首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
青藏铁路沿线平均年气温变化趋势预测   总被引:16,自引:12,他引:16  
李栋梁  郭慧  王文  魏丽 《高原气象》2003,22(5):431-439
青藏铁路沿线年平均气温具有很好的互相关性,特别是各站10年滑动平均气温序列互相关系数达到0.92,以此建立了1935-2002年青藏铁路沿线平均年气温序列Trw。研究表明:Trw对太阳黑子周期长度(SCL)和大气中CO2浓度有落后5年和15年的显著响应,其相关系数分别为-0.76(SCL)和0.88(CO2)。利用近1000年SCL的76、93、108、205和275年显著周期及均生函数模型预测了未来太阳活动周期的快慢:21世纪前50年的SCL总体偏长,活动周期放慢;后50年SCL总体偏短,活动周期加快。在考虑大气CO2浓度倍增和气候自然变化情况下,预测2l世纪前50年Trw与20世纪最后10年(1990年代)相比,其升温幅度在0.5℃左右;与20世纪最后30年(1971-2000年)相比,其升温幅度在l.O℃以内。这一升温幅度的概率为0.64~0.73。  相似文献   

2.
青藏铁路沿线气温和地温的极值推算   总被引:3,自引:2,他引:3  
利用耿贝尔分布函数对青藏铁路沿线7个气象站的气温和0cm地温进行了极值估计。结果表明:年极端最高气温50年一遇与常年接近,100年一遇比常年偏高0.1~1.5℃。年极端最高地温50年一遇比常年偏高0.0~10.2℃,100年一遇比常年偏高1.5~13.7℃。未来50年,如果年平均气温增加1.0℃,50年一遇的年极端最高气温将比常年偏高-0.1~2.0℃,100年一遇的将比常年偏高0.7~2.8℃。  相似文献   

3.
青藏铁路沿线气温和降水的小波分析   总被引:2,自引:2,他引:2  
万明波  程智  王文 《干旱气象》2006,24(4):35-39
利用Morlet小波分析方法,对青藏铁路沿线地区(7站)30 a(1970~1999年)的月平均气温和月平均降水量资料进行了处理和分析。结果表明:青藏铁路沿线的月降水量存在比较明显的9 a左右周期变化,它有2个降雨偏多中心和3个降雨偏少中心,历经30 a的全过程,因而具有长期预测意义。还有其它4 a以下的较短周期振荡,但多不具全局性变化特征。从气温与降水资料的对比分析上看,降水和气温的变化趋势呈正相关。  相似文献   

4.
青藏铁路沿线超长期气候变化预测的概率估计   总被引:2,自引:4,他引:2  
王文  李栋梁 《高原气象》2003,22(5):495-498
利用近1000年的太阳黑子周期长度(SCL)和自1920年以来的大气CO2浓度,以及1935—2000年青藏铁路沿线平均气温序列,在其距平值概率分布计算的基础上,研究了未来50~100年青藏铁路沿线平均气温变化趋势的概率。结果表明:SCL正距平出现的频数大于负距平的频数;CO2浓度的负距平出现的频数明显大于正距平的频数;青藏铁路沿线平均年气温正距平出现的频数略小于负距平的。作为试验,利用REEP方法将预测的2001—2100年青藏铁路沿线平均年气温相对于1990年代的增温概率进行了分析,表明青藏铁路沿线平均年气温到2050年升高0.5℃的概率为0.64~0.73;到2100年上升1.0℃左右的概率为0.45~0.64.  相似文献   

5.
温室效应对青藏高原及青藏铁路沿线气候影响的数值模拟   总被引:13,自引:12,他引:13  
在一个全球模式中嵌套了RegCM2区域气候模式,进行了CO2加倍对中国区域气候影响的数值试验,对青藏高原及青藏铁路沿线地区进行了重点分析。结果表明,在CO2加倍的情况下,这里的气温将明显升高,升高值一般在2.6~2.8℃以上,高于全国平均值。同时降水在青藏高原大部分地区也将明显增加;其中青藏铁路沿线的增加率一般在25%以上,远高于全国平均值水平。温室效应同时会使得青藏铁路沿线的日平均最高气温升高。  相似文献   

6.
佛冈县近50年来气温统计特征及变化趋势   总被引:1,自引:2,他引:1  
利用统计软件SPSS和小波变换等工具,分析了佛冈县1957-2007年气温的统计特征及变化趋势,研究结果表明:佛冈县气温呈现明显变暖的趋势,其中冬季增温贡献最大;年平均气温和4个季节平均气温均存在33年周期,目前佛冈县正处于由偏冷转向回暖的时期,未来一段时间暖冬的发生几率逐渐增大;M-K突变检验显示年平均气温在1997年前后出现增温性突变,突变后与突变前相比有显著性差异。  相似文献   

7.
采用标准差与异常度的方法,选取1954~2003年许昌气温资料,对许昌季、年平均气温变化趋势与异常进行分析,结果表明,20世纪80年代中期以来,许昌年平均气温变化处于正常波动范围内,但冬季增温明显.  相似文献   

8.
采用标准差与异常度的方法,选取1954~2003年许昌气温资料,对许昌季、年平均气温变化趋势与异常进行分析,结果表明,20世纪80年代中期以来,许昌年平均气温变化处于正常波动范围内,但冬季增温明显。  相似文献   

9.
中国西北地区和蒙古国40年气温时空特征及其变化趋势   总被引:5,自引:3,他引:5  
马晓波  高由禧 《高原气象》1997,16(3):282-291
利用我国西北地区及蒙古国共59个台站(作EOF分析时取25个站)1951 ̄1990年逐月平均气温资料,采用EOF方法分析了该地区40年来气温场不同季节的空间分布特征及其随时间变化的规律。分析发现气温场的空间分布主要有三种类型:(1)全区一致型,(2)南北差异型,(3)东西差异型;各月、季、年的变化周期主要集中在三个时段:2 ̄4年,5 ̄8年和10 ̄13年;夏季以短周期为主,冬季和年主要是长周期。气温  相似文献   

10.
青藏铁路沿线的四季划分及其温度变化分析   总被引:21,自引:7,他引:21  
讨论了高原地区四季划分的标准,认为若以日平均气温作为指标,应比适用于我国东部的“张宝垄标准”低5℃,根据铁路沿线7个气象站:40年资料和温泉气象站6年资料,划出了各站四季的开始日期,发现格尔木和拉萨有短暂的夏季,高原主体上是“常年无夏,春秋相连”,仅昆仑山口附近是“全年皆冬,春风不渡”。高原上温度随纬度的变化与我国东部平原相似,也是冬季梯度大,夏季小;逆温层厚度以柴达木盆地为最厚,向南逐渐变薄。  相似文献   

11.
青藏高原及铁路沿线地表温度变化趋势预测   总被引:10,自引:3,他引:10  
青藏高原及其铁路沿线各站的年地表温度具有很好的互相关性,特别是各站10年滑动平均温度互相关系数达到0.92,以此建立了1961-2003年青藏铁路沿线平均地表温度序列。研究表明:青藏高原地表温度的升高是明显的,40年来升高1.1~1.5℃,其升温率为0.44℃/10a。大气CO2浓度的增加有利于青藏高原地表温度的升高,而太阳黑子周期长度(SCL)的变长则起相反作用。地表温度对人气CO2浓度和SCL的最好响应约滞后10年。若根据SCL的变化和IPCC第三次评估报告给出的新的温室气体排放情景SRES-B1预测,目前青藏高原地表温度的升温到2010年前后达到最强,此后可能会出现一个明显的降温过程,到2030年前后可能低于20世纪70~90年代的平均值。新一轮的升温开始于2040年代。若综合考虑CO2和SCL两者的共同影响预测,未来50年平均最低、最高和年地表温度与1971-2000年的平均比较,分别升高0.2,1.0和0.6℃。  相似文献   

12.
王文  李栋梁  程国栋 《高原气象》2005,24(3):304-310
根据实测月最高最低气温资料,建立了1955—2000年青藏铁路沿线各站平均最高最低气温序列,最低气温在1975年以前偏冷,最冷的1960年代,比多年平均偏低1.4℃;1975年以后偏暖,到2000年气温距平达 1.4℃;最高气温的变化大体与前者相反,1960年代比多年平均气温偏暖约0.1℃,1970年代和1980年代偏冷约0.2℃,进入1990年代后才逐渐升高,2000年气温距平达 0.8℃。利用近1000年的太阳黑子周期长度(SCL)约有41,58,76,90和200年的5个显著周期及均生函数正交化筛选方案,预测21世纪SCL比20世纪平均长1年,在2055年达到极长年份12.4年,2068年转为极短年份10.6年。根据IPCC报告中未来100年大气CO2浓度的估计值(B2方案),研究了未来50~100年青藏铁路沿线平均最高最低气温变化趋势。同时,作为试验,利用事件概率回归估计模式预测,相对于1990年代而言,青藏铁路沿线平均最高(最低)气温到2050年升高0.4℃(2.4℃)的概率为66%(74%);到2100年升高1.4℃(6.9℃)左右的概率为85%(62%)。  相似文献   

13.
青藏高原暖季与冷季气温的时空演变分析   总被引:3,自引:0,他引:3  
;利用1974—2003年青藏高原地区海拔高度>3000 m以上的49个气象站月平均气温,分析了暖季与冷季气温的时空演变特征。结果表明,青藏高原暖季气温的空间分布可以分为三部分:大致在85°E以西的高原西部地区,大致以85°E和33°N为界的高原东北部地区和高原东南部地区;西部高温区、柴达木盆地高温区和藏南高温带很明显。冷季气温的空间分布基本上为南暖北冷,南北分界大约在32°N。青藏高原暖、冷季气温空间分布有较一致的年代际变暖现象,主要表现在北部地区,尤其是西北部地区。青藏高原北部暖季升温明显,五道梁站暖季长期升温趋势为0.035℃/a;青藏高原南部冷季升温明显,拉萨站冷季长期升温趋势达0.060℃/a。青藏高原暖、冷季气温为大体一致的年际变化,江河源区有明显的高值区,为气温变化的关键区;暖、冷季气温长期变化趋势虽然都是上升的,但近10年的变化趋势却相反,暖季为降温趋势,冷季为明显的增温趋势。  相似文献   

14.
青藏高原气温与印度洋海温遥相关的初步研究   总被引:1,自引:0,他引:1  
张平  高丽  毛晓亮 《高原气象》2006,25(5):800-806
利用1960—2000年青藏高原54个常规气象观测站的年平均地面气温资料,考察了高原气温的空间分布和气候变异特征;利用同期印度洋海温资料和奇异值分解方法,着重研究了青藏高原气温与印度洋海温之间的遥相关关系,并初步探讨了物理机制问题。分析结果表明:在空间分布上,青藏高原气温中部低,四周高,41年来呈逐步上升趋势,振幅不断加大;高原气温与印度洋海温之间存在显著的主要遥相关模态,这与印度洋海温异常激发遥相关波列影响到高原气温有关。  相似文献   

15.
青藏高原地面加热场强度与ENSO循环的关系   总被引:7,自引:1,他引:7  
分析了近50年青藏高原地面加热场强度距平指数、Ni~no C区海温指数、SOI和印缅槽指数的统计相关,结果表明,ENSO指数和印缅槽指数在月、季时间尺度上具有很好的持续性。青藏高原地面加热场强度距平指数和印缅槽指数与Ni~no C区海温指数存在很好的正相关,与SOI有显著的负相关。由此建立了一个通过印缅槽将ENSO循环与青藏高原地面加热场联系起来,解释西北区东部及河套干旱形成的概念模型。  相似文献   

16.
利用和林县气象局1960—2008年气温、40、80cm地温月平均数据,降水、日照、积雪月总量数据,对地温与气温的变化关系及其影响因子进行了分析。结果表明,40cm地温与气温有相同的变化趋势,其突变点与气温变化的突变点相同,均为1987年。40cm地温在夏季略受降水的影响,而冬季受积雪的影响较明显。其终年与日照时数相关较弱,说明地-气辐射过程平衡的速度较快,会很快消除掉其他气象因子带来的地温与气温之间差异的阶变。40cm与80cm地温变化的一致度很高,表明80cm很少得到来自地壳内部热量,80cm地温变化的两个异常点分别位于1988年和1990年,处于1987年附近但落后于1987年,说明气候突变会影响到80cm地温变化,但影响滞后。  相似文献   

17.
利用NCEP/NCAR再分析资料中的500hPa高度场资料和NCAR地温资料,分析了6~8月西太平洋副热带高压的面积指数、西伸的经度和脊线的纬度等与亚洲地表温度之关系.结果表明,夏季西太平洋副热带高压的强度及位置,与亚洲某些区域的地表温度有明显的关系.关系最密切的是(100~110°E35~45°N)附近,位于我国内蒙古西南部、甘肃和宁夏自治区一带以及蒙古人民共和国的南部.另外青藏高原、南亚地区的地表温度与西太平洋副高也有较好的相关.文中对此做了详细分析和讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号