首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geostrophic adjustment of a two-layer fluid near a straight coast is investigated for an initial pressure disturbance which has no closed geostrophic contours by using a reduced gravity (divergent barotropic) model. Propagation of a volume of water along the coast due to the internal Kelvin wave allows a non-zero solution for the final geostrophic state. Energy partitions among geostrophic motion, the internal Kelvin wave and internal Poincaré waves are obtained and compared with the result of the classical problem of geostrophic adjustment without the coast. It is found that energy partition to the geostrophic motion (EPG) with the coast is always smaller than that without the coast (EPG ), while the scale of the initial disturbance is the same. The difference betweenEPG andEPG is smaller than the energy partition to the internal Kelvin waves (EPK) and approachesEPK as the scale of the initial disturbance increases.  相似文献   

2.
Scaling of the equations of motion of the Antarctic Circumpolar Current indicates that the Rossby number and the Ekman number are 10−4 to 10−5 but the vertical Ekman number may reach unity in the bottom boundary layer. The equations of motion are integrated vertically from the surface to the bottom and averaged over a latitude circle. The resulting equation in the meridional direction is predominantly geostrophic, whereas the main terms of the equation in the zonal direction are the wind stress and the bottom stress. When the vertical eddy viscosity near the bottom is of the order of 102cm2/sec, the total zonal transport through the Drake Passage computed from the balance of the wind stress and the bottom stress equals 260×106m3/sec, the amount determined byReid andNowlin (1970) from observations. The northward transport reduces the eastward transport corresponding to the wind stress of the westerlies in the A. C. C. through the Coriolis' term in the vertically integrated equation of motion of the zonal direction. South of the Drake Passage, such reduction reaches about ten percent of the wind-driven transport mainly due to the peripheral water discharge. North of the Drake Passage, the northward transport may be generated by the effect of the South American coast which prevents free eastward movement of the A. C. C., causing a wake to the east. This transport may contribute to a part of the northward transport of the bottom water postulated byMunk (1966). The effect of the horizontal eddy viscosity in the zonal transport equation is negligible except near the Antarctic coast, if the eddy viscosity is less than 109cm2/sec.  相似文献   

3.
2009-2010年冬季南海东北部中尺度过程观测   总被引:2,自引:1,他引:1  
根据南海北部陆架陆坡海域2009-2010年冬季航次的CTD调查资料,发现西北太平洋水在上层通过吕宋海峡入侵南海,其对南海东北部上层水体温盐性质的影响自东向西呈减弱趋势,影响范围可达114°E附近。入侵过程中受东北部海域反 气旋式涡旋(观测期间,其中心位于20.75°N,118°E附近) 的影响,海水的垂向和水平结构发生了很大变化,特别是涡旋中心区域,上层暖水深厚,混合层和盐度极大值层显著深于周边海域。该暖涡在地转流场、航载ADCP观测海流及卫星高度计资料中均得到了证实。暖涡的存在还显著影响了海水化学要素的空间分布,暖涡引起的海水辐聚将上层溶解氧含量较高的水体向下输运,使次表层的暖涡中心呈现高溶解氧的分布特征。  相似文献   

4.
The water transport across the Subantarctic Front involving the Ekman transport, eddy transfer, and transport by the abyssal geostrophic currents is estimated on the basis of different experimental data. This transport accounts for 14 Sv northwards in the upper ocean layer (thermocline) and the same quantity southwards in the lower layer (abyss). This quantity is equal to the magnitude of the water downwelling from the thermocline to the abyssal in the North Atlantic and North-European Basin, which is realized in the field of the Global Ocean Conveyor Belt. This result agrees with the conception according to which the oppositely directed motion of the water from the abyssal into the thermocline takes place in the Antarctic.  相似文献   

5.
The results of laboratory modeling of geostrophic adjustment in a shallow-water layer in rotating paraboloid are presented. According to the Rossby-Obukhov theory, this process excites nonstationary wave and stationary vortex (geostrophic) components of motion in a rotating fluid. In our experiments, the wave and vortex components were excited by extracting a preliminarily imbedded hemisphere (which made the initial distribution of the depth of the fluid inhomogeneous) from the central area of a rotating vessel with a parabolic base. Under this excitation technique, a prominent cyclonic eddy is formed in the central portion; the structure of this eddy is satisfactorily described within the linear theory of adjustment. Along with the shallow-water experiments, the published experimental data on modeling geostrophic adjustment in a two-layer medium are analyzed. A simple analytic solution to the corresponding problem of the adjustment theory is obtained, and this solution agrees with the experiment.  相似文献   

6.
A storm moves with a constant speed parallel to a stationary geostrophic current which flows only in the upper layer of a two-layer, infinite ocean. It is assumed that the lower layer is motionless. The quasi-geostrophic approximation is valid for a moving speed less than 4 ms–1 for a storm radius of 100 km. The primary change of the upper layer thickness is caused by the wind stress divergence and the time integral of the wind stress curl. A cyclonic storm generates upwelling in its wake. The effect of the stationary flow similar to a western boundary current is minor by an order of magnitude and noticeable only on the left edge of the flow. Scaling of equations of motion and continuity for a more general upper geostrophic flow leads to expansion with a parametera 2=gH m(fL)–2, whereg is reduced gravity,H m is the maximum thickness of the upper layer,f is Coriolis' parameter andL is the storm radius. The zeroth order perturbations of transport and thickness do not include the stationary flow which appears only in the first order perturbations ina 2. When there is a coast, the change of the interface near the coast is dependent on the time integral of the wind stress component parallel to the coast, thus leading to upwelling or downwelling according to the center being to the left or right of the coastline.  相似文献   

7.
From January 9 to 17, 1981, detailed observations of the horizontal and vertical structure beneath one of the quasi-permanent semi-stationary mesoscale offshore eddy signatures in the California Current System (CCS) discussed by Bernstein, Breaker and Whritner (1977), Burkov and Pavlova (1980), and Simpson (1982) were made. The vertical sections of temperature and density show the presence of three-layer system. A subsurface warm-core eddy, whose diameter is about 150 km at the 7°C isotherm, is the dominant feature. A warm surface layer, which extends to a depth of 75 m, lies over the eddy. Between the warm surface layer and the subsurface warm-core eddy, there is a cold-core region which extends to a depth of about 200 m. There is a high degree of symmetry about the vertical axis of rotation. Vertical sections of salinity and dissolved oxygen are entirely different from sections of temperature and density. Diagrams of water mass characteristics confirm that the core of the eddy, found between 250–600 m, consists of inshore water from the California Undercurrent (CU). Below about 700 m, local waters from the Deep Poleward Flow (DPF) have been incorporated into the eddy. The observed distributions of properties (T, S, δθ, O2) are inconsistent with a single, local generation process for the eddy system. Radial distributions of angular velocity, normalized gradient velocity and relative vorticity support the use of a Gaussian radial height field as an initial condition in eddy models. Possible reasons why CCS eddies may differ dynamically from Gulf Stream rings are given in the text. At the time the observations were made, the system as a whole was in near geostrophic balance. Local geostrophic balance, however, cannot explain the observed distribution of properties and structure. The observed symmetry in the structure of the eddy system, chemical evidence (Simpson, 1984), biological distributions (Haury, 1984) and satellite images of the CC (Koblinsky, Simpson and Dickey, 1984) suggest that lateral entrainment of warm (oceanic) and cold (coastal) water into the upper two layers of the three-layer system by the subsurface eddy is a likely generation mechanism for the cold-core region. The coastal origin of the frontal structure along the northeastern quadrant and the oceanic origin of the frontal structure along the southwestern quadrant of the eddy system further support lateral entrainment as a generation mechanism for the cold core. This entrainment makes the CCS eddy system different from cold-core rings in the Gulf Stream and rather similar to some warm-core eddies found in the East Australian Current. The presence of CU water in the core of this eddy raises the question of how CU water was transported from the continental slope. Eddy generation mechanisms, other than baroclinic instability of the CC, may be required to explain the distribution, persistence, and core composition of offshore mesoscale eddies in the CCS. There is evidence that barotropic, in addition to baroclinic, processes may be important.  相似文献   

8.
Newly formed North Pacific Tropical Water (NPTW) is carried to the Philippine Sea (PS) by the North Equatorial Current (NEC) as a subsurface salinity maximum. In this study its spreading and salinity change processes are explored using existing hydrographic data of the World Ocean Database 2009 and Argo floats. Spreading of NPTW is closely associated with the transports of the NEC, Mindanao Current (MC), and Kuroshio. Estimated for subsurface water with salinity S greater than 34.8?psu, the southward (northward) geostrophic transport of NPTW by the MC (Kuroshio) at 8°N (18°N) is about 4.4 (5.7)?Sv (1?Sv?=?106?m3?s?1), which is not sensitive to reference level choice. Fields of salinity maximum, geostrophic current, sea level variation, and potential vorticity suggest that the equatorward spreading of NPTW to the tropics is primarily afforded by the MC, whereas its poleward spreading is achieved by both the Kuroshio transport along the coast and open-ocean mesoscale eddy fluxes in the northern PS. The NPTW also undergoes a prominent freshening in the PS. Lying beneath fresh surface water, salinity decreases quicker in the upper part of the NPTW, which gradually lowers the salinity maximum of NPTW to denser isopycnals. Salinity decrease is especially fast in the MC, with along-path decreasing rate reaching O (10?7?psu?s?1). Both diapycnal and isopycnal mixing effects are shown to be elevated in the MC owing to enhanced salinity gradient near the Mindanao Eddy. These results suggest intensive dispersion of thermal anomalies along the subtropical-to-tropical thermocline water pathway near the western boundary.  相似文献   

9.
Two anticyclonic subsurface eddies (SSEs) are detected from the in-situ hydrography data of the southern South China Sea (SCS) during 15–25 October 2011. Both SSEs have the lens-shaped water bodies below the thermocline. Their maximum swirl speed appears at the depth of lens׳ core, which is also characterized by a dump in the TS diagram. These eddies do not have an enclosed saline-water or warm-water body in its lens׳ core, which is different from those SSEs reported in other seas. These SSEs should be locally generated by the horizontal shear of the Southeast Vietnam Offshore Current. In the SSE generation site of the southern SCS, there is an upper-layer anticyclonic eddy (AE2) that is right above the SSE (SE2). After leaving its generation site, the eddy loses its energy source and starts to weaken. In this case, the eddy will decay quickly in the upper layer due to the restraint of the thermocline, and finally evolves into a pure subsurface eddy (i.e. SE4).  相似文献   

10.
The effect of mesoscale eddy variability on the Japan/East Sea mean circulation is examined from satellite altimeter data and results from the Naval Research Laboratory Layered Ocean Model (NLOM). Sea surface height variations from the Geosat-Exact Repeat Mission and TOPEX/POSEIDON altimeter satellites imply geostrophic velocities. At the satellite crossover points, the total velocity and the Reynolds stress due to geostrophic mesoscale turbulence are calculated. After spatial interpolation the momentum flux and effect on geostrophic balance indicates that the eddy variability aids in the transport of the Polar Front and the separation of the East Korean Warm Current (EKWC). The NLOM results elucidate the impact of eddy variability on the EKWC separation from the Korean coast. Eddy variability is suppressed by either increasing the model viscosity or decreasing the model resolution. The simulations with decreased eddy variability indicate a northward overshoot of the EKWC. Only the model simulation with sufficient eddy variability depicts the EKWC separating from the Korean coast at the observed latitude. The NLOM simulations indicate mesoscale influence through upper ocean-topographic coupling. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The dramatic decline of summer sea ice extent and thickness has been witnessed in the western Arctic Ocean in recent decades, which hasmotivated scientists to search for possible factors driving the sea ice variability. An eddy-resolving, ice-ocean coupled model covering the entire Arctic Ocean is implemented, with focus on the western Arctic Ocean. Special attention is paid to the summer Alaskan coastal current (ACC), which has a high temperature (up to 5℃ ormore) in the upper layer due to the solar radiation over the open water at the lower latitude. Downstream of the ACC after Barrow Point, a surface-intensified anticyclonic eddy is frequently generated and propagate towards the Canada Basin during the summer season when sea ice has retreated away from the coast. Such an eddy has a warm core, and its source is high-temperature ACC water. A typical warm-core eddy is traced. It is trapped just below summer sea ice melt water and has a thickness about 60 m. Temperature in the eddy core reaches 2-3℃, and most water inside the eddy has a temperature over 1℃. With a definition of the eddy boundary, an eddy heat is calculated, which can melt 1 600 km2 of 1mthick sea ice under extreme conditions.  相似文献   

12.
Since mesoscale features like meanders have great importance in nourishing the coastal fisheries, satellite data analyses and a numerical modeling study were carried out for the east coast of India during spring inter-monsoon time (March-May), when biological productivity is high. During this time, the East India Coastal Current (EICC) system appears as a northward flowing western boundary current of a seasonal subtropical gyre in the Bay of Bengal prior to the summer monsoon with a more intense upwelling in the coastal region. A relatively clear sky permits satellite remote sensing of Sea Surface Temperature (SST) and Chlorophyll-a (Chl-a), whose patterns were verified against geostrophic velocity in altimeter data: i.e., phytoplankton grows in colder and nutrient richer water bounded by the seaward meanders. Progression of meanders in the coastal current was revealed and compared with an eddy-resolving Ocean General Circulation Model (OGCM), which is capable of modeling wind-driven general circulation and each stage of the meander growth. The numerical solutions provided the following results, in reasonable agreement with the linear stability theory using a two-and-a-half layer quasi-geostrophic model. Baroclinic instability plays a key role for the meander growth and eddy generation, while meanders in the coastal current are initiated by isolated mesoscale rotations propagating westward. The baroclinically unstable meanders have a wavelength of 500∼700 km, grow in one month and propagate downstream of the coastal current at several kilometers per day. The instability is not strong enough for the meanders to detach an eddy from the western boundary current.  相似文献   

13.
The features of eddy kinetic energy (EKE) and the variations of upper circulation in theSouth China Sea (SCS) are discussed in this paper using geostrophic currents estimated from Maps of Sea Level Anomalies of the TOPEX/Poseidon altimetry data. A high EKE center is identified in the southeast of Vietnam coast with the highest energy level 1 400 cm2 ·s~(-2) in both summer and autumn. This high EKE center is caused by the instability of the current axis leaving the coast of Vietnam in summer and the transition of seasonal circulation patterns in autumn. There exists another high EKE region in the northeastern SCS, southwest to Taiwan Island in winter. This high EKE region is generated from the eddy activities caused by the Kuroshio intrusion and accumulates more than one third of the annual EKE, which confirms that the eddies are most active in winter. The transition of upper circulation patterns is also evidenced by the directions of the major axises of velocity variance ellipses between 10°and 14.5°N  相似文献   

14.
Closed loop mesoscale eddies were identified and tracked in the Ulleung Basin of the southwestern Japan/East Sea (JES) using the winding-angle (WA) methodology, for mapping the absolute geostrophic currents into surface streamlines of flow. The geostrophic velocity used here was the sum of the Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO), time variable velocity and the 1992–2007 mean geostrophic velocity. Local sampling bias was removed using the drifter observations. This WA methodology of deriving the Lagrangian path lines that drifters followed over a 7-day period was validated by individual drifter tracks and it demonstrated closed looping eddy motions. The WA method demonstrated that less than 6% of the closed streamlines appeared when drifters did not show a closed loop in their vicinity, compared to 30% of the excess detection rate by the Okubo–Weiss method of locating closed loop structures. Three groups of eddies were identified: (1) Coastal Cold and Warm Eddies, which appeared in the area between the coast of southern Korea and the East Korean Warm Current (EKWC), when a southward coastal current was present, (2) Frontal Cold and Warm Eddies, which were formed in the region of the seaward extension of the meandering EKWC, north of Ulleung Island and (3) Ulleung Warm Eddies (UWE) and Dok Cold Eddies (DCE), which appeared during meanders of the EKWC, in the Ulleung Basin. No seasonal concentration for eddy generation and eddy population was found. The average radius of eddies was about 38–60 km. These were born, moved in an erratic pattern and then died in the vicinity where the EKWC separated from the coast and formed a large meander. The time-mean large meander formed meridionally concentrated bands of positive and negative relative vorticity. The cyclonic (cold) eddies tend to reside within the band of positive time-mean relative vorticity, and the anticyclonic (warm) eddies reside within the bands of negative relative vorticity. Six UWE and four warm eddies, in the Yamato Basin (about 10% of warm eddies), were sustained longer than a year. Because the large meander of the EKWC appeared to be controlled by topography, and the JES is a nearly enclosed basin with rapid flow-out to the east through the narrow Tsugaru Strait, there was little eddy energy propagation to the west. The warm eddies in the southwestern part of the JES appeared to be interacting very locally with the mean flow.  相似文献   

15.
Observations and numerical modeling indicate that a mesoscale anti-cyclonic eddy formed south of Cape Ann at the northern entrance of Massachusetts Bay (MB) during May 2005, when large river discharges in the western Gulf of Maine and two strong Nor'easters passing through the regions led to an unprecedented toxic Alexandrium fundyense bloom (red tide). Both model results and field measurements suggest that the western Maine Coastal Current separated from Cape Ann around May 7–8, and the eddy formed on around May 10. The eddy was trapped at the formation location for about a week before detaching from the coastline and moving slowly southward on May 17. Both model results and theoretical analysis suggest that the separation of the coastal current from the coast and subsequent eddy formation were initiated at the subsurface by an adverse pressure gradient between Cape Ann and MB due to the higher sea level set up by onshore Ekman transport and higher density in downstream MB. After the formation, the eddy was maintained by the input of vorticity transported by the coastal current from the north, and local vorticity generation around the cape by the horizontal gradients of wind-driven currents, bottom stress, and water density induced by the Merrimack River plume. Observations and model results indicate that the anti-cyclonic eddy significantly changed the pathway of nutrient and biota transport into the coastal areas and enhanced phytoplankton including Alexandrium abundances around the perimeter of the eddy and in the western coast of MB.  相似文献   

16.
The Formation and Circulation of the Intermediate Water in the Japan Sea   总被引:1,自引:0,他引:1  
In order to clarify the formation and circulation of the Japan/East Sea Intermediate Water (JESIW) and the Upper portion of the Japan Sea Proper Water (UJSPW), numerical experiments have been carried out using a 3-D ocean circulation model. The UJSPW is formed in the region southeast off Vladivostok between 41°N and 42°N west of 136°E. Taking the coastal orography near Vladivostok into account, the formation of the UJSPW results from the deep water convection in winter which is generated by the orchestration of fresh water supplied from the Amur River and saline water from the Tsushima Warm Current under very cold conditions. The UJSPW formed is advected by the current at depth near the bottom of the convection and penetrates into the layer below the JESIW. The origin of the JESIW is the low salinity coastal water along the Russian coast originated by the fresh water from the Amur River. The coastal low salinity water is advected by the current system in the northwestern Japan Sea and penetrates into the subsurface below the Tsushima Warm Current region forming a subsurface salinity minimum layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
A reduced-gravity primitive equation eddy resolving model is used to study the interaction of a typhoon-induced eddy and a wind-driven general circulation. A typhoon-induced eddy is characterized by a core with a relative vorticity of the same order as the local Coriolis parameter. This eddy is neutrally stable relative to a disturbance induced by the westward advection of the eddy, due to the planetary β-effect. Hence, its evolution in the open ocean is similar to the classical frontal geostrophic eddy. Within the western boundary flow regime, the eddy is entrained northward by the mean circulation. This northward eddy advection and the mean-vorticity advection due to eddy flow induce another disturbance with a north-south asymmetry into the circular eddy. Together with the zonal asymmetric disturbance, associated with the planetary β-effect, the original circular eddy becomes unstable. The nonlinear eddy-flow interactions in the eastern flank of a western boundary current causes the eddy to deform quickly into an ellipse and lose its waters and energy into the mean circulation.  相似文献   

18.
In this paper observational data are used to compute drift and geostrophic current components and to evaluate water transport in the upper 0–800 m ocean layer. Water circulation in the south-western Indian Ocean has been shown to differ from the circulation in similar areas of the Atlantic and Pacific Oceans. The West Australian current, closing the anticyclonic gyre, is an intervening flow. On the other hand, within the upper 200 m layer, the current flows southward along the West Australian coast, thereby producing specific hydrological conditions in that region. Translated by Vladimir A. Puchkin.  相似文献   

19.
Physicochemical features of a typically meromictic lake, Lake Suigetsu, are studied. Vertical distributions of temperature and chlorinity show that the lake is well stratified, and no marked mixing occurs between the upper fresh water and lower salt water. In the chemocline, the vertical gradient of density is large, and the vertical eddy diffusion coefficient is as low as 1.5 × 10–2 cm2 sec.–1 Dissolved oxygen is saturated in the surface portion of the upper water, and then rapidly decreases with depth towards the chemocline, where sulfide first appears and increases towards the bottom. In the chemocline oxygen consumption is prominent process reaching 290 mg 02/m2/day. The oxidation of sulfide, supplied from the underlying water layer, is the main factor causing the oxygen consumption in the chemocline.  相似文献   

20.
The common geostrophic estimation of ocean current velocity uses only water temperature and conductivity profiles. The geostrophic volume transport of a western boundary current, like the Taiwan Current (Kuroshio east of Taiwan), between the coast and its eastern boundary can be easily estimated based on hydrographic survey data. But the eastern boundary of the Taiwan Current is very uncertain due to extremely variable hydrographic conditions. This uncertainty is strongly correlated with the propagating mesoscale eddies originating from the interior of the western North Pacific Ocean. The uncertainty of estimated transport can be greatly reduced if eddy distribution is considered when determining the integration boundaries with the assistance of satellite altimeter measurements. Eight hydrographic surveys east of Taiwan between November 1992 and June 1996 are demonstrated in this study. The average geostrophic transport of the Taiwan Current with a reference set to 1000 dbar at 22°N between the east coast of Taiwan and 124°E is 22.9 ±14.2 Sv and changes to 22.1 ± 8.3 Sv, the uncertainty of which is nearly halved after taking account of the eddy distribution. The estimation uncertainty is insensitive to vertical displacements of the reference level within the depth range between 800 and 2000 dbar. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号