其机理   总被引:2,自引:0,他引:2       下载免费PDF全文
煤层气产出一般要经过解吸、扩散和渗流三个阶段,而煤层气在变形较强的构造煤中的扩散过程不同于在原生结构煤或变形较弱的煤体中的扩散。外界压力的变化只是构造煤吸附与解吸整个过程的一种外在因素,构造煤的变形和结构变化以及吸附势场的转换才是构造煤吸附与解吸的内在因素,是导致解吸过程不可逆性的根本原因。当构造煤体与CH4等多元气体间的吸附平衡状态遭到破坏时,变形较强的构造煤在降压后会产生解吸滞后现象;而变形较弱的煤,分子结构中的气体会很快解吸,第一阶段是气体解吸作用,第二阶段是游离气体从微孔向较大孔隙扩散的过程,气体扩散速率主要由第二阶段决定。构造煤气体扩散机理主要是由孔隙形状、大小、连通性和多元气体性质和状态所决定的。韧性变形煤的微孔隙比较发达,所以韧性变形煤以Knudsen扩散为主,脆性变形煤的中、大孔隙所占比例较大,而且脆性变形煤的孔隙之间具有很好的连通性,所以脆性变形煤以Fick型扩散为主,脆-韧性变形煤以及接近脆-韧性变形煤的脆性变形煤和韧性变形煤均以过渡型扩散为主。在试井渗透率比较中,一定变形程度的脆性变形煤>韧性变形煤,脆性变形煤中以过渡孔为主,其余为微孔,测不出亚微孔和极微孔,脆性变形还增加了各孔隙之间的相互连通性。韧性变形煤中过渡孔比表面积所占比例下降,微孔和亚微孔增高,扩散主要发生在微孔和过渡孔中,所以韧性变形煤的试井渗透率低于脆性变形煤的试井渗透率。  相似文献   

18.
Outbursts of coal and gas are closely related to coal microstructures. Part of microstructures of coal areassociated with the coal-forming environments, but most of them are produced by tectonic deformation. In thispaper the types of microstructures of coal are distinguished according to the types and features of tectonicdeformations, which is convenient and can be easily employed by geologists. Based on the SEM study on coalpetrography of No.4 and No.6 coal seams of the Yutianbao coal mine, Nantong coal field, five types of coalare distinguished: nontectonic coal, microfissure coal, microcleavage coal, cataclastic coal and mylonitic coal.The microstructural features of various types are described in detail and their geological implications and rela-tionships with coal and gas outbursts are also discussed. Special mention is made of a series of the features ofplastic deformation of mylonitic coal. It is concluded that, other things being equal, the place with myloniticcoal is the most likely risk site for outbusts.The process and mechanism of coal and gas outbursts are suggested based on a series of changes inmicrostructures of the coal after bursting. In the process of gas outbursts, the plastic deformation issuperimposed by brittle deformation, thus ejecting large quantities of coal dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号