首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The 0S2~0S54 spheroidal modes of Earth’s free oscillations, triggered by the great Sumatra-Andaman earthquake of 26 December 2004 are retrieved from VHZ data recorded by seven upgraded stations of China Digital Seismograph Network (CDSN). We compare these spheroidal modes with theoretical free oscillation spectra calculated from the Preliminary Reference Earth Model (PREM) and find a coincidence between their periods. Spectral splitting phenomenon is observed obviously in 0S2, 0S3, 0S4, 2S1 and 1S2 free oscillation modes. What is most noticeable is that the oscillation mode 2S1 is reported for the second time (the first time by Rosat et al) without any data stacking. We simulated the split singlet of 0S2 mode on seven CDSN stations based on general focal mechanism and seismic moment of the earthquake. The result shows that seismic moment of the earthquake can reach 1023 N.m. We also find that the recording of Earth’s free oscillations carries abundant information of source mechanism and earthquake location, which is applicable to the detailed study of source rupture parameters.  相似文献   

2.
Sumatra-Andaman Large Earthquake on Dec. 26,2004 generated not only the Indian Ocean Tsunami but also the Earth's free oscillations (EFO). The signals of Earth's free oscillations were perfectly re-corded by the superconducting gravimeter C0-32 at Wuhan station in China. After the pre-treatment and spectral analysis on the observational data from Wuhan station,we obtained more than ninety EFO modes including 42 fundamental modes,2 radial modes and 49 harmonic modes. On the basis of the discussions on some observed harmonic modes and abnormal splitting phenomena,we considered that the real rigidity might be lower than the theoretical prediction of PREM model in the inner core and however the anisotropy of compressive wave was brightly higher than the present estimations in the inner core. This suggested that the anisotropy of the inner core could be much more complicated than our present understanding,and there might be some new geophysical phenomena in the formation process of the inner core.  相似文献   

3.
Giant earthquakes generate rich signals that can be used to explore the characteristics of the hierarchical structure of the Earth’s interior associated with the eigenfrequencies of the Earth.We employ the spectral element method,incorporated with large-scale parallel computing technology,to investigate the characteristics of global seismic wave propagation excited by the2011 Mw9.0 Tohoku earthquake.The transversely isotropic PREM model is employed as a prototype of our numerical global Earth model.Topographic data and the effect of the oceans are taken into consideration.Wave propagation processes are simulated by solving three-dimensional elastic wave governing equations with the seismic moment tensor obtained from the Global Centroid Moment Tensor Catalog.Three-dimensional visualization of our computing results displays the nature of the global seismic wave propagation.Comparative analysis of our calculations with observations obtained from the Incorporated Research Institutions for Seismology demonstrates the reliability and feasibility of our numerical results.We compare synthetic seismograms with incorporated and unincorporated ocean models.First results show that the oceans have obvious effects on the characteristics of seismic wave propagation.The peak displacement and peak velocity of P waves become relatively small under the effect of the ocean.However,the effect of the ocean on S-waves is complex.The displacement and velocity of S waves decrease rapidly over time using an unincorporated ocean model.Therefore,the effects of the ocean should be incorporated when undertaking quantitative earthquake hazard assessments on coastal areas.In addition,we undertake comparative analysis on the characteristics of the Earth’s oscillation excited by the 2004 Sumatra-Andaman,2008 Wenchuan,and 2011Tohoku earthquakes that incorporate the effect of the Earth’s gravitational potential.A comparison of the amplitude spectra of the numerical records indicates that energy released by the three big earthquakes is different.Our comparative analysis realizes that the computing results can accurately reproduce some eigenfrequencies of the Earth,such as toroidal modes 0T2 to 0T13and spheroidal modes 0S7 to 0S31.These results demonstrate that numerical simulations can be successfully used to investigate the Earth’s oscillations.We propose that numerical simulations can be used as one of the major tools to further reveal how the Earth’s lateral heterogeneities affect the Earth’s oscillations.  相似文献   

4.
Here we report new approaches of recovering the Earth gravitational field from GOCE (Gravity field and steady-state Ocean Circulation Explorer) gradiometric data with the help of the gradient tensor’s invariants. Our results only depend on GOCE satellite’s position and gradiometry, in other words, they are completely independent of the satellite attitude. First, starting from the invariants, linearization models are established, which can be referred as the general boundary conditions on the satellite’s orb...  相似文献   

5.
As the gravity field is the most primary and direct physical quantity reflecting the density variation of the Earth’s interior and its geodynamic properties under various environmental changes and as the knowledge of the fine structure of the Earth’s interior and its geo-dynamics has a strong impact on space research, grav-ity observations become more and more important in Earth sciences. Therefore based on a global network of superconducting gravimeters (SGs), the Global Geo-dynamic Proje…  相似文献   

6.
The relationships between Earth’s rotation and the 1975 Haicheng, Liaoning MS7.3 earthquake, 2008 Wenchuan, Sichuan MS8.0 earthquake and the 2004 Sumatra MS9.0 earthquake, as well as moderate-small earthquakes occurring around the epicenter regions prior to them are investigated in this study. The obtained results could benefit the further understanding of the relationship between the Earth’s rotation and earthquakes.  相似文献   

7.
New generation superconducting gravimeters (SGs), which have been demonstrated to be better than the best seismometers STS-1 at frequencies below 1 mHz, can be accepted as the quietest vertical seismometers for observation of long-period earth free oscillations. Wavelet filtering with narrow band-pass frequency response as shown in this paper is very helpful in removing at- mospheric pressure effects from on gravity records in long-period seismic mode frequency bands. The processing of high quality SG records after the great Sumatra earthquake (Dec. 26, 2004) with wavelet filtering leads to clear observations of all coupled toroidal modes below 1.5 mHz except these for 0T5, 0T7 and 1T1; moreover 1T2 and 1T3 are, for the first time, unambiguously revealed in the vertical components of the free oscillations. The three well-resolved splitting singlets of overtones 2S1 are observed from a single SG record for the first time.  相似文献   

8.
The Earth's free core nutation (FCN) is a retrograde eigenrnode which is attributed to the interaction between the solid mantle and the liquid core of the rotational elliptical Earth. This mode appears as an eigenmode of nearly diurnal free wobble (NDFW) in a terrestrial reference frame with a period of about one day (XU et al, 2001). Therefore, the NDFW will lead to an obvious resonance enhancement in the diurnal tidal gravity observations, especially those of the tidal waves with frequencies closed to its eigenfrequency such as P1, K1, ψ1 and Ф1. The FCN resonance parameters can be retrieved accurately by high-precision tidal gravity observations, especially those recorded with the superconducting gravimeters (SG). The Global Geodynamics Project (GGP) organized by IUGG took it as an important content for determining the FCN resonance parameters by using gravity data. However, the results are affected by many factors such as station location, background noise, the selection of the tide-generating potential tables, ocean tide models, data processing techniques and so on. In our study, the FCN parameters will be retrieved by using the SG observations at Wuhan, and the effects of the choices of various tide-generating potential tables, oceanic models and weight functions on the estimation of the FCN parameters will be discussed in detail,  相似文献   

9.
Based on the solutions of the Green’s function for a saturated porous medium obtained by the authors,and using transformation of axisymmetric coordinates,Sommerfeld integrals and superposition of the influence field on a free surface,the authors have obtained displacement solutions of a saturated porous medium subjected to a torsional force in a half-space.The relationship curves of the displacement solutions and various parameters(permeability,frequency,etc.)under action of a unit of torque are also given in this paper.The results are consistent with previous Reissner’s solutions,where a two-phase medium decays to a single-phase medium.The solution is useful in solving relevant dynamic problems of a twophase saturated medium in engineering.  相似文献   

10.
The Earth’s free core nutation (FCN) is a retrograde eigenmode which is attributed to the interaction between the solid mantle and the liquid core of the rotational elliptical Earth.  相似文献   

11.
青藏高原及其邻区岩石层三维密度结构   总被引:17,自引:5,他引:17       下载免费PDF全文
搜集了青藏高原及其邻近区域的S波速度三维层析成像结果和2万多个实测重力点资料,将重力资料进行各种改正并网格化为30′×30′的布格重力异常.首先采用密度差与S波速度差之间的经验关系式,建立青藏地区岩石层密度的初始模型,再利用布格重力异常进行阻尼最小二乘法反演,得到青藏地区岩石层三维密度分布结果.反演结果表明:(1)青藏高原岩石层密度分布不仅在纵向上不均匀,而且在横向存在明显的不均匀.在深度10-70km范围内,高原整体呈低密度特性,在50-70km深度范围内低密度特征更加突出,与周缘地区存在0,1g/cm3的密度差.而在90-110km深度范围内,高原岩石层地幔显示密度高.(2)岩层密度分布与大地构造有明显相关的分区性,显示出青藏块体、巴颜喀拉块体、塔里木块体和印度块体.  相似文献   

12.
To reduce drilling uncertainties, zero-offset vertical seismic profiles can be inverted to quantify acoustic properties ahead of the bit. In this work, we propose an approach to invert vertical seismic profile corridor stacks in Bayesian framework for look-ahead prediction. The implemented approach helps to successfully predict density and compressional wave velocity using prior knowledge from drilled interval. Hence, this information can be used to monitor reservoir depth as well as quantifying high-pressure zones, which enables taking the correct decision during drilling. The inversion algorithm uses Gauss–Newton as an optimization tool, which requires the calculation of the sensitivity matrix of trace samples with respect to model parameters. Gauss–Newton has quadratic rate of convergence, which can speed up the inversion process. Moreover, geo-statistical analysis has been used to efficiently utilize prior information supplied to the inversion process. The algorithm has been tested on synthetic and field cases. For the field case, a zero-offset vertical seismic profile data taken from an offshore well were used as input to the inversion algorithm. Well logs acquired after drilling the prediction section was used to validate the inversion results. The results from the synthetic case applications were encouraging to accurately predict compressional wave velocity and density from just a constant prior model. The field case application shows the strength of our proposed approach in inverting vertical seismic profile data to obtain density and compressional wave velocity ahead of a bit with reasonable accuracy. Unlike the commonly used vertical seismic profile inversion approach for acoustic impedance using simple error to represent the prior covariance matrix, this work shows the importance of inverting for both density and compressional wave velocity using geo-statistical knowledge of density and compressional wave velocity from the drilled section to quantify the prior covariance matrix required during Bayesian inversion.  相似文献   

13.
使用阻尼最小二乘法进行震源参数和地壳三维速度结构的走时联合反演.所用资料为S波和P波到时差,并用人工地震资料的二维解释结果作为三维速度模型的特定约束条件.为建立初始模型,又利用天然地震构成了准二维剖面.在走时反演基础上,利用遗传算法进行了几个地震事件的波形反演尝试,并对走时反演获得的地壳速度结构模型的局部进行了修正.以34°~42°N,94°~112°E作为研究区域,在该区域中收集了1986年以来大量地震的S波和P波到时差资料,7条人工地震二维速度剖面资料和2个数字化地震台的几个地震的三分向记录资料.对这些资料进行了处理,最后得出了0~25km深度不同截面的速度分布,并对所得结果进行了分析.  相似文献   

14.
变密度声波方程多参数全波形反演策略   总被引:4,自引:3,他引:1       下载免费PDF全文
多参数全波形反演中各参数之间的相互耦合增加了反演的非线性程度.通过分析各参数之间的相互影响,提出合理的多参数反演策略是解决该问题的有效途径.本文从变密度声波方程出发,首先研究了密度在速度反演中的重要作用,然后分析了速度对密度反演的影响程度,进而提出了一种有利于速度、密度分步联合反演的策略.第一步,利用给定的初始模型对速度、密度进行同时反演,得到比较可靠的速度反演结果;第二步,利用第一步反演得到的速度和给定的初始密度作为初始模型,继续进行双参数同时反演,这样可以同时得到比较可靠的速度、密度反演结果.为了进一步提高反演精度,将第二步反演得到的速度、密度作为初始模型,再进行下一轮双参数联合反演.二维理论模型实验结果充分说明了本文提出的这种反演策略的有效性.  相似文献   

15.
基于贝叶斯理论的叠前多波联合反演弹性模量方法   总被引:8,自引:6,他引:2       下载免费PDF全文
AVO反演可以获得地层岩性和流体信息,而叠前反演问题都是高维的和非适定的,因此获得可靠稳定的解对叠前反演至关重要. 本文给出了一种基于贝叶斯理论的纵波和转换波联合反演密度比和模量比的方法. 鉴于剪切模量比、体积模量比可以更好地指示油气,基于岩石物理中速度比与模量比之间的关系,将此关系式代入Zoeppritz方程的近似形式Aki-Richards公式中,得到与模量比有关的反射系数近似公式. 联合纵波和转换波,利用最小二乘准则构建目标函数,最终反演出密度比、剪切模量比、体积模量比三个参数. 在反演过程中引入贝叶斯理论,假定先验信息服从高斯分布,待求参数服从改进的Cauchy分布,并去除待求参数之间的相关性. 利用模型数据和实际数据对本文方法进行测试,并与常规的单独利用纵波数据来反演方法进行比较,结果表明联合反演稳定性更好、精度更高、抗噪音能力更强,验证了本文方法的可行性和有效性.  相似文献   

16.
The least‐squares error measures the difference between observed and modelled seismic data. Because it suffers from local minima, a good initial velocity model is required to avoid convergence to the wrong model when using a gradient‐based minimization method. If a data set mainly contains reflection events, it is difficult to update the velocity model with the least‐squares error because the minimization method easily ends up in the nearest local minimum without ever reaching the global minimum. Several authors observed that the model could be updated by diving waves, requiring a wide‐angle or large‐offset data set. This full waveform tomography is limited to a maximum depth. Here, we use a linear velocity model to obtain estimates for the maximum depth. In addition, we investigate how frequencies should be selected if the seismic data are modelled in the frequency domain. In the presence of noise, the condition to avoid local minima requires more frequencies than needed for sufficient spectral coverage. We also considered acoustic inversion of a synthetic marine data set created by an elastic time‐domain finite‐difference code. This allowed us to validate the estimates made for the linear velocity model. The acoustic approximation leads to a number of problems when using long‐offset data. Nevertheless, we obtained reasonable results. The use of a variable density in the acoustic inversion helped to match the data at the expense of accuracy in the inversion result for the density.  相似文献   

17.
We have previously applied three‐dimensional acoustic, anisotropic, full‐waveform inversion to a shallow‐water, wide‐angle, ocean‐bottom‐cable dataset to obtain a high‐resolution velocity model. This velocity model produced an improved match between synthetic and field data, better flattening of common‐image gathers, a closer fit to well logs, and an improvement in the pre‐stack depth‐migrated image. Nevertheless, close examination reveals that there is a systematic mismatch between the observed and predicted data from this full‐waveform inversion model, with the predicted data being consistently delayed in time. We demonstrate that this mismatch cannot be produced by systematic errors in the starting model, by errors in the assumed source wavelet, by incomplete convergence, or by the use of an insufficiently fine finite‐difference mesh. Throughout these tests, the mismatch is remarkably robust with the significant exception that we do not see an analogous mismatch when inverting synthetic acoustic data. We suspect therefore that the mismatch arises because of inadequacies in the physics that are used during inversion. For ocean‐bottom‐cable data in shallow water at low frequency, apparent observed arrival times, in wide‐angle turning‐ray data, result from the characteristics of the detailed interference pattern between primary refractions, surface ghosts, and a large suite of wide‐angle multiple reflected and/or multiple refracted arrivals. In these circumstances, the dynamics of individual arrivals can strongly influence the apparent arrival times of the resultant compound waveforms. In acoustic full‐waveform inversion, we do not normally know the density of the seabed, and we do not properly account for finite shear velocity, finite attenuation, and fine‐scale anisotropy variation, all of which can influence the relative amplitudes of different interfering arrivals, which in their turn influence the apparent kinematics. Here, we demonstrate that the introduction of a non‐physical offset‐variable water density during acoustic full‐waveform inversion of this ocean‐bottom‐cable field dataset can compensate efficiently and heuristically for these inaccuracies. This approach improves the travel‐time match and consequently increases both the accuracy and resolution of the final velocity model that is obtained using purely acoustic full‐waveform inversion at minimal additional cost.  相似文献   

18.
变阻尼约束层析成像及其在VSP资料中的应用(英文)   总被引:1,自引:0,他引:1  
初至波走时层析成像已经取得了广泛的应用,然而,由于观测系统的限制,射线在模型中分布不均匀,导致层析结果的分辨能力不足。变阻尼约束方法应用不均匀的先验信息来匹配不均匀的数据分布,可以减小速度模型校正量与射线覆盖程度的相关性。本文将变阻尼约束方法应用于初至波旅行时层析成像中,并将平滑约束方法加入正则化方程组中来避免单独使用变阻尼约束带来的不稳定性,利用阿尔法滤波器对反演中间迭代结果进行平滑和去噪,采用LSQR算法求解线性方程组来提高收敛速度和压制误差传递。本文应用上述层析成像算法对VSP观测系统进行速度反演,分别应用于检测板速度模型数据和实际VSP资料速度反演中,结果表咀变阻尼约束层析成像可以改善射线不均匀覆盖带来的影响,从而提高速度反演结果的质量;VSP资料检波点附近的速度反演结果可靠性高。  相似文献   

19.
针对重力与地震联合反演存在的问题,结合已有的研究成果,本文研究实现了速度和密度随机分布共网格单元模型的建模技术,以适应密度和速度剧烈变化的复杂模型及联合反演的计算要求.重力正演利用了该网格的二度半体模型,并进一步改进了地震走时的二维射线追踪计算方法,以适用于速度随机分布的网格介质.结合改进的模拟退火算法,实现了这种共网格条件下的重力与地震资料的同步联合反演.模型试验证明了重力与地震联合反演可以准确确定复杂物性界面的密度和速度结构,适用于物性界面不完全一致和物性变化剧烈的复杂模型,并且联合反演结果要优于单独的重力反演.带先验信息约束下的实际资料的联合反演,进一步证明了该方法的适用性和效果,可提高反演精度并减少多解性.  相似文献   

20.
地震走时与重力数据的联合反演   总被引:1,自引:0,他引:1  
对目前的地震走时与重力数据联合反演发展进行了简要的概述。首先,从两类数据单独反演的基本原理出发,对两者进行了分析比较,并由两者参数间存在的相互关系,可将两类数据归并、统一到一个系统,合理地进行联合反演。其次,根据目前国内外的相关研究,介绍了当前联合反演的两种算法:依次反演和同时反演。最后,对联合反演中存在的问题进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号