首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The problem of hydrodynamic response of the solar chromosphere on impulsive heating by energetic electrons is discussed. All basic physical processes are considered in a one-dimensional approximation, due to presence of a strong magnetic field. The calculations are performed for the heating of the chromosphere by electrons having a power-law energetic spectrum. In the upper chromosphere the electron temperature rises rapidly to values of order 107 K. The ion temperature is more than the order of magnitude less than the temperature of electrons. The heated high-temperature chromospheric plasma expands into corona with a velocity up to 1500 km s–1. In more dense layers, the fast re-emission of supplied energy takes place. This process gives rise to short-lived EUV flash. Just below the flare transition layer the thermal instability produces cold plasma condensation which moves downward at a velocity exceeding the sonic one in the quiet chromosphere.  相似文献   

2.
We briefly describe historical development of the concept of solar dynamo mechanism that generates electric current and magnetic field by plasma flows inside the solar convection zone. The dynamo is the driver of the cyclically polarity reversing solar magnetic cycle. The reversal process can easily and visually be understood in terms of magnetic field line stretching and twisting and folding in three-dimensional space by plasma flows of differential rotation and global convection under influence of Coriolis force. This process gives rise to formation of a series of huge magnetic flux tubes that propagate along iso-rotation surfaces inside the convection zone. Each of these flux tubes produces one solar cycle. We discuss general characteristics of any plasma flows that can generate magnetic field and reverse the polarity of the magnetic field in a rotating body in the Universe. We also mention a list of problems which are currently being disputed concerning the solar dynamo mechanism together with observational evidences that are to be constraints as well as verifications of any solar cycle dynamo theories of short and long term behaviors of the Sun, particularly time variations of its magnetic field, plasma flows, and luminosity.  相似文献   

3.
We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.  相似文献   

4.
In this paper, we present an expanding disc model to derive the polarization properties of the Crab nebula. The distribution function of the plasma and the energy density of the magnetic field are prescribed as functions of the distance from the pulsar using the model derived by Kennel and Coroniti with  σ= 0.003  , where σ is the ratio of the Poynting flux to the kinetic energy flux in the bulk motion just before the termination shock. Unlike the case for previous models, we introduce a disordered magnetic field, which is parametrized by the fractional energy density of the disordered component. The flow dynamics are not solved, and the mean field is toroidal.
The averaged degree of polarization over the disc is obtained as a function of the inclination angle and fractional energy density of the disordered magnetic field. It is found for the Crab Nebula that the disordered component contains about 60 per cent of the magnetic field energy. This value is supported by the facts that the disc appears not as 'lip-shaped' but as 'rings' in the observed intensity map, and that the highest degree of polarization of ∼40 per cent is reproduced for rings, which is consistent with the observations.
We suggest that, because the disordered field contributes to the pressure rather than to the tension, the pinch force may have been overestimated in previous relativistic magnetohydrodynamic simulations. The disruption of the oppositely directed magnetic fields, which is proposed by Lyuvarsky, may actually take place. The relativistic flow speed, which is indicated by the front–back contrast, can be detected in the asymmetry of distributions of the position angle and depolarization.  相似文献   

5.
The solar dynamo     
A. A. Ruzmaikin 《Solar physics》1985,100(1-2):125-140
The basic features of the solar activity mechanism are explained in terms of the dynamo theory of mean magnetic fields. The field generation sources are the differential rotation and the mean helicity of turbulent motions in the convective zone. A nonlinear effect of the magnetic field upon the mean helicity results in stabilizing the amplitude of the 22-year oscillations and forming a basic limiting cycle. When two magnetic modes (with dipole and quadrupole symmetry) are excited nonlinear beats appear, which may be related to the secular cycle modulation.The torsional waves observed may be explained as a result of the magnetic field effect upon rotation. The magnetic field evokes also meriodional flows.Adctual variations of the solar activity are nonperiodic since there are recurrent random periods of low activity of the Maunder minimum type. A regime of such a magnetic hydrodynamic chaos may be revealed even in rather simple nonlinear solar dynamo models.The solar dynamo gives rise also to three-dimensional, non-axisymmetric magnetic fields which may be related to a sector structure of the solar field.  相似文献   

6.
We simulate the rise through the upper convection zone and emergence through the solar surface of initially uniform, untwisted, horizontal magnetic flux, with the same entropy as the nonmagnetic plasma, that is advected into a domain 48 Mm wide by 20 Mm deep. The magnetic field is advected upward by the diverging upflows and pulled down in the downdrafts, which produces a hierarchy of loop-like structures of increasingly smaller scale as the surface is approached. There are significant differences between the behavior of fields of 10 kG and 20 or 40 kG strength at 20 Mm depth. The 10 kG fields have little effect on the convective flows and show small magnetic-buoyancy effects, reaching the surface in the typical fluid rise time from 20 Mm depth of 32 hours. 20 and 40 kG fields significantly modify the convective flows, leading to long, thin cells of ascending fluid aligned with the magnetic field and their magnetic buoyancy makes them rise to the surface faster than the fluid rise time. The 20 kG field produces a large-scale magnetic loop that as it emerges through the surface leads to the formation of a bipolar, pore-like structure.  相似文献   

7.
We derived the energy balance equation in steady state and made numerical calculations for 37 sets of parameter values for three layers of the atmosphere. The main results are: 1) The energy density released by tearing mode instability rapidly falls with rising temperature. It is much greater in the colmnar pinch than in the thin plate pinch. 2) The critical temperature increases with the intensity of the sheared magnetic field and decreases with its width. It is higher in the columnar pinch, and the rise time is shorter, than in the thin plate pinch. 3) At the surface of the photosphere, the energy released by tearing mode instability raises the local temperature by less than 1 K. 4) When the sheared width of the magnetic field is below a certain threshold, the local temperature is raised sharply to over (+6) K. This threshold is an increasing function of the strength of the sheared field. Our calculated results fit the observations to within one order of magnitude.  相似文献   

8.
The purpose of this paper is to explore the effect of magnetic fields on the dynamics of magnetized filamentary molecular clouds.We suppose there is a filament with cylindrical symmetry and two components of axial and toroidal magnetic fields.In comparison to previous works,the novelty in the present work involves a similarity solution that does not define a function of the magnetic fields or density.We consider the effect of the magnetic field on the collapse of the filament in both axial and toroidal directions and show that the magnetic field has a braking effect,which means that the increasing intensity of the magnetic field reduces the velocity of collapse.This is consistent with other studies.We find that the magnetic field in the central region tends to be aligned with the filament axis.Also,the magnitude and the direction of the magnetic field depend on the magnitude and direction of the initial magnetic field in the outer region.Moreover,we show that more energy dissipation from the filament causes a rise in the infall velocity.  相似文献   

9.
Ion velocity distributions in the auroral ionosphere   总被引:1,自引:0,他引:1  
For application to studies of the auroral ionosphere we have calculated the velocity distribution of the ions in a weakly-ionized plasma subjected to crossed electric and magnetic fields. We have retained enough terms in the series expansion of the distribution to enable us to determine under what conditions departures from the Maxwellian form become significant and what the nature of these departures is, but we cannot calculate precise values of the distribution function when the departures are large. Departures are negligibly small under conditions appropriate to the auroral ionosphere at low altitudes, where the ion-neutral collision frequency is much larger than the ion cyclotron frequency. At altitudes above about 120 km, however, the magnitude of the departures varies little with altitude. Electric fields greater than 25 mV m−1 cause departures from the Maxwellian distribution that are greater than 20 per cent at random velocities equal to or greater than twice the mean thermal speed of the ions. Under almost all conditions we find that the distribution is depleted in ions moving parallel to the magnetic field relative to those moving perpendicular, an effect that might be detectable in ionospheric measurements of ion temperature.  相似文献   

10.
For application to studies of the high latitude ionosphere, we have calculated ion velocity distributions for a weekly-ionized plasma subjected to crossed electric and magnetic fields. An exact solution to Boltzmann's equation has been obtained by replacing the Boltzmann collision integral with a simple relaxation model. At altitudes above about 150 km, where the ion collision frequency is much less than the ion cyclotron frequency, the ion distribution takes the shape of a torus in velocity space for electric fields greater than 40 mV m?1. This shape persists for 1–2 hr after application of the electric field. At altitudes where the ion collision and cyclotron frequencies are approximately equal (about 120 km), the ion velocity distribution is shaped like a bean for large electric field strengths. This bean-shaped distribution persists throughout the lifetime of ionospheric electric fileds. These highly non-Maxwellian ion velocity distributions may have an appreciable affect on the interpretation of ion temperature measurements.  相似文献   

11.
D. V. Erofeev 《Solar physics》1996,167(1-2):25-45
Discrete rigidly rotating components (modes) of the large-scale solar magnetic field have been investigated. We have used a specially calculated basic set of functions to resolve the observed magnetic field into discrete components. This adaptive set of functions, as well as the expansion coefficients, have been found by processing a series of digitized synoptic maps of the background magnetic field over a 20-year period. As a result, dependences have been obtained which describe the spatial structure and the temporal evolution of the 27-day and 28-day rigidly rotating modes of the Sun's magnetic field.The spatial structure of the modes has been compared with simulations based on the known flux-transport equation. In the simulations, the rigidly rotating modes were regarded as stationary states of the magnetic field whose rigid rotation and stability were maintained by a balance between the emergence of magnetic flux from stationary sources located at low latitudes and the horizontal transport of flux by turbulent diffusion and poleward directed meridional flow. Under these assumptions, the structure of the modes is determined solely by the horizontal velocity field of the plasma, except for the low-latitude zone where sources of magnetic flux concentrate. We have found a detailed agreement between the simulations and the results of the data analysis, provided that the amplitude of the meridional flow velocity and the diffusion constant are equal to 9.5 m s–1 and 600 km2 s–1, respectively.The analysis of the expansion coefficients has shown that the rigidly rotating modes undergo rapid step-like variations which occur quasi-periodically with a period of about two years. These variations are caused by separate surges of magnetic flux in the photosphere, so that each new surge gives rise to a rapid replacement of old large-scale magnetic structures by newly arisen ones.  相似文献   

12.
During the last years, inversion techniques have become one of the most powerful tools to obtain, from spectropolarimetric data, the stratification of physical quantities (temperature, pressure, velocity fields, magnetic field, etc.) describing different structures in the solar atmosphere. The SIR code (Stokes Inversion based on Response functions), developed at the Instituto de Astrofísica de Canarias (IAC), is internationally acknowledged nowadays at the most sophisticated and accurate inversion method. The main results derived from its application to the study of the solar photosphere, are presented. Two recent extensions are reported as well: inversion under NLTE conditions, and the MISS code (Multiline Inversion of Stellar Spectra). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The physical properties of the quiet solar chromosphere–corona transition region are studied. Here the structure of the solar atmosphere is governed by the interaction of magnetic fields above the photosphere. Magnetic fields are concentrated into thin tubes inside which the field strength is great. We have studied how the plasma temperature, density, and velocity distributions change along a magnetic tube with one end in the chromosphere and the other one in the corona, depend on the plasma velocity at the chromospheric boundary of the transition region. Two limiting cases are considered: horizontally and vertically oriented magnetic tubes. For various plasma densities we have determined the ranges of plasma velocities at the chromospheric boundary of the transition region for which no shock waves arise in the transition region. The downward plasma flows at the base of the transition region are shown to be most favorable for the excitation of shock waves in it. For all the considered variants of the transition region we show that the thermal energy transfer along magnetic tubes can be well described in the approximation of classical collisional electron heat conduction up to very high velocities at its base. The calculated extreme ultraviolet (EUV) emission agrees well with the present-day space observations of the Sun.  相似文献   

14.
Magnetic fields are thought to play a crucial role in determining the dynamics and energetics of coronal hole flows. In this paper we investigate the possibility that the large scale structure of the magnetic field and plasma within a coronal hole may be determined from the effects of plasma-magnetic field interactions. The overall state is then governed by a complex balance of inertial, pressure gravitational and magnetic forces. Integration of the highly non-linear system of differential equations, which describe the plasma-magnetic field coupling, is made possible by employing a numerical iterative technique developed by Pneuman and Kopp (1971). The method of solution is modified and extended to describe thermally conductive plasma flow in coronal holes. We consider the features of a typical converged solution, representing the distribution of velocity, temperature, density and magnetic field strength within a coronal hole.  相似文献   

15.
The distribution of thin layered field aligned currents (current layers) in the leading edge of the fast stream at 1 a.u. is studied by comparing solar wind plasma parameters (bulk velocity, density proton temperature and magnetic field intensity) and occurrence frequency of the current layer. Each leading edge studied is either a stream interface or an interplanetary shock. It is found that the occurrence frequency is related best to the proton temperature variations; the occurrence frequency increases with the rise of proton temperature. Possible mechanisms which cause high occurrence frequency of current layers in the leading edge are discussed.  相似文献   

16.
We investigate the effect of electron pressure on the Grad–Shafranov (GS) reconstruction of Interplanetary Coronal Mass Ejection (ICME) structures. The GS method uses in situ magnetic field and plasma measurements to solve for a magnetohydrostatic quasi-equilibrium state of space plasmas. For some events, a magnetic flux-rope structure embedded within the ICME can be reconstructed. The electron temperature contributes directly to the calculation of the total plasma pressure, and in ICMEs its contribution often substantially exceeds that of proton temperature. We selected ICME events observed with the Wind spacecraft at 1 AU and applied the GS reconstruction method to each event for cases with and without electron temperature measurements. We sorted them according to the proton plasma β (the ratio of proton plasma pressure to magnetic pressure) and the electron-to-proton temperature ratio. We present case studies of three representative events, show the cross sections of GS reconstructed flux-rope structure, and discuss the electron pressure contribution to key quantities in the numerical reconstruction procedure. We summarize and compare the geometrical and physical parameters derived from the GS reconstruction results for cases with and without electron temperature contribution. We conclude that overall the electron pressure effect on the GS reconstruction results contributes to a 10?–?20 % discrepancy in some key physical quantities, such as the magnetic flux content of the ICME flux rope observed at 1 AU.  相似文献   

17.
Via the three physical quantities (i.e., the maximal horizontal gradient of longitudinal magnetic field |ΔhBz|m, the length of neutral line with a large gradient L, and the number of isolated singular points η), which are used to represent the characteristics of the complexity and non-potentiality of the photospheric magnetic fields in solar active regions, a model of the shortterm forecast of proton events is built. The effectivity of the short-term forecast of proton events by means of the characteristic physical quantities of magnetic fields is verified. In the nowadays commonly used models of short-term forecast of solar proton events, until present the characteristic physical quantituieas of magnetic fields are not formally taken to be the factors of forecast. Because the solar proton events are low probability events, the physical mechanism of their occurrence is still not well understood. In the models of their prediction, the problems of high rates of false alarm or low rates of right alarm often exist. In this paper the traditional factors used in the existing models of forecast of proton events and the characteristic physical quantities of magnetic fields are combined together. By using the method of neural network, a more effective method of the short-term prediction of proton events is established. With the 1871 sample data in 1997-2001, we have set up Model A with the traditional forecast factors as the input layer, and also Model B with the traditional forecast factors plus the characteristic physical quantities of magnetic fields as the input layer. Via the set of 973 sample data of the years 2002 and 2003, we have carried out a simulative forecast, and found that under the condition that these two models possess the same rate of accuracy in the forecast of proton events, the rate of false alarm of Model B becomes evidently lower. This has further verified the effectiveness of the characteristic physical quantities of magnetic fields in shortterm prediction. Furthermore, this may improve the actual ability of forecast of solar proton events.  相似文献   

18.
In order to understand the reason of the existence of the electric field in the magnetosphere, and for the theoretical evaluation of its value, it is necessary to find the solution of the problem of determination of the magnetosphere boundary form in the frameworks of the continuum medium model which takes into account part of the magnetospheric plasma movement in supporting the magnetospheric boundary equilibrium. A number of problems for finding the distribution of the pressure, the density, the magnetic field and the electric field on the particular tangential discontinuity is considered in the case when the form of discontinuity is set (the direct problem) and a number of problems for finding the form of the discontinuity and the distribution of the above-mentioned physical quantities on the discontinuity is considered when the law of the change of the external pressure along the boundary is set (for example, with the help of the approximate Newton equation). The problem which is considered here, which deals with the calculation of the boundary form and with the calculation of the distribution of the corresponding physical quantities on the discontinuity of the 1st kind for the compressible fluid with the magnetic field with field lines which are perpendicular to the plane of the flow in question, concerns the last sort of problems. The comparison of the results of the calculation with the data in the equatorial cross-section of the magnetosphere demonstrates that the calculated form of the boundary, the value of the velocity of the return flow and the value of the electric field on the magnetopause, agree satisfactorily with the observational data.  相似文献   

19.
本文给出了1989 年8 月17 日耀斑后环的观测视向速度场,在环内物质在太阳重力、磁场梯度和大气压力梯度联合作用下沿环腿螺旋上升和环内物质密度由环腿向环顶和环足线性递增的假设下,理论上计算了该环系的视向速度场,理论计算和观测结果基本相符,似乎为耀斑物质由色球蒸发作上升运动的观点提供了间接的例证  相似文献   

20.
In this paper the process of magnetic convection is studied. It is shown that outside of a radius of about 2 × 105 km, magnetic fields in the Sun may be buoyant. Outside this limit strong field regions tend to rise at the expense of weak field regions which tend to sink. Magnetic convection may be important in magnetic stars and even in the solar interior. A recent calculation of the angular velocity of the Sun provides a period of rotation for the solar core of from 0.5 to 5 days. This calculation requires that the magnetic field extract angular momentum from the solar interior. Magnetic convection thus seems to be required, if this calculation is correct. Furthermore, magnetic convection may transfer heat and thereby possibly change the internal temperature structure of the Sun from what would be expected solely by radiation transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号