首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of the Antarctic Digital Magnetic Mapping Project (ADMAP) workers from VNIIOkeangeologia (Russia), the British Antarctic Survey (UK) and the Naval Research Laboratory (USA) have brought together almost all of the available magnetic data in the area 0–120°W, 60–90°S. The final map covers the whole Weddell Sea and adjacent land areas, the Antarctic Peninsula and the seas to the west, an area comparable in size with that of the USA. This paper describes the methods used during the compilation of the map and reviews briefly some of the main features shown on it. Distinct magnetic provinces are associated with Precambrian rocks of the East Antarctic craton, highly extended continental crust in the Weddell Sea embayment, the arc batholith of the Antarctic Peninsula, and oceanic crust of the northern Weddell Sea, which was created as a direct consequence of South America–Antarctica plate motion and oceanic crust generated at the Pacific–Antarctic ridge. The magnetic anomaly map thus provides an overview of the fragmentation of south-western Gondwana and the tectonic development of the Weddell Sea sector of Antarctica.  相似文献   

2.
A re-compilation of magnetic data in the Weddell Sea is presented and compared with the gravity field recently derived from retracked satellite altimetry. The previously informally named ‘Anomaly-T,’ an east–west trending linear positive magnetic and gravity anomaly lying at about 69°S, forms the southern boundary of the well-known Weddell Sea gravity herringbone. North of Anomaly-T, three major E–W linear magnetic lows are shown, and identified with anomalies c12r, c21–29(r) and c33r. On the basis of these, and following work by recent investigators, isochrons c13, c18, c20, c21, c30, c33 and c34 are identified and extended into the western Weddell Sea. Similarly, a linear magnetic low lying along the spine of the herringbone is shown and provisionally dated at 93–96 Ma. Anomaly-T is tentatively dated to be M5n, in agreement with recent tectonic models.Although current tectonic models are generally in good agreement to the north of T, to the south interpretations differ. Some plate tectonic models have only proposed essentially north–south spreading in the region, whilst others have suggested that a period of predominantly east–west motion (relative to present Antarctic geographic coordinates) occurred during the mid-Mesozoic spreading between East and West Gondwana. We identify an area immediately to the south of T which appears to be the southerly extent of N–S spreading in the herringbone. Following recent work, the extreme southerly extent of the N–S directed spreading of the herringbone is provisionally dated M9r/M10. In the oldest Weddell Sea, immediately to the north and east of the Antarctic shelf, we see subtle features in both the magnetic and gravity data that are consistent with predominantly N–S spreading in the Weddell Sea during the earliest opening of East and West Gondwana. In between, however, in a small region extending approximately from about 50 km south of T to about 70°S and from approximately 40° to 53°W, the magnetic and gravity data appear to suggest well-correlated linear marine magnetic anomalies (possible isochrons) perpendicular to T, bounded and offset by less well-defined steps and linear lows in the gravity (possible fracture zones). These magnetic and gravity data southwest of T suggest that the crust here may record an E–W spreading episode between the two-plate system of East and West Gondwana prior to the initiation of the three-plate spreading system of South America, Africa and Antarctica. The E–W spreading record to the east of about 35°W would then appear to have been cut off at about M10 time during the establishment of N–S three-plate spreading along the South American–Antarctic Ridge and then subducted under the Scotia Ridge.  相似文献   

3.
Multichannel seismic reflection data acquired by Marine Arctic Geological Expedition (MAGE) of Murmansk, Russia in 1990 provide the first view of the geological structure of the Arctic region between 77–80°N and 115–133°E, where the Eurasia Basin of the Arctic Ocean adjoins the passive-transform continental margin of the Laptev Sea. South of 80°N, the oceanic basement of the Eurasia Basin and continental basement of the Laptev Sea outer margin are covered by 1.5 to 8 km of sediments. Two structural sequences are distinguished in the sedimentary cover within the Laptev Sea outer margin and at the continent/ocean crust transition: the lower rift sequence, including mostly Upper Cretaceous to Lower Paleocene deposits, and the upper post-rift sequence, consisting of Cenozoic sediments. In the adjoining Eurasia Basin of the Arctic Ocean, the Cenozoic post-rift sequence consists of a few sedimentary successions deposited by several submarine fans. Based on the multichannel seismic reflection data, the structural pattern was determined and an isopach map of the sedimentary cover and tectonic zoning map were constructed. A location of the continent/ocean crust transition is tentatively defined. A buried continuation of the mid-ocean Gakkel Ridge is also detected. This study suggests that south of 78.5°N there was the cessation in the tectonic activity of the Gakkel Ridge Rift from 33–30 until 3–1 Ma and there was no sea-floor spreading in the southernmost part of the Eurasia Basin during the last 30–33 m.y. South of 78.5°N all oceanic crust of the Eurasia Basin near the continental margin of the Laptev Sea was formed from 56 to 33–30 Ma.  相似文献   

4.
A three-dimensional (3D) density model, approximated by two regional layers—the sedimentary cover and the crystalline crust (offshore, a sea-water layer was added), has been constructed in 1° averaging for the whole European continent. The crustal model is based on simplified velocity model represented by structure maps for main seismic horizons—the “seismic” basement and the Moho boundary. Laterally varying average density is assumed inside the model layers. Residual gravity anomalies, obtained by subtraction of the crustal gravity effect from the observed field, characterize the density heterogeneities in the upper mantle. Mantle anomalies are shown to correlate with the upper mantle velocity inhomogeneities revealed from seismic tomography data and geothermal data. Considering the type of mantle anomaly, specific features of the evolution and type of isostatic compensation, the sedimentary basins in Europe may be related into some groups: deep sedimentary basins located in the East European Platform and its northern and eastern margins (Peri-Caspian, Dnieper–Donets, Barents Sea Basins, Fore–Ural Trough) with no significant mantle anomalies; basins located on the activated thin crust of Variscan Western Europe and Mediterranean area with negative mantle anomalies of −150 to −200×10−5 ms−2 amplitude and the basins associated with suture zones at the western and southern margins of the East European Platform (Polish Trough, South Caspian Basin) characterized by positive mantle anomalies of 50–150×10−5 ms−2 magnitude. An analysis of the main features of the lithosphere structure of the basins in Europe and type of the compensation has been carried out.  相似文献   

5.
Ten years after the USAC (U.S.Argentina–Chile) Project, which was the most comprehensive aeromagnetic effort in the Antarctic Peninsula and surrounding ocean basins, questions remain regarding the kinematics of the early opening history of the Weddell Sea. Key elements in this complex issue are a better resolution of the magnetic sequence in the western part of the Weddell Sea and merging the USAC data set with the other magnetic data sets in the region. For this purpose we reprocessed the USAC data set using a continuation between arbitrary surfaces and equivalent magnetic sources. The equivalent sources are located at a smooth crustal surface derived from the existing bathymetry/topography and depths estimated by magnetic inversions. The most critical area processed was the transition between the high altitude survey over the Antarctic Peninsula and the low altitude survey over the Weddell Sea that required downward continuation to equalize the distance to the magnetic source. This procedure was performed with eigenvalue analysis to stabilize the equivalent magnetic source inversion.The enhancement of the Mesozoic sequence permits refining the interpretation of the seafloor-spreading anomalies. In particular, the change in shape and wavelength of an elongated positive in the central Weddell Sea suggests that it was formed during the Cretaceous Normal Polarity Interval. The older lineations in the southwestern Weddell Sea are tentatively attributed to susceptibility contrasts modeled as fracture zones. Numerical experimentation to adjust synthetic isochrons to seafloor-spreading lineations and flow lines to fracture zones yields stage poles for the opening of the Weddell Sea since 160 Ma to anomaly 34 time. The corresponding reconstructions look reasonable within the known constraints for the motions of the Antarctic and South America plates. However, closure is not attained between 160 and 118 Ma if independent published East Antarctica–Africa–South America rotations are considered. The lack of closure may be overcome by considering relative motion between the Antarctic Peninsula and East Antarctica until 118 Ma time, an important component of convergence.  相似文献   

6.
A comparison of late Mesoproterozoic palaeomagnetic poles from the Kalahari craton and its correlative Grunehogna craton in East Antarctica shows that the Kalahari–Grunehogna craton straddled the palaeo-Equator and underwent no azimuthal rotation between ca. 1130 and 1105 Ma. Comparison of the Kalahari palaeopoles with the Laurentia APWP between 1130 and 1000 Ma shows that there was a latitudinal separation of 30±14° between Kalahari and the Llano–West Texas margin of Laurentia at ca. 1105 Ma. The Kalahari craton could have converged with southwestern Laurentia between 1060 and 1030 Ma to become part of Rodinia by 1000 Ma. In Rodinia, the Kalahari craton lay near East Antarctica with the Namaqua–Natal orogenic belt facing outboard and away from the Laurentian craton.  相似文献   

7.
The Salton Sea geothermal system (SSGS) is the site of active hydrothermal metamorphism and metallogenesis in the delta of the Colorado River, which partially fills the Salton Trough rift zone at the head of the Gulf of California. Growth of the delta across the rift has isolated the northern part of the Salton Trough since the Pleistocene, forming the evaporative Salton Sea basin whose sediments host the SSGS. More than 70 commercial geothermal wells, including a 3.2 km deep research borehole drilled as part of the Salton Sea Scientific Drilling Project (SSSDP), are yielding a wealth of new data from this system.Within the SSGS, active greenschist facies metamorphism is occuring at temperatures 365°C at only 2–3 km depth, by reaction of NaCaKFeMnCl brines with the deltaic and lacustrine Pilo-Pleistocene sediments. Two kinds of base metal ore mineralization occur at depth: stratabound diagenetic Fe sulfides, and epigenetic vertical veins containing FeZnCuPb sulfides and Fex oxides. The vein mineralization occurs as two types: an older, reduced carbonate-sulfide assemblage, and a modern, oxidized, silicate-hematite-sulfide assemblage. The earlier assemblage formed at temperatures up to 100°C higher than the ambient temperatures measured in the wells today, implying that cooler, oxidized fluids have displaced hot, reduced fluids.A sharp interface between shallow fluids containing <12 wt % TDS and deep hypersaline brines containing 15–27 wt % TDS exists in the SSGS. The deeper hypersaline brines are rich in base metals (Fe 1500 ppm, Mn 1000 ppm, Zn 500 ppm) whereas the overlying lower-salinity fluids contain less than 100 ppm each of Fe, Mn and Zn. The modern silicate-hematite-sulfide vein assemblage is precipitating where the two fluids appear to be mixing. The two fluid types also have distincty different δ18O and δD relations. The shallow lower-salinity fluids have only partially-exchanged oxygen with deltaic and lacustrine host rocls. The deep hypersaline brines have exchanged oxygen extensively at 250°C with the deltaic sediments. δD values of the hypersaline brines are typically lighter than either the lower-salinity fluids or the modern evaporating groundwaters occupying the Salton Trough, implying a different source for the original fluids.The high salinities of the geothermal brines are derived from a combination of evaporation of fossil lakewaters, groundwater dissolution of shallow lacustrine evaporites, and subsurface hydrothermal metamorphism of buried lacustrine evaporites. Episodic filling and desiccation of the closed Salton Sea basin has allowed cold saline brines to form and percolate down into the sedimentary section. In some wells anyhydrite meta-evaporites and interbedded solution collapse breccias occur at 1 km depth. The anyhydrite contains fluid inclusions that are saturated in halite at their homogenization temperatures of 300°C, recording the hydrothermal dissolution of bedded salt. Based on Sr and Pb isotopic data and whole-rock chemical data, the source of the metals in the hypersaline brines is from leaching of the host sediments. However, the origin of reduced S for ore mineralization remains an enigma. δ34S values for vein sulfides cluster uniformly around zero per mil, implying that an isotopically-homogeneous source of reduced sulfide exists in the brines. It is possible that the vein sulfides receive a constribution from a magmatic S source.Movement and mixing of brines of different chemistry and oxidation states play a major role in ore genesis. Our model envisages an early stage in which a deep brine pool accumulated at depth in the sedimentary section by partial section by partial evaporation of basin and dissolution of bedded salts. Intrusion of rift-related basaltic magma into the base of the sedimentary caused heatingand fracturing of the sediments, resulting in precipitation of the carbonate-sulfide veins during pore fluid expulsion. Heating also caused a diapir of the hypersaline brine to rise and displace colder, less saline, shallower pore fluids. This brine intrusion was accompanied by pervasive and extensive mineralization. As this diapir cooled it began to move downward, drawing in shallow, more oxidized fluids and causing the formation of the modern silicate-hematite-sulfide vein ore zone.  相似文献   

8.
Tectonics and Petroleum Potential of the East China SeaShelf Rift Basin   总被引:2,自引:0,他引:2  
There are two Cenozoic sedimentary basins in the East China Sea. They are the East China Sea shelf basin and the Okinawa Trough basin. The former can be divided into a western and an eastern rift region. The development of the shelf basin underwent continental-margin fault depression, post-rift and then tectonic inversion stages. Available exploration results show that the distribution of source rocks is controlled by the basin architecture and its tectonic evolution. In the Xihu depression, mudstones and coals are the main source rocks. The eastern rift region has good geological conditions for the formation of large oil and gas fields.  相似文献   

9.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

10.
Mafic high-pressure granulite, eclogite and pyroxenite xenoliths have been collected from a Mesozoic volcaniclastic diatreme in Xinyang, near south margin of the Sino-Korean Craton (SKC). The high-pressure granulite xenoliths are mainly composed of fine-grained granoblasts of Grt+Cpx+Pl+Hbl±Kfs±Q±Ilm with relict porphyritic mineral assemblage of Grt+Cpx±Pl±Rt. PT estimation indicates that the granoblastic assemblage crystallized at 765–890 °C and 1.25–1.59 GPa, corresponding to crustal depths of ca. 41–52 km with a geotherm of 75–80 mW/m2. Calculated seismic velocities (Vp) of high-pressure granulites range from 7.04 to 7.56 km/s and densities (D) from 3.05 to 3.30 g/cm3. These high-pressure granulite xenoliths have different petrographic and geochemical features from the Archean mafic granulites. Elevated geotherm and petrographic evidence imply that the lithosphere of this craton was thermally disturbed in the Mesozoic prior to eruption of the host diatreme. These samples have sub-alkaline basaltic compositions, equivalent to olivine– and quartz–tholeiite. REE patterns are flat to variably LREE-enriched (LaN/YbN=0.98–9.47) without Eu anomaly (Eu/Eu*=0.95–1.11). They possess 48–127 ppm Ni and 2–20 ppm Nb with Nb/U and La/Nb ratios of 13–54 and 0.93–4.75, respectively, suggesting that these high-pressure granulites may be products of mantle-derived magma underplated and contaminated at the base of the lower crust. This study also implies that up to 10 km Mesozoic lowermost crust was delaminated prior to eruption of the Cenozoic basalts on the craton.  相似文献   

11.
Sedimentary basins of the east antarctic craton from geophysical evidence   总被引:1,自引:0,他引:1  
Ninety-five percent of Antarctica is buried under an ice sheet up to 4.7 km thick. Within interior East Antarctica (~10.2 · 106 km2) recent airborne geophysical observations, principally radio echo sounding, have enabled widespread investigation of ice covered bedrock. Limited seismic refraction profiling, magnetic and gravity investigations combined with the radar studies have provided a generalized picture of sedimentary basins in Antarctica between 180° and 60° E.Two major basinal structures have been detected within East Antarctica—the Wilkes Basin and Aurora Basin complex. The former lies sub-parallel to the Transantarctic Mountains, while the Aurora Basin forms a branching system of basins in central East Antarctica trending northwest towards the Wilkes Land coast.Analyses of macro-scale terrain roughness and bedrock reflection coefficients from radio echo sounding indicate significant differences between basins and their surrounding regions. Small-scale surface irregularities and slowly changing, high reflectivities from radar measurements are interpreted as suggesting the presence of a smoothing cover of sediments. Residual magnetic anomalies (from airborne operations), when combined with topographic data, exhibit low gradients over basins, but steep, fluctuating characteristics over adjacent basement highs. Source-depth calculations from oversnow magnetic determinations across the Wilkes Basin indicate an average thickness for the sedimentary layer of <3 km. This is corroborated by reinterpretation of gravity anomalies, which average ~—30 mGal, over the basin. Sediments appear absent or extremely thin on the flanks of the Wilkes Basin where seismic refraction shooting has detected the near-surface presence of granitic crust. Furthermore an increase in roughness of terrain combined with sudden breaks in slope argue that these basin margins may be fault-controlled and deeply eroded.The distribution and configuration of the depressions is therefore thought to be governed by intra-cratonic fracture patterns possibly related to ancient orogenic sutures. Juxtaposition of basins and flanking basement highs of probable Precambrian and Early Palaeozoic age are reminiscent of basin and swell structures of the African and Australian cratons, with which East Antarctica has had a common geologic history throughout most of the Phanerozoic. Any sediments must pre-date growth of the ice sheet and are hence older than Miocene.  相似文献   

12.
THE CRUST VELOCITY STRUCTURE OF PROFILE 820 IN THE AREA OF EAST CHINA SEA AND ITS VICINITY  相似文献   

13.
The volume of Antarctic ice at the Last Glacial Maximum is a key factor for calculating the past contribution of melting ice sheets to Late Pleistocene global sea level change. At present, there are large uncertainties in our knowledge of the extent and thickness of the formerly expanded Antarctic ice sheets, and in the timing of their release as meltwater into the world’s oceans. This paper reviews the four main approaches to determining former Antarctic ice volume, namely glacial geology, glacio-isostatic studies, glaciological modelling, and ice core analysis and attempts to reconcile these to give a ‘best estimate’ for ice volume. In the Ross Sea there was a major expansion of grounded ice at the Last Glacial Maximum, accounting for 2.3–3.2 m of global sea level. At some time in the Weddell Sea a large grounded ice sheet corresponding to c. 2.7 m of global sea level extended to the shelf break. However, this ice expansion has not yet been confidently dated and may not relate to the Last Glacial Maximum. Around East Antarctica there was thickening and advance offshore of ice in coastal regions. Ice core evidence suggests that the interior of East Antarctica was either close to its present elevation or thinner during the last glacial so the effect of East Antarctica on sea level depends on the net balance between marginal thickening and interior thinning. Suggested East Antarctic contributions vary from a 3–5.5 m lowering to a 0.64 m rise in global sea level. The Antarctic Peninsula ice sheet thickened and extended offshore at the Last Glacial Maximum, with a sea level equivalent contribution of c. 1.7 m. Thus, the Antarctic ice sheets accounted for between 6.1 and 13.1 m of global sea level fall at the Last Glacial Maximum. This is substantially less than has been suggested by most previous studies but the maximum figure matches well with one modelling estimate. The timing of Antarctic deglaciation is not well known. In the Ross Sea, terrestrial evidence suggests deglaciation may have begun at c. 13,000 yr BP1 but that grounded ice persisted until c. 6,500 yr BP. Marine evidence suggests the western Ross Sea was deglaciated by c. 11,500 yr BP. Deglaciation of the Weddell Sea is poorly constrained. Grounded ice in the northern Antarctic Peninsula had retreated by c. 13,000 yr BP, and further south deglaciation occurred sometime prior to c. 6,000 yr BP. Many parts of coastal East Antarctica apparently escaped glaciation at the LGM, but in those areas that were ice-covered deglaciation was underway by 10,000 yr BP. With existing data, the timing of deglaciation shows no firm relation to northern hemisphere-driven sea level rise. This is probably due partly to lack of Antarctic dating evidence but also to the combined influence of several forcing mechanisms acting during deglaciation.  相似文献   

14.
A seismic experiment with six explosive sources and 391 seismic stations was conducted in August 2001 in the central Japan region. The crustal velocity structure for the central part of Japan and configuration of the subducting Philippine Sea plate were revealed. A large lateral variation of the thickness of the sedimentary layer was observed, and the P-wave velocity values below the sedimentary layer obtained were 5.3–5.8 km/s. P-wave velocity values for the lower part of upper crust and lower crust were estimated to be 6.0–6.4 and 6.6–6.8 km/s, respectively. The reflected wave from the upper boundary of the subducting Philippine Sea plate was observed on the record sections of several shots. The configuration of the subducting Philippine Sea slab was revealed for depths of 20–35 km. The dip angle of the Philippine Sea plate was estimated to be 26° for a depth range of about 20–26 km. Below this depth, the upper boundary of the subducting Philippine Sea plate is distorted over a depth range of 26–33 km. A large variation of the reflected-wave amplitude with depth along the subducting plate was observed. At a depth of about 20–26 km, the amplitude of the reflected wave is not large, and is explained by the reflected wave at the upper boundary of the subducting oceanic crust. However, the reflected wave from reflection points deeper than 26 km showed a large amplitude that cannot be explained by several reliable velocity models. Some unique seismic structures have to be considered to explain the observed data. Such unique structures will provide important information to know the mechanism of inter-plate earthquakes.  相似文献   

15.
The northernmost part of the oil-producing Austral Basin, known as Aisén Basin or Río Mayo Embayment (in central Patagonian Cordillera; 43–46°S), is a special area within the basin where the interplay between volcanism and the initial stages of its development can be established. Stratigraphic, paleontologic and five new U–Pb SHRIMP age determinations presented here indicate that the Aisén Basin was synchronous with the later phases of volcanism of the Ibáñez Formation for at least 11 m.yr. during the Tithonian to early Hauterivian. In this basin marine sedimentary rocks of the basal units of the Coihaique Group accumulated overlying and interfingering with the Ibáñez Formation, which represents the youngest episode of volcanism of a mainly Jurassic acid large igneous province (Chon Aike Province). Five new U–Pb SHRIMP magmatic ages ranging between 140.3 ± 1.0 and 136.1 ± 1.6 Ma (early Valanginian to early Hauterivian) were obtained from the Ibáñez Formation whilst ammonites from the overlying and interfingering Toqui Formation, the basal unit of the Coihaique Group, indicate Tithonian, early Berriasian and late Berriasian ages. The latter was a synvolcanic shallow marine facies accumulated in an intra-arc setting, subsequently developed into a retro-arc basin.  相似文献   

16.
为了研究西太平洋弧后边缘海盆地的深部构造特征,于2015年在东海琉球岛弧弧后地区布设了一条穿过东海陆架盆地、钓鱼岛隆褶带、南冲绳海槽地区和琉球岛弧的主动源广角反射/折射深部地震剖面.利用走时正演和反演的方法得到的二维速度结构模型展现了西太平洋边缘弧后地区莫霍面的深度由东海陆架地区的大于30 km显著抬升至南冲绳海槽轴部的约16 km,地壳高度拉张减薄,并存在一系列显著的不连续下地壳高速体,速度达6.8~7.3 km/s,这是地幔上涌的显著表现.模型从深部结构角度展现了新生代以来西太平洋弧后盆地扩张中心的变迁,证实了西太平洋洋陆过渡带内深部上涌的软流圈在弧后拉张过程中不断地向洋跃迁,形成自西向东的构造迁移,并带动岩石圈进行幕式伸展,认为新生代向洋变新的构造迁移是太平洋俯冲带后撤引起的一系列弧后深-浅部地球动力效应.   相似文献   

17.
A new airborne magnetic survey of the southeastern Antarctic Peninsula and adjacent Weddell Sea embayment (WSE) region suggests a continuity of geological structure between the eastern Antarctic Peninsula and the attenuated continental crust of the Filchner Block. This has implications for the reconstructed position of the Ellsworth–Whitmore Mountains block in Gondwana, which is currently uncertain. Palaeomagnetic data indicate that it has migrated from a Palaeozoic position between South Africa and Coats Land to its current position as a microplate embedded in central West Antarctica. The most obvious route for migration is between the Antarctic Peninsula and the Weddell Sea embayment. Evidence that geological structures are continuous across the boundary places constraints on the timing and pathway of migration. Magnetic textures suggest the presence of shallow features extending from the Beaumont Glacier Zone (BGZ) in the west for at least 200 km into the Weddell Sea embayment. These data suggest that the Eastern Domain of the Antarctic Peninsula and the stretched continental crust of the Filchner Block share a common recent, probably post-Early Jurassic, history. However, examination of deep anomalies indicates differences in the magnetic characteristics of the two blocks. The boundary may mark either the edge of extended continental crust, or a discontinuity between two, once separated, blocks. This discontinuity, or pre-Late Jurassic Antarctic Peninsula terrane boundaries to the west, may have allowed the passage of the Ellsworth–Whitmore Mountains block to its present location.  相似文献   

18.
《Quaternary Science Reviews》2005,24(12-13):1499-1520
The provenance of Late Quaternary Ross Embayment till was investigated by comparing the coarse sand composition of East and West Antarctic source area tills with till samples from across the Ross Sea. The West Antarctic samples from beneath the Whillans (B) and Kamb (C) ice streams are petrologically distinct from samples of lateral moraines flanking several East Antarctic outlet glaciers. The characteristic assemblage of four West Antarctic samples includes felsic intrusive and detrital sedimentary lithic fragments, plagioclase and abundant quartz. In contrast, most of the ten East Antarctic till samples contains abundant mafic intrusive and detrital sedimentary lithic fragments as well as less abundant quartz. The distinctive composition of these source areas can be linked to 33 samples from 20 cores of Last Glacial Maximum (LGM) age till distributed across the Ross Sea. Western Ross Sea till samples exhibit mineralogic and lithological similarities to East Antarctic till samples, although these western Ross Sea tills contain higher percentages of felsic intrusive and extrusive lithic fragments. Eastern Ross Sea till samples are compositionally similar to West Antarctic till, particularly in their abundance of quartz and dearth of mafic and extrusive lithic components. Central Ross Sea till exhibits compositional similarities to both East and West Antarctic source terranes including a mafic lithic component, and marks the confluence of ice draining from East and West Antarctica during the LGM, thus West Antarctic-derived ice streams did not advance into the western Ross Sea. This indicates that even if pre-LGM equivalents of the present Siple Coast ice streams existed, they did not simply expand allowing West Antarctic-derived ice to dominate the LGM Ross Ice Sheet.  相似文献   

19.
The Tuva-Mongolia Massif is a composite Precambrian terrane incorporated into the Palaeozoic Sayany-Baikalian belt. Its Neoproterozoic amalgamation history involves early (800 Ma) and late Baikalian (600–550 Ma) orogenic phases. Two palaeogeographic elements are identified in the early Baikalian stage — the Gargan microcontinent and the Dunzhugur oceanic arc. They are represented by the Gargan Glyba (Block) and the island-arc ophiolites overthrusting it. The Gargan Glyba is a two-layer platform comprising an Early Precambrian crystalline basement and a Neoproterozoic passive-margin sedimentary cover. The upper part comprises olistostromes deposited in a foreland basin during the early Baikalian orogeny. The Dunzhugur arc ophiolite form klippen fringing the Gargan Glyba, and show a comprehensive oceanic-arc ophiolite succession. The Dunzhugur arc faced the microcontinent, as shown by the occurrence of forearc complexes. The arc–continent collision followed a pattern similar to Phanerozoic collisions. When the marginal basin lithosphere had been completely subducted, the microcontinental edge partially underthrust the arc, and the forearc ophiolite overrode it. Continued convergence caused a break of the arc lithosphere resulting in the uplift of the submerged microcontinental margin with the overthrust forearc ophiolites sliding into the foreland basin. Owing to the lithospheric break, a new subduction zone, inclined beneath the Gargan microcontinent, emerged. Initial melts of the newly-formed continental arc are represented by tonalites intruded into the Gargan microcontinent basement and its cover, and into the ophiolite nappe. The tonalite Rb–Sr mineral isochron age is 812±18 Ma, which is similar to a U–Pb zircon age of 785±11 Ma. A period of tonalite magmatism in Meso–Cenozoic orogenic belts is recognized some 1–10 m.y. after the collision. Accordingly, the Dunzhugur island arc–Gargan microcontinent collision is conventionally dated at around 800 Ma. It is highly probable that in the early Neoproterozoic, the Gargan continental block was part of the southern (in modern coordinates) margin of the Siberia craton. It is suggested that a chain of Precambrian massifs represents an elongate block separated from Siberia in the late Neoproterozoic. The Tuva-Mongolia Massif is situated in the northwest part of this chain. These events occurred on the NE Neoproterozoic margin of Rodinia, facing the World Ocean.  相似文献   

20.
Zircon fission track (ZFT), apatite fission track (AFT) and (U–Th)/He thermochronometric data are used to reconstruct the Cenozoic exhumation history of the South China continental margin. A south to north sample transect from coast to continental interior yielded ZFT ages between 116.6 ± 4.7 Ma and 87.3 ± 4.0, indicating that by the Late Cretaceous samples were at depths of 5–6 km in the upper crust. Apatite FT ages range between 60.9 ± 3.6 and 37.3 ± 2.3 Ma with mean track lengths between 13.26 ± 0.16 µm and 13.95 ± 0.19 µm whilst AHe ages are marginally younger 47.5 ± 1.9–15.3 ± 0.5 Ma. These results show the sampled rocks resided in the top 1–1.5 km of the crust for most of the Cenozoic. Thermal history modeling of the combined FT and (U–Th)/He datasets reveal a common three stage cooling history which differed systematically in timing inland away from the rifted margin. 1) Initial phase of rapid cooling that youngs to the north, 2) a period of relative (but not perfect) thermal stasis at ~ 70–60 °C which increases in duration from the south to the north; 3) final-stage cooling to surface temperatures that initiated in all samples between 15 and 10 Ma. The timing and pattern of rock uplift and erosion does not fit with conventional passive margin landscape models that require youngest exhumation ages to be concentrated at or close to the rifted margin. The history of South China margin is more complex aided by weakened crust from the active margin period that immediately preceded rifting and opening of the South China Sea. This rheological inheritance created a transition zone of steeply thinned crust that served as a flexural filter disconnecting the northern margin of the South China block and site of active rifting to the south. Consequently whilst the South China margin displays many features of a rifted continental margin its exhumation history does not conform to conventional images of a passive margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号