首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution and movements of sperm whales, Physeter catodon Linn., in the western South Pacific (latitudes 30–70° S, longitudes 150E‐150°W) are examined. An undetermined number of catches by nineteenth century American whaleships, 9,720 catches by pelagic fleets in 1961–70, and 427 sightings in 1967 are analysed and correlated with oceanographic data from Australian and New Zealand surveys.

The proportion of females decreases southwards, abruptly at about latitude 44° S in the Tasman Sea, and at about 46–47° S east of New Zealand. Virtually no females occur south of 50° S. The male population density also decreases southwards: the density between 50–70° S appears to be less than 25% of that between 30–50° S. Sperm whales also appear to be less abundant in the eastern part of the region away from the New Zealand plateau, but more data are required.

The pattern of distribution and its seasonal changes probably correlate with vertical temperature gradients of about 5°c in the upper 100 m of water, i.e., optimal conditions for squid schooling. Catch per unit effort in autumn is lower than in spring. A northward population shift in autumn is inferred, based on reduction of available food species and probable temperature tolerances of calves, most of which are born in February and March, towards the end of the southern summer. Some males overwinter in areas where suitable gradients persist, e.g., around the Chatham Islands.

Possibly the summer surface temperature maxima south of the South Island are low enough to inhibit the passage of breeding schools with calves from one side of the New Zealand archipelago to the other. Sperm whales do not pass through Cook Strait normally. Thus, unless considerable mixing of stocks occurs north of New Zealand in winter, there may be two “unit stocks”, one oscillating seasonally between the central Tasman Sea and the Fiji‐Tonga region, and another (probably smaller) between the east coast of the South Island and the region just north of the Chatham Islands.  相似文献   

2.
利用1951-2008年全国160站盛夏(7-8月)气温和降水资料、北半球500hPa高度场和北太平洋海温场资料及相关环流特征指数资料,分析了盛夏(7-8月)西太平洋副高东西位置异常变化对我国气候的影响及其与北半球500hPa大气环流和北太平洋海温的关系.发现:盛夏副高东西位置异常偏西年主要集中出现在上世纪90年代和60年代,异常偏东年则集中出现在80年代、70年代和90年代.盛夏副高东西位置与长江流域及其以南地区气温存在着很好的负相关关系,与长江流域及其以北地区降水表现为负相关,与江南和华南地区降水表现为正相关.盛夏副高东西位置异常变化与北半球大范围环流形势调整相联系;前期春季(4-5月)北半球各副高单体强度变化,对盛夏副高东西位置变化具有很好的预测指示性.前期9-3月NINO4区和NINO3区海温,尤其是前期3月NINO4区海温,前期1月NINO3区海温对盛夏副高东西位置异常变化也具有很好的指示意义.  相似文献   

3.
The determination of dissolved Mn in sea water was carried out using a Chelex 100 resin and graphite furnace atomic absorption spectrophotometer. The nearshore surface layer waters off the Straits of Kii had the highest Mn concentration of 6.40 n mol kg−1 at these stations. Mn concentration of intermediate and deep water off the Straits of Kii ranged between 0.18 and 1.42 n mol kg−1. Mn concentration in deep and bottom waters at the Mariana Trough were between 0.71 and 2.48 n mol kg−1. Sharp increases of Mn concentration near the bottoms were observed at two stations near the hydrothermal vents of the central ridge of the Mariana Trough.  相似文献   

4.
5.
The benthic fauna on reefs around the Glorieuses Islands, a small and protected Indian Ocean archipelago northwest of Madagascar, was surveyed in November 2015, focusing particularly on the orders Alcyonacea (soft corals and gorgonians) and Scleractinia (stony corals). The species richness of both groups was rather low for a protected, relatively pristine environment in the region. Though certain soft ‘fugitive’ alcyonacean species were noticeably abundant, other soft corals were rare. Sediment-tolerant faviid corals were abundant among the scleractinians. The sediment around the reefs was fine-grained and white, and appeared to be derived from abundant green macroalgae Halimeda and coralline seaweeds. The abundance of these, in turn, might have been attributable to nutrient enrichment from guano deposited on one of the islands by migratory seabirds, causing the aforementioned anomalies in coral biodiversity and abundance.  相似文献   

6.
The Western and Central Pacific Ocean is home to the world's most productive tuna fisheries, with the majority of tuna catches occurring inside the exclusive economic zones (EEZs) of the region's developing coastal States. It is important that these fisheries are managed effectively throughout their range, both within and between EEZs and on the high seas. Unrestrained exploitation in a particular EEZ or on the high seas has the potential to significantly impact on catches elsewhere with potentially devastating consequences for developing coastal States, some of which have few alternate resources. The Western and Central Pacific Fisheries Commission (WCPFC) was established in 2004 to manage the region's highly migratory tuna fisheries. However, the WCPFC has since repeatedly failed to adopt conservation and management measures that are sufficient to meet the WCPFC's conservation and sustainable use objectives. This paper analyses catch data from the WCPFC and suggests that the weak position of bigeye (in a strategic political context), the unwillingness of members to compromise their interests and the lack of a transparent framework for distributing the burden of conservation are key factors in the WCPFC's failure to adopt sufficiently strong conservation and management measures.  相似文献   

7.
Microplankton abundances and phytoplankton mortality rates were determined at six stations during four cruises spanning three seasons in the Ross Sea polynya, Antarctica (early spring, Oct.–Nov. 1996; mid-late summer, Jan.–Feb. 1997; fall, Apr. 1997; mid-late spring, Nov.–Dec. 1997). Rates of microzooplankton herbivory were measured using a modified dilution technique, as well as by examining the rate of disappearance of phytoplankton (chlorophyll) in samples incubated in the dark (i.e. grazing in the absence of phytoplankton growth). Strong seasonal cycles of phytoplankton and microzooplankton abundance were observed during the study. Microzooplankton abundance varied by more than three orders of magnitude during the four cruises, and was positively correlated with phytoplankton biomass over the entire data set. Nevertheless, microzooplankton grazing was insufficient to impact significantly phytoplankton standing stocks during most of the experiments performed in this perenially cold environment. Only thirteen out of a total of 51 experiments yielded phytoplankton mortality rates that were significantly different from zero. The highest mortality rate observed in this study (0.26 d−1) was modest compared with maximal rates that have been observed in temperate and tropical ecosystems. Results from twenty experiments examining the rate of decrease of phytoplankton biomass during incubations in the dark agreed quite well with the results of the dilution experiments performed at the same time. The range of mortality rates for the dark incubations was −0.09–0.06 d−1, and the average was essentially zero (−0.01 d−1). That is, chlorophyll concentration was virtually unchanged in samples incubated in the dark for 3 d. A number of factors appeared to contribute to the very low rates of microbial herbivory observed, including low water temperature, and the size and taxonomic composition of the phytoplankton assemblage. Based on our results we conclude that the seasonal, massive phytoplankton blooms observed in the Ross Sea are due, in part, to low rates of removal by microbial herbivores.  相似文献   

8.
Examined here is a hypothetical idea of the splitting of the subtropical gyre in the western North Pacific on the basis of two independent sources of data,i.e., the long-term mean geopotential-anomaly data compiled by the Japanese Oceanographic Data Center and the synoptic hydrographic (STD) data taken by the Hakuho Maru in the source region of the Kuroshio and the Subtropical Countercurrent in the period February and March 1974. Both of the synoptic and the long-term mean dynamic-topographic maps reveal three major ridges, which indicate that the western subtropical gyre is split into three subgyres. Each subgyre is made up of the pair of currents, the Kuroshio and the Kuroshio Countercurrent, the Subtropical Countercurrent and a westward flow lying just south of the Countercurrent (18°N–21°N), and the northern part of the North Fquatorial Current and an eastward flow at around 18°N. The subgyres are more or less composed of a train of anticyclonic eddies with meridional scales of between 300 and 600 km, so that the volume transport of the subgyres varies by a factor of two or more from section to section. The upper-water characteristics also support the splitting of the subtropical gyre; the water characteristics are fairly uniform within each subgyre, but markedly different between them. The northern rim of each subgyre appears as a sharp density front accompanied by an eastward flow. The bifurcations of the sharp density fronts across the western boundary current indicate that the major part of the surface waters in the North Equatorial Countercurrent is not brought into the Kuroshio. The western boundary current appears as a continuous feature of high speed, but the waters transported change discontinuously at some places.  相似文献   

9.
The composition of suprabenthic crustacean assemblages, their diversity, production (P) and production/biomass (P/B) ratios, were analyzed at species level along two transects situated to the north (N) and south (S) of Mallorca (Balearic Islands, western Mediterranean) at depths between 134 m and 760 m, based on a ca. bi-monthly sampling performed between August 2003 and June 2004. Differences with depth and season in assemblage composition and diversity were analyzed as a function of the contrasting environmental features (e.g. water mass dynamics) of the two areas. We identified 187 species (18 decapods, 5 euphausiids, 16 mysids, 76 gammaridean amphipods, 13 hyperiids, 1 caprellid, 21 isopods and 37 cumaceans). Substantial mesoscale variability in the deep-sea suprabenthic assemblages coupled with diversity trends between the N and S transects were found. Seasonality was the most important gradient influencing the dynamics of suprabenthos over the upper (350 m) and middle (650–750 m) slope in the N area. Conversely, the S area appeared to be more stable temporally with depth as the main gradient inducing assemblage differences. Different depth-related patterns were observed both for diversity and P/B. To the north diversity was very low at the shelf-break, increasing on the upper-slope (H′ > 3.00) and then decreasing again on the middle-slope. To the south diversity increased smoothly downward, reaching the highest values on the middle-slope. Regarding productivity, P/B was highest at intermediate depths to the north (over ca. 450–500 m), while to the south highest P/Bs were found deeper (over ca. 600–650 m). The higher P/B at intermediate depths found along N are likely due to higher % of organic matter (OM) in sediments, a product of oceanographic frontal systems. In particular, P/B was higher along N among omnivores and detritus feeders (e.g. Andaniexis mimonectes, Lepechinella manco and combined cumaceans), coupled to enriched OM in sediments, while along S mesoplanktonic carnivores (Rhachotropis spp.) had higher P/Bs. We conclude that on the north slope the influence of frontal systems and more active flow dynamics of different water masses (WIW and LIW) increases natural disturbance in the area, increasing productivity and diversity of suprabenthic peracarids in the Benthic Boundary Layer. Also, species showed a displacement of their average distributions (their Centres of Gravity, CoG) to shallower depths along N, which is another indicator of more favorable habitat conditions for suprabenthos in the 400–500 m range at N.  相似文献   

10.
The results of a phytoplankton survey conducted in coastal waters off western Ireland in 1980/1981 are reported. Surface values of temperature, salinity, NO3N, PO4P, Si, total N, total P and chlorophyll a (Chla) collected at 6 stations during 14 cruises are presented along with the species composition of the net phytoplankton.The spring bloom occurred in late April and was dominated by diatoms. Between April and July further diatom blooms occurred. In July and August dinoflagellates were dominant. This change was associated with the stratification of offshore water and low concentrations of Chla and nutrients. In Autumn large blooms of Ceratium tripos were found; it is suggested that the cause was heavy freshwater runoff. In autumn and winter some warm water oceanic species (e.g. Oxytoxum scolopax) occurred.  相似文献   

11.
12.
13.
To understand the importance of picoeukaryotes in the biogeochemical cycle in the subtropical Kuroshio Current, a year-round survey of the hydrography and the distribution of picoeukaryotes were conducted in four oceanographic cruises from October 2012 to July 2013. In comparison with other seasons, the highest abundancy of photosynthetic picoeukaryotes, with concentrations >104 cells/ml, was observed around the eastern boundary of the Kuroshio in the winter. Accordingly, the composition of picoeukaryotes in this cold season was further studied by a metabarcoding analysis of the 18S rRNA gene. The majority of picoeukaryotes comprised Alveolata, followed by Haptophyta and Stramenopiles. Their composition was diverse in the waters affected by the Kuroshio and in the offshore province. For Haptophyta, in contrast to clade A prevailing in the Kuroshio waters, clade B1, which was considered the host of uncultivated diazotrophic cyanobacterium group A (UCYN-A), appeared only in the offshore area. Similarly, in Stramenopiles, Pseudo-nitzschia spp. and MAST-1D, respectively, dominated in the Kuroshio-influenced and offshore areas. While Alveolata was the most abundant group, the distributions of all lineages were similar. The association between picoeukaryote succession and hydrographic change is yet to be fully understood. Our results will assist future studies on the community composition of picoplankton and their relationship with marine ecology in the region.  相似文献   

14.
To understand the processes transporting nitrate to the surface layer of the western and central equatorial Pacific, we measured the nitrogen isotopic ratio of nitrate (δ 15NO 3 ), which is a very useful tracer of the source of nitrate, above 200 m depth in this region in December 1999. δ 15NO 3 is higher (about 13.0‰) in the surface water than in the subsurface water (where it is about 6.5‰) due to isotopic fractionation during nitrate uptake by phytoplankton. The δ 15NO 3 value has a roughly linear relationship with the natural logarithm of nitrate concentration (ln[NO 3 ]). However, for values above 150 m depth, the intercept of this linear relationship varies with position from east to west. On the other hand, the data at 200 m depth at all observation stations are concentrated around a single point (ln[NO 3 ] = 2.5 and δ 15NO 3 = 6.5‰) and do not fit the linear relationships for the shallower values. To examine the meaning of the observed distributions of δ 15NO 3 and nitrate concentration we developed a box model including nitrogen and nitrogen isotopic cycles. By reproducing the observed relationship between δ 15NO 3 and nitrate concentration using this model we found that most nitrate is transported horizontally from the eastern equatorial Pacific. We also conducted case studies and investigated the effects of differences in pathways of nitrate transport on the distributions of δ 15NO 3 and nitrate concentration. From these studies we concluded that the observed linear relationships between δ 15NO 3 and ln[NO 3 ], having a common slope around 6‰ but different intercepts at each station, are evidence of the significant horizontal transport of nitrate to the surface water in this area.  相似文献   

15.
We propose and validate a linear regression model which enables us to predict the summer (June–August) mean of the monthly 90th percentile of significant wave heights (H90) in the western North Pacific (WNP). The most prevailing interannual variability of H90 is identified by applying an Empirical Orthogonal Function analysis to H90 obtained from the ERA-40 wave reanalysis as well as from the optimally interpolated TOPEX/Poseidon (OITP) wave data. It is found that the increase of H90 is correlated with cyclonic circulation in the WNP which links with warm SST anomalies in the Niño-3.4 region. We adopt zonal wind anomaly averaged over the region 5°N–15°N, 130°E–160°E (U10N) as a predictor of the first principal component (PC1) of H90, since U10N is closely correlated with the PC1 of H90. It is revealed that regression models obtained from two different wave datasets are nearly identical. The predictability of the regression model is assessed in terms of the reduction of the root-mean-square (rms) errors between H90 and the reconstructed data. The predictor is found to be successful in reducing the rms errors by up to 40% for the ERA-40 wave reanalysis and by up to 70% for the OITP wave data within the latitudinal band 10°N–25°N, though rms errors exceeding 0.3 m still remain, particularly in the East China Sea.  相似文献   

16.
A high correlation exists between the 20°C isotherm depth at the north equatorial countercurrent trough of dynamic topography and the monthly mean sea level at Truk Island. The meridional topography of the main thermocline depth can be used to monitor the strength of the equatorial currents, in the same manner as dynamic heights and sea levels at oceanic islands are used.  相似文献   

17.
18.
上层海洋在全球气候系统中起着至关重要的作用。对上层海洋层结及混合的模拟偏差一直是海洋和气候数值模式发展中悬而未决的问题。本文首先评估了CMIP5中45个模式对上层海洋层结模拟的偏差,确认了冬季亚热带地区海洋模式垂向混合偏强。随后,基于自然资源部第一海洋研究所地球系统模式(FIO-ESM v1.0),分别开展了1986−2005年期间包含和关闭海浪垂向混合情况下的数值实验,分析浪致混合对亚热带冬季海洋混合强度模拟的影响及机制。发现浪致混合使得气候模式中亚热带海域冬季的海洋层结增强,增强的层结使上层海洋更加稳定。首次揭示了增加浪致混合反而降低了海洋总体的垂向混合率:浪致混合使北半球冬季亚热带海域混合率从无浪实验的227 cm2/s降低到有浪实验的178 cm2/s,降低了21.6%;南半球冬季亚热带海域混合率从无浪实验的189 cm2/s降低到有浪实验的165 cm2/s,降低了12.7%。进一步分析发现,浪致混合主要是通过增加冬季亚热带海域上层海洋的热含量从而强化了海洋的层结,最终改善了气候模式对上层海洋混合的模拟。  相似文献   

19.
A seasonal evolution of surface mixed layer in the western North Pacific around 24°N between 143°E and 150°E was observed by using an Argo float for more than 9 months, from December 2001 through August 2002. The result showed that the mixed layer deepened gradually in the first two months. It reached its maximum depth of about 130 m at the end of January, after which the mixed layer varied largely and sometimes the pycnocline below the mixed layer was much weakened until the summer mixed layer formed in late April. The thin surface mixed layer was maintained during the rest of the observation period. Heat budget analysis suggests that the vertical and horizontal temperature advections are the two most dominant terms in the heat balance in the upper layer on time scales from a few days to a month. The vertical motions that are possibly responsible for the vertical temperature advection are discussed.  相似文献   

20.
Eighteen Degree Water (EDW) is the dominant subtropical mode water of the North Atlantic subtropical gyre and is hypothesized as an interannual reservoir of anomalous heat, nutrients and CO2. Although isolated beneath the stratified upper-ocean at the end of each winter, EDW may re-emerge in subsequent years to influence mixed layer properties and consequently air–sea interaction and primary productivity. Here we report on recent quasi-Lagrangian measurements of EDW circulation and stratification in the western subtropical gyre using an array of acoustically-tracked, isotherm-following, bobbing profiling floats programmed to track and intensively sample the vertically homogenized EDW layer and directly measure velocity on the 18.5 °C isothermal surface.The majority of the CLIVAR Mode Water Dynamics Experiment (CLIMODE) bobbers drifted within the subtropical gyre for 2.5–3.5 years, many exhibiting complex looping patterns indicative of an energetic eddy field. Bobber-derived Lagrangian integral time and length scales (3 days, 68 km) associated with motion on 18.5 °C were consistent with previous measurements in the Gulf Stream extension region and fall between previous estimates at the ocean surface and thermocline depth. Several bobbers provided evidence of long-lived submesoscale coherent vortices associated with substantial EDW thickness. While the relative importance of such vortices remains to be determined, our observations indicate that these features can have a profound effect on EDW distribution. EDW thickness (defined using a vertical temperature gradient criterion) exhibits seasonal changes in opposition to a layer bounded by the 17 °C and 19 °C isotherms. In particular, EDW thickness is generally greatest in winter (as a result of buoyancy-forced convection), while the 17°–19 °C layer is thickest in summer consistent with seasonal Ekman pumping. Contrary to previous hypotheses, the bobber data suggest that a substantial fraction of subducted EDW is isolated from the atmosphere for periods of less than 24 months. Seasonal-to-biennial re-emergence (principally within the recirculation region south of the Gulf Stream) appears to be a common scenario which should be considered when assessing the climatic and biogeochemical consequences of EDW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号