首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对水下目标跟踪非线性跟踪精度问题,假设目标机动模型为恒转速运动模型,贝叶斯框架下,因扩展卡尔曼滤波跟踪方法进行模型在估计点的泰勒展开,忽略一阶以上高阶项,存在模型误差,比较了扩展卡尔曼滤波、无迹卡尔曼滤波、容积卡尔曼滤波在高斯噪声干扰下滤波误差均方根,以及3种方法运行时间。仿真证明,非线性系统下状态维度为5,容积卡尔曼滤波跟踪的精度高于无迹卡尔曼滤波,无迹卡尔曼滤波高于扩展卡尔曼滤波。该研究为海上目标非线性测量系统提供仿真实例,为进一步滤波算法改进提供基础。  相似文献   

2.
纯方位目标跟踪-直角坐标卡尔曼滤波算法   总被引:2,自引:1,他引:1  
对于纯方位目标跟踪问题 ,在利用卡尔曼滤波算法进行处理时 ,首先要进行观测方程及状态方程的线性化处理 ,自然导致线性化误差 ,为减少它对目标跟踪的影响 ,该文利用衰减记忆的卡尔曼滤波算法 ,通过蒙特卡罗模拟仿真实验表明其跟踪效果在收敛速度和收敛率以及稳定性等方面有了较大的提高。  相似文献   

3.
The towfish location and orientation problems that arise in using side-scan sonar to detect objects on the sea bottom are treated separately. Data which locate the towfish relative to the ship are usually deteriorated by multipath receptions and other effects. In order to overcome this serious degradation in the location measurements, a modified Kalman filter is proposed. An estimate of the state transition matrix for this filter is derived, and a means of switching between two Kalman gains is suggested. The feasibility of the proposed filter is justified by a case study. Improved estimates of towfish pitch and heading measurements are obtained by a separate system employing model identification and subsequent Kalman filtering. Application of these methods to data from similar towed side-scan sonar systems should yield significant gains in object location accuracy  相似文献   

4.
基于非线性滤波的水下地形辅助导航方法   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解决水下航行器惯性导航误差随时间积累问题,利用地形辅助导航技术进行导航位置修正。由于水下地形的非线性,对基于扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)和粒子滤波(PF)3种非线性滤波方法的水下地形辅助导航算法进行研究。针对传统基于单波束声纳量测模型在小起伏地形区域导航精度低、易发散问题,从提高量测地形信息量角度,建立了基于多波束测深声纳的量测模型。使用多波束实测地形数据进行仿真试验,结果表明:无论在粗糙地形区域还是较平坦地形区域,多波束量测模型有效缓解了3种方法易发散问题,提高了导航精度。  相似文献   

5.
Active sonar detection in shallow water using the Page test   总被引:1,自引:0,他引:1  
The use of active sonar in shallow water results in received echoes that may be considerably spread in time compared to the resolution of the transmitted waveform. The duration and structure of the spreading and the time of occurrence of the received echo are unknown without accurate knowledge of the environment and a priori information on the location and reflection properties of the target. A sequential detector based on the Page test is proposed for the detection of time-spread active sonar echoes. The detector also provides estimates of the starting and stopping times of the received echo. This signal segmentation is crucial to allow further processing such as more accurate range and bearing localization, depth localization, or classification. The detector is designed to exploit the time spreading of the received echo and is tuned as a function of range to the expected signal-to-noise ratio (SNR) as determined by the transmitted signal power, transmission loss, approximate target strength, and the estimated noise background level. The theoretical false alarm and detection performance of the proposed detector, the standard Page test, and the conventional thresholded matched filter detector are compared as a function of range, echo duration, SNR, and the mismatch between the actual and assumed SNR. The proposed detector and the standard Page test are seen to perform better than the conventional thresholded matched filter detector as soon as the received echo is minimally spread in time. The use of the proposed detector and the standard Page test in active sonar is illustrated with reverberation data containing target-like echoes from geological features, where it was seen that the proposed detector was able to suppress reverberation generated false alarms that were detected by the standard Page test  相似文献   

6.
In underwater target tracking applications, measurement uncertainty and inaccuracies are usually modeled as additive Gaussian noise. The Gaussian model of noise may not be appropriate in many practical systems. The non-Gaussian noise and the model non-linearity arising in a tracking system will seriously affect the tracking performance. This paper discusses one way to create a robust version of the extended Kalman filter for enhanced underwater target tracking. State estimation in the filter is done through the robust regression approach and Welsch's proposal is used in the regression process. Monte Carlo simulation results with heavy-tailed contaminated observation noise demonstrate the robustness of the proposed estimation procedure  相似文献   

7.
实现高精度的定位导航是深海采矿车完成海底工作任务的基础条件。在采矿车行进过程中,声呐设备生成的图像信息能够反映海底场景的变化,从而体现采矿车本身的运动,由此建立了一种声呐图像里程计,并将其与轮式里程计和USBL测量数据相结合提出了一种深海采矿车组合定位导航算法。首先对多波束前视声呐图像进行预处理,然后使用Canny算法进行特征检测并对特征点云进行配准,再结合声呐成像原理构建了声呐图像里程计运动模型,最后通过轮式里程计运动模型推导预测方程、声呐图像里程计运动模型和USBL测量数据推导更新方程,利用EKF(extended Kalman filter)算法实现基于多传感器融合的定位与姿态估计。海试数据验证了该组合定位算法能实现轮式里程计、声呐里程计和超短基线在速度、位置、艏向角估计、定位速率的精度互补,具有一定的有效性和精确性,该算法为深海采矿车的定位与导航算法研发提供了参考。  相似文献   

8.
This paper presents the design and development of an enhanced inertial navigation system that is to be integrated into the Morpheus autonomous underwater vehicle at Florida Atlantic University. The inertial measurement unit is based on the off-the-shelf Honeywell HG1700-AG25 3-axis ring-laser gyros and three-axis accelerometers and is aided with ground speed measurements obtained using an RDI Doppler-velocity-log sonar. An extended Kalman filter has been developed, which fuses together asynchronously the inertial and Doppler data, as well as the differential Global Positioning System positional fixes whenever they are available. A complementary filter was implemented to provide a much smoother and stable attitude estimate. Thus far, preliminary study has been made on characterizing the inertial navigation system-based navigation system performance, and the corresponding results and analyzes are provided  相似文献   

9.
This paper presents a processing concept for autonomous underwater vehicle (AUV)-based concurrent detection and classification (CDAC) of mine-like objects. In the detection phase, the AUV seeks objects of interest using a simple energy detector combined with a peak tracking mechanism. Upon detection, the processing mechanism changes to a higher order spectral (HOS) classification process. The system is demonstrated through theory, simulation and at-sea experiments to have promise in reducing the false alarm rate of mine detections. The HOS classification mechanism is also shown to have some benefit over classical spectral estimation in all cases. Components of the system concept were also demonstrated live onboard the AUV during the Generic Oceanographic Array Technology Sonar (GOATS 2002) experiment off the coast of Italy, while others are demonstrated using a comprehensive AUV sonar simulation framework.  相似文献   

10.
This paper describes a new framework for detection and tracking of underwater pipeline,which includes software system and hardware system.It is designed for vision system of AUV based on monocular CCD camera.First,the real-time data flow from image capture card is pre-processed and pipeline features are extracted for navigation.The region saturation degree is advanced to remove false edge point group after Sobel operation.An appropriate way is proposed to clear the disturbance around the peak point in the process of Hough transform.Second,the continuity of pipeline layout is taken into account to improve the efficiency of line extraction.Once the line information has been obtained,the reference zone is predicted by Kalman filter.It denotes the possible appearance position of the pipeline in the image.Kalman filter is used to estimate this position in next frame so that the information of pipeline of each frame can be known in advance.Results obtained on real optic vision data in tank experiment are displayed and discussed.They show that the proposed system can detect and track the underwater pipeline online,and is effective and feasible.  相似文献   

11.
Conventional detection in active sonar involves comparing the normalized matched filter output power to a fixed preset threshold. Threshold crossings from contacts of interest are labeled as detections and those from undesired clutter echoes as false alarms. To maintain a constant false-alarm rate (CFAR) in the presence of strong transient clutter, the system can either increase the threshold or apply some function that suppresses this background down to an acceptable level. The latter approach leads to a more consistent background on the display, which enables operator-assisted detection. Background clutter suppression should not come at the expense of contact detection; to maximize the probability of detection (PD) for a given probability of false alarm (PFA), the likelihood ratio test (LRT) is used. However, the LRT does not address display issues, since the threshold that achieves a desired PFA varies with the input distribution. Ideally, the LRT output is monotonically transformed using a "statistical normalizer" (SN) that returns a consistent CFAR background without degrading the optimized PD. Within the radar community, clutter suppression is proposed using a LRT tuned to a K-distributed spherically invariant random vector (SIRV) model. However, this model does not lend itself to SN, as a closed-form expression for the LRT output density does not exist. In contrast, the proposed SIRV clutter model, with Pareto distributed power, leads to a closed-form density from which the SN function is readily derived. This combined Pareto-LRT/SN detector nearly matches the optimized PD performance of the K-distributed LRT and maintains a consistent CFAR background for display purposes.  相似文献   

12.
Concurrent mapping and localization using sidescan sonar   总被引:1,自引:0,他引:1  
This paper describes and evaluates a concurrent mapping and localization (CML) algorithm suitable for localizing an autonomous underwater vehicle. The proposed CML algorithm uses a sidescan sonar to sense the environment. The returns from the sonar are used to detect landmarks in the vehicle's vicinity. These landmarks are used, in conjunction with a vehicle model, by the CML algorithm to concurrently build an absolute map of the environment and to localize the vehicle in absolute coordinates. As the vehicle moves forward, the areas covered by a forward-look sonar overlap, whereas little or no overlap occurs when using sidescan sonar. It has been demonstrated that numerous reobservations by a forward-look sonar of the landmarks can be used to perform CML. Multipass missions, such as sets of parallel and regularly spaced linear tracks, allow a few reobservations of each landmark with sidescan sonar. An evaluation of the CML algorithm using sidescan sonar is made on this type of trajectory. The estimated trajectory provided by the CML algorithm shows significant jerks in the positions and heading brought about by the corrections that occur when a landmark is reobserved. Thus, this trajectory is not useful to mosaic the sea bed. This paper proposes the implementation of an optimal smoother on the CML solution. A forward stochastic map is used in conjunction with a backward Rauch-Tung-Striebel filter to provide the smoothed trajectory. This paper presents simulation and real results and shows that the smoothed CML solution helps to produce a more accurate navigation solution and a smooth navigation trajectory. This paper also shows that the qualitative value of the mosaics produced using CML is far superior to those that do not use it.  相似文献   

13.
The fine-scale swimming behavior of fish can now be studied because of the development of sophisticated measurement devices such as multibeam sonar and stereo video systems. However, even with these sensors, improved methods are still required to generate quality estimates of swimming speeds and turn rates. Biologists have commonly relied on pointwise differentiation of noisy position measurements while engineers have focused on Bayesian algorithms to track underwater vehicles. A comparative evaluation of the performance of these tracking algorithms for the analysis of fine-scale behavior of fish was performed using a data set of 100 fish tracks recorded simultaneously with a multibeam sonar and a stereo video camera system. The segmenting track identifier, a non-Bayesian curve fitting and segmenting tracker, is shown to be most effective for tracking the unpredictable and complex horizontal motion of fish while a Kalman smoother using a constant-velocity model is shown to be most effective for tracking the more predictable and piecewise linear vertical motion of fish. Both are shown to be more effective than pointwise differentiation. Criteria for selecting an appropriate algorithm for a given motion study are provided  相似文献   

14.
Acoustic data collected on the R/V Cory Chouest in February and March 1996 during an active operation of the U.S. Navy's surveillance-towed-array-sensor-system low-frequency-active (LFA) sonar were analyzed for blue whale (Balaenoptera musculus) and fin whale (B. physalus) sounds. Operational monitoring and mitigation protocols were implemented throughout the exercise to reduce the chances of an acoustic impact on marine mammals and sea turtles. The operational schedule did not include intentional "control" periods without transmissions but did include periods when the LFA sonar was not operating for other reasons (e.g., repairs). There were insufficient detections of blue whales for further analysis. Fin whale acoustic detection probabilities were calculated from the postprocessed data. A local-linear-regression analysis was used to compare fin whale detection probabilities from 2065 11-min intervals under conditions when the LFA sonar was and was not transmitting. There was an indication of a slightly higher probability of detecting fin whale sounds during periods when there were no LFA transmissions than during periods with transmissions. This may be the result of the following: 1) Reduced vocal activity by whales in response to LFA transmissions; 2) the effect of the mitigation protocols; or 3) some combination of 1) and 2). The data presently available do not allow one to distinguish definitively between these explanations, mainly because there were not enough data recorded for periods without LFA transmissions.  相似文献   

15.
The statistics of reverberation in active sonar are characterized by non-Rayleigh distributed amplitudes in the normalized matched filter output. Unaccounted for, this property can lead to high false-alarm rates in fixed-threshold detectors. A new approach to modeling threshold-crossing statistics based on extreme value theory is proposed, which uses the generalized Pareto distribution as the unique asymptotic model of the tail distribution, valid at large thresholds. Methods of parameter estimation are discussed and applied to active sonar reverberation collected on a hull-mounted sonar system. The statistics of reverberation in active sonar are found to generally have a power-law behavior in the tails with a shape parameter that is persistent in time and bandwidth dependent. The threshold needed for accurate parameter estimation is generally found to be well below that of typical fixed-threshold detectors.  相似文献   

16.
The simulation of active sonar reverberation time series has traditionally been done using either a computationally intensive point-scatterer model or a Rayleigh-distributed reverberation-envelope model with a time-varying power level. Although adequate in scenarios where reverberation arises from a multitude of scatterers, the Rayleigh model is not representative of the target-like non-Rayleigh reverberation or clutter commonly observed with modern high-resolution sonar systems operating in shallow-water environments. In this paper, techniques for simulating non-Rayleigh reverberation are developed within the context of the finite-number-of-scatterers representation of K-distributed reverberation, which allows control of the reverberation-envelope statistics as a function of system (beamwidth and bandwidth) and environmental (scatterer density and size) parameters. To avoid the high computational effort of the point-scatterer model, reverberation is simulated at the output of the matched filter and is generated using efficient approximate methods for forming K-distributed random variables. Finite impulse response filters are used to introduce the effects of multipath propagation and the shape of the reverberation power spectrum, the latter of which requires the development of a prewarping of the K distribution parameters to control the reverberation-envelope statistics. The simulation methods presented in this paper will be useful in the testing and evaluation of active sonar signal processing algorithms, as well as for simulation-based research on the effects of the sonar system and environment on the reverberation-envelope probability density function.  相似文献   

17.
Sensor measurements derived from passively observed transient signals radiated by a target are non-Gaussian and may also be nonstationary due to their dependence on tracking geometry. Moreover, transients are usually observed in clutter, so there is also a possibility of false detections. A technique that incorporates a deterministic annealing procedure into a robust M-estimator, referred to as the annealing M-estimator, is applied to determine the target motion parameters based on such measurements. This technique is compared to standard robust M-estimators using several scenarios with different tracking geometry and is found to give more accurate parameter estimates.  相似文献   

18.
The problem of tracking the directions-of-arrival (DOAs) of multiple moving sonar targets with an array of passive sensors is complicated by sensor movement. An algorithm for the joint tracking of source DOAs and sensor positions is presented to address this problem. Initial maximum-likelihood estimates of source DOAs and sensor positions are refined by Kalman filtering. Spatio-temporally correlated array movement is considered. Source angle dynamics are used to achieve correct data association. The new technique is capable of performing well for the difficult cases of sources that cross in angle as well as for fully coherent sources. Computer simulations show that the approach is robust in the presence of array motion modeling uncertainty and effectively reduces dependence on expensive and possibly unreliable hardware  相似文献   

19.
In this paper, new pre- and post-processing schemes are developed to process shallow-water sonar data to improve the accuracy of target detection. A multichannel subband adaptive filtering is applied to preprocess the data in order to isolate the potential target returns from the acoustic backscattered signals and improve the signal-to-reverberation ratio. This is done by estimating the time delays associated with the reflections in different subbands. The preprocessed results are then beamformed to generate an image for each ping of the sonar. The testing results on both the simulated and real data revealed the efficiency of this scheme in time-delay estimation and its capability in removing most of the competing reverberations and noise. To improve detection rate while significantly minimizing the incident of false detections, a high-order correlation (HOC) method for postprocessing the beamformed images is then developed. This method determines the consistency in occurrence of the target returns in several consecutive pings. The application of the HOC process to the real beamformed sonar data showed the ability of this method for removing the clutter and at the same time boosting the target returns in several consecutive pings. The algorithm is simple, fast, and easy to implement  相似文献   

20.
It is shown that by implementing certain mine avoidance techniques, an underwater vehicle equipped with an obstacle avoidance sonar (OAS) and a navigation system can safely navigate an unknown minefield. The mine avoidance techniques take into account the physical limitations of the sonar and the navigation system, the maneuverability constraints on the underwater vehicle, and the required safe standoff distance from all mines. Extensive computer simulations have verified the mine avoidance capability in more than 50 different minefields. In all 50 simulations the vehicle reached a predetermined end point and maintained at least the specified, minimum safe standoff distance from each mine. The simulation accurately models the major difficulties associated with the sonar, the navigation system, and the vehicle dynamics. The sonar model includes surface, bottom, and volume reverberation; thermal, ambient, and flow noises; actual receiver and projector beam patterns; and false alarms and missed detections. The navigation system model contains the effects of biases, random noises, and scale factor errors. The vehicle dynamic model simulates angular velocities and accelerations associated with underwater vehicles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号