首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Digital marine seismic reflection data acquired in 1973 in the Bay of Pozzuoli, and recently reprocessed, were used to study the volcanological evolution of the marine sector of Campi Flegrei Caldera during the last 37 ka. In order to gain more information, interpretation also involved estimation of the "pseudo-velocity" and the "pseudo-density" from the resistivity logs of two onshore deep exploration wells. The main results are: (1) discovery of ancient pre-18 ka and post-37 ka submarine and mainly effusive volcanic activity, along coeval emission centers located at the edges of Campi Flegrei Caldera; (2) confirmation that the caldera collapse in the marine sector of Campi Flegrei seems strongly controlled by regional NE–SW and NW–SE structural discontinuities; (3) the finding of at least two episodes of collapse in the bay; and (4) identification of a post-18 ka volcanic deflation phase that has caused about 150–200 m of subsidence in the central sector of the Bay of Pozzuoli in the last 18 ka.Editorial responsibilty: T. Druitt  相似文献   

2.
The ground level in the Campi Flegrei caldera has never been stationary in the last 2,000 years. Historical data, and a nearly continuous tide-gauge record 20 years long, show that uplift and sinking have taken place on a variety of different time scales. In addition, the Campi Flegrei volcanic system appears to be sensitive to weak external forces such as tidal forces. We infer from these elements that the Campi Flegrei system is far from thermodynamic equilibrium, and suggest that its dynamics may be chaotic. We analyze the short-term variations of the ground level, and find that they can be described in a low-dimensional phase space. The dynamics of the Campi Flegrei system seems to have been phase-locked with tidal forces in the period following the 1970–1972 climax, and to have undergone a transition to chaos in some moment that preceded the presently continuing sinking phase.  相似文献   

3.
The Campi Flegrei hosts numerous monogenetic vents inferred to be younger than the 15 ka Neapolitan Yellow Tuff. Sanidine crystals from the three young Campi Flegrei vents of Fondi di Baia, Bacoli and Nisida were dated using 40Ar/39Ar geochronology. These vents, together with several other young edifices, occur roughly along the inner border of the Campi Flegrei caldera, suggesting that the volcanic conduits are controlled by caldera-bounding faults. Plateau ages of ∼9.6 ka (Fondi di Baia), ∼8.6 ka (Bacoli) and ∼3.9 ka (Nisida) indicate eruptive activity during intervals previously interpreted as quiescent. A critical revision, involving calendar age correction of literature 14C data and available 40Ar/39Ar age data, is presented. A new reference chronostratigraphic framework for Holocene Phlegrean activity, which significantly differs from the previously adopted ones, is proposed. This has important implications for understanding the Campi Flegrei eruptive history and, ultimately, for the evaluation of related volcanic risk and hazard, for which the inferred history of its recent activity is generally taken into account.  相似文献   

4.
Carbon dioxide flux from the soil is regularly monitored in selected areas of Vesuvio and Solfatara (Campi Flegrei, Pozzuoli) with the twofold aim of i) monitoring spatial and temporal variations of the degassing process and ii) investigating if the surface phenomena could provide information about the processes occurring at depth. At present, the surveyed areas include 15 fixed points around the rim of Vesuvio and 71 fixed points in the floor of Solfatara crater. Soil CO2 flux has been measured since 1998, at least once a month, in both areas. In addition, two automatic permanent stations, located at Vesuvio and Solfatara, measure the CO2 flux and some environmental parameters that can potentially influence the CO2 diffuse degassing. Series acquired by continuous stations are characterized by an annual periodicity that is related to the typical periodicities of some meteorological parameters. Conversely, series of CO2 flux data arising from periodic measurements over the arrays of Vesuvio and Solfatara are less dependent on external factors such as meteorological parameters, local soil properties (porosity, hydraulic conductivity) and topographic effects (high or low ground). Therefore we argue that the long-term trend of this signal contains the “best” possible representation of the endogenous signal related to the upflow of deep hydrothermal fluids.  相似文献   

5.
Airborne correlation spectrometry (COSPEC) was used to measure the rate of SO2 emission at White Island on three dates, i.e., November 1983, 1230 ± 300 t/d; November 1984, 320 ± 120 t/d; and January 1985, 350 ± 150 t/d (t = metric tons). The lower emission rates are likely to reflect the long-term emission rates, whereas the November 1983 rate probably reflects conditions prior to the eruption of December 1983. The particle flux in the White Island plume, as determined with a quartz crystal microbalance/cascade in November 1983, was 1.3 t/d, unusually low for volcanic plumes. The observed plume particles, as shown from scanning electron microscopy, include halite, native sulfur, and silicates and are broadly similar to other volcanic plumes.Gas analyses from high-temperature volcanic fumaroles collected from June 1982 through November 1984 werde used together with the COSPEC data to estimate the flux of other gas species from White Island. The rates estimated are indicative of the long-term volcanic emission, i.e., 8000–9000 t/d H2O, 900–1000 t/d CO2, 70–80 t/d HCl, 1.5–2 t/d HF, and about 0.2 t/d NH3. The long-term thermal power output at White Island is estimated at about 400 MW.  相似文献   

6.
A portable multi-sensor system was developed to measure volcanic plumes in order to estimate the chemical composition and temperature of volcanic gases. The multi-sensor system consists of a humidity–temperature sensor, SO2 electrochemical sensor, CO2 IR analyzer, pump and flow control units, pressure sensor, data logger, and batteries; the whole system is light (∼5 kg) and small enough to carry in a medium-size backpack. Volcanic plume is a mixture of atmosphere and volcanic gas; therefore volcanic gas composition and temperature can be estimated by subtracting the atmospheric gas background from the plume data. In order to obtain the contrasting data of the plume and the atmosphere, measurements were repeated in and out of the plume. The multi-sensor technique was applied to measure the plume of Tarumae, Tokachi, and Meakan volcanoes, Hokkaido, Japan. Repeated measurements at each volcano gave a consistent composition with ±10–30% errors, depending on the stability of the background atmospheric conditions. Fumarolic gas samples were also collected at the Tokachi volcano by a conventional method, and we found a good agreement (the difference <10%) between the composition estimated by the multi-sensor technique and conventional method. Those results demonstrated that concentration ratios of major volcanic gas species (i.e., H2O, CO2, and SO2) and temperature can be estimated by the new technique without any complicated chemical analyses even for gases emitted from an inaccessible open vent. Estimation of a more detailed gas composition can be also achieved by the combination of alkaline filter techniques to measure Cl/F/S ratios in the plume and other sensors for H2S and H2.  相似文献   

7.
The volcanological history of Campi Flegrei suggests that the most frequent eruptions are characterized by the emplacement of pyroclastic flow and surge deposits erupted from different vents scattered over a 150-km2 caldera. The evaluation of volcanic risk in volcanic fields is complex because of the lack of a central vent. To approach this problem, we subdivided the entire area of Campi Flegrei into a regular grid and evaluated the relative spatial probability of opening of vents based on geological, geophysical and geochemical data. We evaluated the volcanic risk caused by pyroclastic flows based on the formula proposed by UNESCO (1972), R=H×V×Va, where H is the hazard, V is the vulnerability and Va is the value of the elements at risk. The product H×V was obtained by performing simulations of type eruptions centered in each cell of the grid. The simulation is based on the energy cone scheme proposed by Sheridan and Malin [J. Volcanol. Geotherm. Res. 17 (1983) 187–202], hypothesizing a column collapse height of 100 m for eruptions of VEI=3 and 300 m for eruptions of VEI=4 with a slope angle of 6°. Each simulation has been given the relative probability value associated with the corresponding cell. We made use of the GIS software ArcView 3.2 to evaluate the intersection between the energy cone and the topography. The superposition of the areas invaded by pyroclastic flows (124 simulations for VEI=3 and 37 for VEI=4) was used to obtain the relative hazard map of the area. The relative volcanic risk map is obtained by superimposing the urbanization maps.  相似文献   

8.
The Campi Flegrei caldera is a restless structure affected by general subsidence and ongoing resurgence of its central part. The persistent activity of the system and the explosive character of the volcanism lead to a very high volcanic hazard that, combined with intense urbanization, corresponds to a very high volcanic risk. One of the largest sources of uncertainty in volcanic hazard/risk assessment for Campi Flegrei is the spatial location of the future volcanic activity. This paper presents and discusses a long-term probability hazard map for vent opening in case of renewal of volcanism at the Campi Flegrei caldera, which shows the spatial conditional probability for the next vent opening, given that an eruption occurs. The map has been constructed by building a Bayesian inference scheme merging prior information and past data. The method allows both aleatory and epistemic uncertainties to be evaluated. The probability map of vent opening shows that two areas of relatively high probability are present within the active portion of the caldera, with a probability approximately doubled with respect to the rest of the caldera. The map has an immediate use in evaluating the areas of the caldera prone to the highest volcanic hazard. Furthermore, it represents an important ingredient in addressing the more general problem of quantitative volcanic hazards assessment at the Campi Flegrei caldera.  相似文献   

9.
In this paper, we explore the effects of the intrinsic uncertainties upon long-term volcanic hazard by analyzing tephra fall hazard at Campi Flegrei, Italy, using the BET_VH model described in Marzocchi et al. (Bull Volcanol, 2010). The results obtained show that volcanic hazard based on the weighted average of all possible eruptive settings (i.e. size classes and vent locations) is significantly different from an analysis based on a single reference setting, as commonly used in volcanic hazard practice. The long-term hazard map for tephra fall at Campi Flegrei obtained here accounts for a wide spectrum of uncertainties which are usually neglected, largely reducing the bias intrinsically introduced by the choice of a specific reference setting. We formally develop and apply a general method to recursively integrate simulations from different models which have different characteristics in terms of spatial coverage, resolution and physical details. This outcome of simulations will be eventually merged with field data through the use of the BET_VH model.  相似文献   

10.
New stratigraphic, major- and trace-element, and Sr-, Nd- and Pb- isotopic data on volcanic deposits older than 14 ka from the island of Procida, Italy, are presented and compared with published analyses from the rest of the Phlegraean Volcanic District (PVD). Procida rocks range in composition from basalt to shoshonite and trachyte and show 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios varying within the ranges 0.70523–0.70678, 0.512539–0.512630, 18.99–19.29, 15.67–15.69 and 39.10–39.39, respectively. The presence of a compositional gap in the range SiO2=54–59 wt % is evidence of magma bimodality, and suggests that the feeding magmatic system was formed by at least two different reservoirs located at different depths. Geochemical and isotopic variations with increasing differentiation can be explained by fractional crystallization mechanisms, that in some cases were associated with crustal contamination that occurred in both deeper and shallower reservoirs; the most evolved magmas formed in the shallower one. Mixing/mingling processes also occurred. The variation of isotopic composition through time observed both for Procida and for Campi Flegrei and Ischia rocks is evidence of strong affinity between magmas that erupted on the entire PVD until about 40 ka. This indicates that they share a common origin and a common plumbing system. Most of the PVD eruptive centers active until about 40 ka lie within a NE-SW-oriented volcano-tectonic belt extending from the southeastern part of Ischia, through Procida and Torregaveta volcano to the northeastern sector of the present Campi Flegrei caldera. This not only indicates the existence of a link between regional structures and volcanism in the area, but also suggests that PVD magma genesis and evolution were strongly regulated by extensional tectonics. In the last 40 ka the mafic rocks erupted along this extensional structure – from Torregaveta and the islands of Ischia and Procida – indicate that it still represents an important crustal discontinuity that focuses mantle-derived magmas. Procida trachybasalts are enriched in large ion lithophile elements (LILE) and light and middle rare earth elements (LREE and MREE), and show slight negative anomalies in the high field strength elements (HFSE) relative to average MORB. A slight depletion in HREE is present. Trace element and isotope systematics can be referred to a lithospheric mantle source. The lithospheric mantle source carries intra-plate and slab-derived components, the latter probably inherited from a previous subduction event.  相似文献   

11.
Gas emissions from Tatun volcanic group, northern Taiwan, were studied for the first time using a multi-component gas analyser system (Multi-GAS) in combination with Giggenbach flask methods at fumaroles and mud pools at Da-you-keng (DYK) and Geng-tze-ping (GZP). CO2/S molar ratios observed at DYK ranged from 3–17, similar ratios were observed using a Multi-GAS sensor box of 8–16. SO2 at GZP was low, higher concentrations were observed at DYK where SO2/H2S ratios were close to 1 for both methods. A lower CO2/H2S ratio was measured via Giggenbach flask sampling (7.2) than was found in the plume using the gas sensor at GZP (9.2). This may reflect rapid oxidation of H2S as it mixes with background air. Gaseous elemental mercury (GEM) levels were observed in the fumarole gases using a portable mercury spectrometer. These are the first such measurements of mercury at Tatun. Mean GEM concentrations in the fumarole plumes were ∼ 20 ng m− 3, with much higher concentrations observed close to the ground (mean [GEM] 130 and 290 ng m− 3 at DYK and GZP, respectively). The GEM in the fumarole plume was elevated above concentrations in industrial/urban air in northern Taiwan and the increase in GEM observed when the instrument was lowered suggests high levels of mercury are present in the surrounding ground surface. The GEM/CO2 (10− 8) and GEM/S (10− 6) ratios observed in the fumarole gases were comparable to those observed at other low-temperature fumaroles. Combining the Hg/CO2 ratio with a previous CO2 flux value for the area, the annual GEM flux from the Tatun field is estimated as 5–50 kg/year.  相似文献   

12.
The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m?2 day?1, with an average of 27.1 g m?2 day?1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.  相似文献   

13.
The civil defense of Italy and the European community have planned to reformulate the volcanic risk in several volcanic areas of Italy, among which Mt. Vesuvius and Campi Flegrei, by taking into account the possible occurrence of damaging pre- or syn-eruptive seismic events. Necessary to achieve this goal is the detailed knowledge of the local attenuation–distance relations. In the present note, we make a survey of the estimates of seismic quality factor (the inverse is proportional to the attenuation coefficient with distance) reported in literature for the area of Campi Flegrei where many, but sometimes contradictory results have been published on this topic. We try to review these results in order to give indications for their correct use when calculating the attenuation laws for this area.  相似文献   

14.
Diffuse CO<Subscript>2</Subscript> degassing at Vesuvio,Italy   总被引:1,自引:0,他引:1  
At Vesuvio, a significant fraction of the rising hydrothermal–volcanic fluids is subjected to a condensation and separation process producing a CO2–rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic–hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d–1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d–1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d–1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.Editorial responsibility: H. Shinohara  相似文献   

15.
We report the first detailed study of spatial variations on the diffuse emission of carbon dioxide (CO2) and hydrogen sulfide (H2S) from Hengill volcanic system, Iceland. Soil CO2 and H2S efflux measurements were performed at 752 sampling sites and ranged from nondetectable to 17,666 and 722?g?m?2?day?1, respectively. The soil temperature was measured at each sampling site and used to evaluate the heat flow. The chemical composition of soil gases sampled at selected sampling sites during this study shows they result from a mixing process between deep volcanic/hydrothermal component and air. Most of the diffuse CO2 degassing is observed close to areas where active thermal manifestations occur, northeast flank of the Hengill central volcano close to the Nesjavellir power plant, suggesting a diffuse degassing structure with a SSW?CNNE trend, overlapping main fissure zone and indicating a structural control of the degassing process. On the other hand, H2S efflux values are in general very low or negligible along the study area, except those observed at the northeast flank of the Hengill central volcano, where anomalously high CO2 efflux and soil temperatures were also measured. The total diffuse CO2 emission estimated for this volcanic system was about 1,526?±?160?t?day?1 of which 453?t?day?1 (29.7?%) are of volcanic/hydrothermal origin. To calculate the steam discharge associated with the volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio from 12 fumarole samples equal to 88.6 (range, 9.4?C240.2) as a representative value of the H2O/CO2 mass ratios for Hengill fumarole steam. The resulting estimate of the steam flow associated with the gas flux is equal to 40,154?t?day?1. The condensation of this steam results in thermal energy release for Helgill volcanic system of 1.07?×?1014?J?day?1 or to a total heat flow of 1,237?MWt.  相似文献   

16.
We have analysed volatiles (H2O, He, Ar, CO2) in differentiated (basaltic andesite, dacite) volcanic glasses dredged at a depth of ca. 2000 m in the eastern part of the Manus Basin between 151°20′ and 152°10′ E. These samples have Sr–O–B isotopic ratios that show that they most likely represent lavas evolved from a common magma source. Since these glasses are very fresh, they provide a unique opportunity to study the behaviour of magmatic volatiles during assimilation–fractional crystallisation–degassing (AFCD). The samples are highly vesicular (up to 18%) and the volatiles trapped in vesicles consist predominantly of H2O with minor amounts of CO2, and the concentration of water in the glasses indicates that H2O saturation was attained. Rare gases except helium are atmospheric in origin, and the 3He/4He ratios and the CO2/3He ratios are respectively lower and higher than those typical of Mid-Ocean Ridge Basalt (MORB), and appear to correlate with the degree of differentiation. AFCD allows efficient degassing of mantle-derived volatiles and contribution of crust-derived and atmosphere-derived volatiles. Given the widespread occurrence of differentiated magmatism at arcs, we suggest that AFCD is responsible for large-scale occurrence of 3He-rich crustal fluids and of atmospheric-like rare gases in arc emanations, and that most of the volatiles are lost continuously during fractional crystallisation, rather than catastrophically during eruptions.  相似文献   

17.
The dependence of peak ground acceleration and velocity on seismic moment is studied for a set of small earthquakes (0.7<M L<3.2) recorded digitally at distances of a few km in the Campi Flegrei volcanic area near Naples, Italy, during the ground uplift episode of 1982–1984. Numerical simulations, using the -square spectral model with constant stress drop and ane –kf high frequency decay, fit well both the velocity and acceleration data for an averagek=0.015. The observed ground motions in the 1–24 Hz frequency band appear to consist of radiation from simple sources modified only slightly by attenuation effects. Moreover, the scaling of peak values agrees closely with those determined in nonvolcanic areas, once the difference in stress drop is taken into account.  相似文献   

18.
Volcanological analysis of the 10 000 yr –1538 explosive activity at Campi Flegrei shows that the most common explosive eruptions are characterized by the emplacement of flow or surge deposits, originating from the interaction between magma and shallow and/or sea water. The minimum volumes of pyroclastic products range between 0.04 and 0.7 km3; the proximal areas covered by these products range from 3–4 to 40–50 km2. The pyroclastic flow and surge deposits occurring inside the caldera have been strongly controlled by pre-existent morphology; because of this, the area of present Napoli city was blanketed by approximately 5 m of pyroclastic deposits, during the last 5000 yr.Previous analysis suggests that the presence of even very low topographic obstacles may influence pyroclastic density current run out such that future eruptive deposits would mainly be confined inside the caldera rim. We suggest that a future eruption at Campi Flegrei would not seriously involve the urbanized area of Napoli city located on the hills. On the contrary, the plains located on the eastern side of the caldera (Fuorigrotta, Bagnoli) would be the most damaged area.  相似文献   

19.
We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.  相似文献   

20.
The northwestern flank of the Colli Albani, a Quaternary volcanic complex near Rome, is characterised by high pCO2 values and Rn activities in the groundwater and by the presence of zones with strong emission of gas from the soil. The most significant of these zones is Cava dei Selci where many houses are located very near to the gas emission site. The emitted gas consists mainly of CO2 (up to 98 vol%) with an appreciable content of H2S (0.8–2%). The He and C isotopic composition indicates, as for all fluids associated with the Quaternary Roman and Tuscany volcanic provinces, the presence of an upper mantle component contaminated by crustal fluids associated with subducted sediments and carbonates. An advective CO2 flux of 37 tons/day has been estimated from the gas bubbles rising to the surface in a small drainage ditch and through a stagnant water pool, present in the rainy season in a topographically low central part of the area. A CO2 soil flux survey with an accumulation chamber, carried out in February–March 2000 over a 12 000 m2 surface with 242 measurement points, gave a total (mostly conductive) flux of 61 tons/day. CO2 soil flux values vary by four orders of magnitude over a 160-m distance and by one order of magnitude over several metres. A fixed network of 114 points over 6350 m2 has been installed in order to investigate temporal flux variations. Six surveys carried out from May 2000 to June 2001 have shown large variations of the total CO2 soil flux (8–25 tons/day). The strong emission of CO2 and H2S, which are gases denser than air, produces dangerous accumulations in low areas which have caused a series of lethal accidents to animals and one to a man. The gas hazard near the houses has been assessed by continuously monitoring the CO2 and H2S concentration in the air at 75 cm from the ground by means of two automatic stations. Certain environmental parameters (wind direction and speed; atm P, T, humidity and rainfall) were also continuously recorded. At both stations, H2S and CO2 exceeded by several times the recommended concentration thresholds. The highest CO2 and H2S values were recorded always with wind speeds less than 1.5 m/s, mostly in the night hours. Our results indicate that there is a severe gas hazard for people living near the gas emission site of Cava dei Selci, and appropriate precautionary and prevention measures have been recommended both to residents and local authorities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号