首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Distribution of the anoxic water mass in the eastern part of Hiuchi-Nada was investigated from 1981 to 1983. A cold water mass was found on the bottom of the area concerned in summer, and a second (i.e. lower) thermocline appeared just above the cold water mass. The anoxic water was observed below a second thermocline. The horizontal distribution of the cold water mass coincided with that of the anoxic water mass, and also with a region of high concentration of organic matter in the sediment. These results suggest two important effects of the second thermocline on the generation of the anoxic water mass. Firstly, it prevents supply of dissolved oxygen from the upper to bottom layer of the water column. Secondly, it accelerates settling of particulate material resulting in a large accumulation of organic matter in the bottom water and the sediment which leads to an increase in the rate of oxygen consumption. The net oxygen consumption rate in the bottom layer in this sea was much smaller than that in Mikawa Bay where anoxia occurs at almost the same level as in Hiuchi-Nada. This finding also suggests the important role of the second thermocline.  相似文献   

2.
Total arsenic, arsenate and arsenite concentration profiles for the water column of Saanich Inlet, an intermittently anoxic fjord located on Vancouver Island, B.C., Canada, were measured using independent analytical techniques for total arsenic and arsenic speciation to evaluate the accuracy of the speciation technique in both oxic and anoxic marine environments. Total arsenic profiles indicate a mid-depth minimum of about 1.0 ppb above the oxic—anoxic interface and an enrichment in the anoxic zone to about 2.0 ppb. This minimum may be due to either advection of arsenic-poor water into Saanich Inlet at mid-depth or arsenic incorporation onto solid phases within a bacteria- and manganese-rich particulate layer located immediately above the oxic—anoxic interface and subsequent removal via sinking particulate material. Ratios of total arsenic to phosphorus in the deep, anoxic waters of the basin are similar to those reported for marine algae, suggesting that the enrichment of total arsenic within the anoxic bottom layer may be due to its release upon organic matter decomposition.Arsenate and arsenite concentration versus depth profiles indicate a rapid (but incomplete in a thermodynamic sense) response to the oxic—anoxic interface. The arsenate/ arsenite concentration ratio is 15/1 in the oxic region of the water column and 1/12 in the anoxic zone. Arsenate—arsenite interconversion occurs at a depth shallower than ferric-ferrous but deeper than MnO2 —Mn2+ interconversions.Measurements of arsenite oxidation rates at near-ambient arsenite concentrations and temperatures using an 74As3+ radioactive tracer technique indicate that arsenite oxidation is initially ten times faster in seawater taken from the manganese-rich particulate layer at 165 m depth than in seawater collected near the surface at 50 m depth. Addition of antibiotics to seawater from 165 m depth initially suppressed the rate of arsenite oxidation, indicating that it may be partially microbially mediated.  相似文献   

3.
A total of 150 samples were collected at a 10-days' anchor station in the Bornholm basin (55° 31.1′N, 15° 32.1′E) and analyzed for dissolved (< 0.4 μm) and particulate trace metals. For dissolved Mn, large gradients have been found in the vertical distribution with minimum concentrations (< 0.2 μgl?1) in the halocline zone and considerably higher values in the deep waters (up to 50 μgl?1). Ultrafiltration studies indicate that dissolved Mn is probably present as Mn2+ in the oxygenated bottom layer. The primary production process was not evident in the particulate Mn profile; the suspended particulate material (SPM), however, shows a considerable enrichment with depth, apparently due to Mn-oxide precipitation.The distribution of dissolved Fe was rather homogeneous, with average concentrations throughout the water column between 0.86 and 1.1 μgl?1, indicating that the oxidation of Fe2+ ions released from the sediments must already be complete in the very near oxidation boundary layer. Relatively high concentrations of particulate Fe were actually measured in the bottom layer, with the maximum mean of 11.2 μgl?1 at 72 m. Similarly to Mn, the profile of particulate Fe does not reflect the SPM curve of the eutrophic layer. On average, about 70% of the total Fe in surface waters was found to be particulate.The average concentrations of dissolved Zn, Cd and Cu were found to be rather homogeneous in the water column but showed a relatively high variability with time. A simplified model on trace-metal uptake by phytoplankton indicates no significant change in dissolved metal concentrations during the period of investigation. On average, only 1.7% Zn, 3.3% Cd and 9.8% Cu of the total metal concentrations were found in particulate form. SPM analyses showed significant correlations of Zn, Cd and Cu with Fe, indicating that particulate iron is an important carrier for particulate trace metals in Baltic waters.  相似文献   

4.
From July to November, the thermocline which has strong temperature gradient (0.7C m–1) is formed in the bottom water of Beppu Bay, and it prevents the downward mixing of surface water. This has caused the bottom water of the basin to become depleted in oxygen, and in November the bottom water below about 60 m depth becomes anoxic. Accordingly manganese and iron are reduced and more soluble under the anoxic condition, those concentrations are high relative to surface water, and the maximums are 1,240g l–1 and 80g l–1. Under the anoxic condition, the flux of dissolved manganese from the sediment is about 10g cm–2 day–1.  相似文献   

5.
The features of the vertical distribution of chlorophyll a, particulate organic carbon and its isotopic composition, total suspended particulate matter (SPM), and the structure of the phytoplankton community in the Middle and South Caspian Sea in May–June 2012 are discussed. The subsurface chlorophyll a maximum (SCM) was found everywhere at depths of ~20 to 40–60 m. The position of this layer is confined to the depth of the seasonal thermocline, which is determined by the development of a cold-water (dark) phytocenosis. The genesis of this layer was studied. The increase in chlorophyll a concentration in this layer is caused by an abundance of phytoplankton or an increased concentration of this phytopigments per algal cell. The highest values of the studied organic compounds and phytoplankton biomass are revealed as close to the seasonal thermocline extending from the southern periphery of the Derbent Depression to the Apsheron Sill, which is determined by the bottom topography. The presence of chlorophyll a at depths exceeding 300 m (up to ≥1 mg/m3) was revealed. This was supported by findings of individual algal cells containing chlorophyll a and even their accumulations in the deep water layer. The most probable mechanisms responsible for the presence of these cells at the deep water level are discussed in the paper. The vertical distribution of the values of the organic carbon isotopic composition is primarily controlled by the vertical structure of phytoplankton and chlorophyll a in the water column up to ~500 m and by biogeochemical processes at the redox barrier (~600 m layer). The relative stability of chlorophyll a and the stability of pheophytin a in anaerobic environments were verified. A significant amount of weakly transformed chlorophyll a was found close the sea bottom.  相似文献   

6.
We analyzed the distribution, diversity, and composition of western Mediterranean macroplankton (excluding gelatinous taxa) in the water column over depths of ca. 550–850 m, with special attention to near-bottom (0–1.5 and ca. 5–77 m above the bottom, mab) levels, and including data from three areas (off the coasts of Catalonia, and to the NW, and SE of Mallorca, Balearic Islands) in the period 1991–2008. Spatio-temporal changes in macroplankton abundance were evaluated as follows: (i) by seasonal sampling in 2007 off the Catalonian coast, (ii) by comparing Catalonian and Balearic Island slopes, and (iii) by comparing a fixed station on the Catalonian slope (at 550–800 m depth) at decadal (1991/1992–2007/2008) time scales. Diversity (in terms of species richness, S) was greater (i) at ca. 5–77 mab than at 0–1.5 mab, (ii) over the insular slopes of the Balearic Island (around Mallorca) than over the mainland Catalonian slopes, and (iii) in the period 1991/1992 than in 2007, likely related to higher values of the North Atlantic Oscillation (NAO) index in 1991/1992. In most analyses species composition was strongly influenced by the degree of stratification and homogenization of the water column in summer–autumn and winter–spring respectively and by location (longitude). Changes consisted mainly of higher density of macroplankton (e.g. abundance of the dominant euphausiids Nematoscelis megalops, Meganyctiphanes norvegica and Euphausia krohni and of the fish Cyclothone braueri) between June and October, parallel to an increase in the T and S close to the bottom. This coincided with changes in the flow of Levantine intermediate water (LIW) in the area. Aggregation of adult forms of the dominant species close to the bottom in summer–autumn could be favored because summer is the period of highest density of food – copepods, mainly Calanus helgolandicus – near the bottom off the Catalan slope. The formation of a thermocline in the water column and the reinforcement of the permanent thermohaline front at the shelf-slope break during summer at ca. 400 m in the Balearic Basin may also enhance this tendency toward greater aggregation of deep macroplankton under stratified water column conditions.  相似文献   

7.
The existing high-resolution hydrographic data in the western tropical Pacilit; Ocean are used to explore the spatial distribution and primary characteristics of thermohaline intrusions in the thermocline. Statistics show that the vertical scales of intrusions are 20-40 m in the upper thermocline (22.0-26.0δ0) and 40-80 m in the lower thermocline (26.0-27.2δ0). In the upper thermocline, the most intensive intrusions exist at the equatorial front (EF) where north/sonth Pacilic water masses converge, anti Ihe westward spreading of the north Pacilic tropical waler (NPTW) in the Philippines Sea also produces patches of intrusions surrounding its high-salinity tongue. In the lower thermocline, intrusions are also strong at the tropical front (TF) which is the boundary between the north Pacilic subtropical/tropical waters. At the bottom of the thermocline (at about 27.0δ0), intrusions mainly exist near the western boundary, which are produced by intermediate water convergence through the advection of subthermocline western boundary Ilows. Most strikingly a "C"-shape distribution of intrusions at around 26.4δ0 is revealed, covering the vicinity of the EF the TE and the Mindanao Current (MC), i.e., tile western boundary pathway ol the norlh Pacilic subtrnpical cell (STC). Synoptic section analysis reveals that intrusions are more prominent on the warm/sally flank ot the fronts, implying more cross-front tongues of cold/fresh water. Among the intrusions, those at the EF are of best lateral coherence which implies a unique driving mechanism involving near-inertial velocity perturbations near the equator.  相似文献   

8.
Studies of the Cariaco Basin on the continental shelf of Venezuela, as a part of the Carbon Retention In A Colored Ocean (CARIACO) program, have revealed that the chemistry of the deeper waters of the system is more variable than previously believed. Small oxygen maxima have been observed on a number of occasions at depths where oxygen was previously absent, suggesting the occurrence of intrusions of oxygenated water into the region of the oxic/anoxic interface (250–300 m). Apparently because of these events, the oxic/anoxic interface deepened by about 100 m during the period of our observations. We also observed a dramatic decrease in H2S concentrations at all depths below the oxic/anoxic interface during this same period. Bottom waters, for example, had an H2S concentration of about 75 μM in November 1995, but since November 1997, concentrations in bottom water have not exceeded 55 μM. Water of sufficient density to sink to the bottom of the Basin has been observed on one occasion at sill depth just north of the eastern sill. However, based on a simple box model, the decrease in deep-water sulfide does not appear to be due to intrusion of oxygenated water alone, as concentrations of other measured species, and of hydrographic parameters, have remained constant with time. Instead, we postulate that an earthquake that took place in July 1997 resulted in a turbidity current that transported large quantities of coastal sediment containing oxidized iron into the deep waters of the basin. If the final products of reaction were elemental sulfur and iron sulfide, the sediment associated with the oxidized iron would have produced a turbidite layer about 10 cm thick. Previous earthquakes have produced turbidites of similar thickness.  相似文献   

9.
Studies on biological metabolism in a meromictic Lake Suigetsu   总被引:5,自引:0,他引:5  
Lake Suigetsu is a typical meromictic lake having a deep anoxic layer from 8 m to the bottom at 34 m depth. Large accumulations of sulfide, total CO2, phosphate and ammonium were observed in the deep layer. In August, two photosynthesis maxima, caused by the activity of phytoplankton and photosynthetic sulfur bacteria, were observed at the surface and the boundary between aerobic and anoxic layers respectively. In December, a marked dark carbon fixation was observed at the boundary layer, although there was no indication of bacterial photosynthesis. Sulfate reduction was found only in bottom mud, especially near the surface of sediment. Carbon and sulfur cycles and their interrelation in the anoxic layer are discussed.  相似文献   

10.
A sulfur budget for the Black Sea anoxic zone   总被引:1,自引:0,他引:1  
A budget for the sulfur cycle in the Black Sea is proposed which incorporates specific biogeochemical process rates. The average sulfide production in the water column is estimated to be 30–50 Tg yr−1, occurring essentially in the layer between 500 and 2000 m. About 3.2–5.2 Tg sulfide yr−1 form during sulfate reduction in surface sediments of the anoxic zone. Total sulfur burial in anoxic sediments of 1 Tg yr−1 consists of 10–70% (ca. 40–50% is the average) water column formed (syngenetic) component, the rest being diagenetic pyrite. As a maximum, between 3 and 5 Tg yr−1 contribute sulfide to the bottom water or diffuse downward in the sediment. About 20–50 Tg yr−1 sulfide is oxidized mostly at the chemocline and about 10–20% of this amount (4.4–9.2 Tg yr−1) below the chemocline by the oxygen of the Lower Bosphorus Current. A model simulating the vertical distribution of sulfide in the Black Sea water column shows net consumption in the upper layers down to ca. 500 m, essentially due to oxidation at the chemocline, and net production down to the bottom. On the basis of the calculated budget anoxic conditions in the Black Sea are sustained by the balance between sulfide production in the anoxic water column and oxidation at the chemocline. On average the residence time of sulfide in the anoxic zone is about 90–150 yr, comparable to the water exchange time between oxic and anoxic zones. Hydrophysical control on the sulfur cycle appears to be the main factor regulating the extent of anoxic conditions in the Black Sea water column, rather than rates of biogeochemical processes.  相似文献   

11.
Samples from eleven stations in the Sargasso Sea, Slope Water, and continental shelf water of the Northwest Atlantic have been analyzed for total iron by atomic absorption spectrophotometry. Vertical profiles for iron and associated temperature and nutrient data were obtained at the five open-ocean stations. Data from six stations provided a transect across the continental shelf into the apex of the New York Bight.At open-ocean stations, iron was depleted near the surface to levels of about 1–2 nmol kg?1 and increased to levels of about 4–7 nmol kg?1 in the vicinity of the oxygen minimum. A characteristic bottom-water maximum was observed at stations where closely spaced, near-bottom sampling was conducted. This feature was due at least partially to resuspension of particulate iron associated with the nepheloid layer.Comparison of total iron concentrations (available upon digestion in concentrated nitric acid) to those of filtered samples (0.4 μm) at one Slope Water station indicated that about 40% of the available iron in the water column was associated with the particulate phase. Near the surface, in the vicinity of the chlorophyll maximum, iron was present almost totally in particulate form. The dissolved fraction increased to approximately 50% at the nutrient maximum and approached 100% in the mid-portion of the water column. In deeper waters, the particulate fraction again became important, increasing to approximately 80% of the total iron in the near-bottom maximum.In the apex of the New York Bight, iron levels in excess of 200 and 500 nmol kg?1 were observed in surface and bottom waters, respectively. In the mid-continental shelf region, the iron distribution does not appear to be greatly influenced by coastal sources; within 65 km of the coastline, iron levels approached open-ocean values.  相似文献   

12.
In the summer 2006, integrated geological, geochemical, hydrological, and hydrochemical studies were performed on the relict anoxic Lake Mogil’noe (down to 16 m depths) located on Kil’din Island in the Barents Sea. The chemical and grain-size composition of the bottom sediments were compared for the lake (a permanently anoxic basin) and the Baltic Sea Deeps (periodically anoxic basins). The vertical location of the hydrogen sulfide layer boundary in the lake (9–11 m depths) was practically the same from 1974 up to now. The concentrations of suspended particulate matter in the lake in June and July 2006 appeared to be close to its summer concentrations in the seawaters of the open part of the Baltic Sea. The mud from Lake Mogil’noe compared to those of the Baltic Sea Deeps are characterized by fluid and flake consistency and by pronounced admixtures of sandy and silty fractions probably of eolic origin. The lacustrine mud contain much plant remains; iron sulfides and vivanite were also found in ooze. The concentrations of 22 elements determined in the lacustrine bottom sediments were of the same levels as those found here 33 years ago. The concentrations also appeared to be close to those in the corresponding grain-size types of the bottom sediments in the Baltic Sea. The low Corg/N value (5% on average) in the mud of Mogil’noe Lake compared to the values for the mud of the Baltic Sea Deeps (10% on average) points to the considerable planktogenic component in the organic matter composition of the lacustrine mud. No indications were reveled for anthropogenic contaminations of the lacustrine bottom sediments with toxic metals.  相似文献   

13.
Particle-bound phosphorus along an urbanized coastal plain estuary   总被引:1,自引:0,他引:1  
The distribution of particle-bound phosphorus in the suspended sediment of the Delaware Estuary was examined with a sequential chemical leaching technique. The phosphorus content of particles was highest in the tidal river (140–250 μmol g−1) near major anthropogenic inputs. Despite this enrichment of river particles with phosphorus, suspended particles within the salinity gradient had a phosphorus content more similar to the world's average. Sequential chemical leaches revealed that particulate phosphorus was associated with organic matter, aluminum oxides, iron oxides, and apatite in all areas of the estuary. However, ‘excess’ particle-bound phosphorus in the tidal river was associated mainly with iron oxides (27%), aluminum oxides (23%), and organic matter (50%). Within the salinity gradient, particulate phosphorus associated with iron oxides, aluminum oxides, and apatite all decreased with increasing salinity. Estuarine mixing was simulated to determine whether the observed decreases in particle-bound phosphorus pools in field samples were due to release into solution. During simulated mixing, particulate phosphorus associated with iron and aluminum oxides decreased, but no change was observed in apatite-bound phosphorus. The results of the mixing study combined with the observed particle-bound phosphorus distributions suggest that phosphate concentrations along the Delaware Estuary may be partially ‘buffered’ by aluminum and iron oxide phases.  相似文献   

14.
According to combined observations from vertical plankton tows, dredging with epibenthic nets 1 m above the ocean floor, video recordings and acoustic data from a scanning sonar obtained during descent and during deployment on the ocean floor, the calanoid copepod Calanus hyperboreus was aggregated in high concentrations near the ocean floor of the Greenland Sea between 2300 and 2500 m during late July and August. Concentrations were highest very close to the ocean floor and decreased rapidly further upward. These nearly mono-specific aggregations were apparently drifting in cloud-like formations with a horizontal extension of ca. 270 m with the near-bottom currents. Maximum abundances observed were up to 2 orders of magnitude higher than in the water column. The biomass in the bottom 20 m layer was around 18% of the biomass in the rest of the water column. Stage composition, reduced metabolic rates and insensibility to mechanical stimuli indicate that these C. hyperboreus were representing the resting population. The fact that high concentrations were observed during deployments lasting >1 d and in 3 years suggests that aggregation near the ocean floor is a regular, rather than an extraordinary, pattern in the life history of C. hyperboreus in the Greenland Sea, but there is need for comparison with other seas and eventually other Calanus species.  相似文献   

15.
Using the hydroacoustic method with a 200 kHz scientific echo sounding system,the diel vertical migration(DVM) of the sound-scattering layer(SSL) in the Yellow Sea Bottom Cold Water(YSBCW) of the southeastern Yellow Sea was studied in April(spring) and August(summer) of 2010 and 2011.For each survey,13–27 hours of acoustic data were continuously collected at a stationary station.The acoustic volume scattering strength(Sv) data were analyzed with temperature profile data.In the spring of both 2010 and 2011,the SSL clearly showed the vertical migration throughout the entire water column,moving from the surface layer at night to near the bottom during the day.Conductivity,temperature,and depth data indicated that the entire water column was well mixed with low temperature of about 8 C.However,the SSL showed different patterns in the summers of 2010 and 2011.In the summer of 2010(28 C at the surface),the SSL migrated to near the bottom during the day,but there were two SSLs above and below the thermocline at depth of 10–30 m at night.In the summer of 2011(20 C at the surface),the SSL extended throughout the entire water column at night,possibly owing to an abrupt change in sea weather conditions caused by the passage of a Typhoon Muifa over the study area.It was concluded that the DVM patterns in summer in the YSBCW area may be greatly influenced by a strengthened or weakened thermocline.  相似文献   

16.
Abstract. The changes in the concentrations of silicate, phosphate, and inorganic nitrogen in Eiefsis Bay. an intermittently anoxic basin, arc described and related to the changes in the physical properties of the water. Winter convection resulted in a very small vertical gradient of temperature, salinity, oxygen, and nutrients. Stratification started to develop in May and persisted for about 6 months. High values of silicate, phosphate, and ammonia occurred during the anoxic conditions prevailing in summer. The vertical transport of particulate organic matter and decomposition of abundant pelagic and benthic organic matter during the summer produced a low oxygen level in the bottom layer below the pycnoclinc. A high sea water temperature and vertical stability contributed to the development of anoxic conditions during the summer in the near bottom layer and to mass mortality of benthic macrofauna. Also the Eiefsis Bay anoxia appears to have had significant ecological effects on many other marine species, including several of economic importance.  相似文献   

17.
Concentrations of dissolved oxygen and sulfide, and of dissolved and particulate iron, manganese, and phosphate were measured as functions of salinity at a station in the Chesapeake Bay during stratification and deep water anoxia in spring and summer, 1981. The observed concentration/salinity profiles showed that oxygen was transported in a direction opposite to that of salt, while dissolved sulfide was transported in the same direction as salt through the anoxic water to be oxidized in oxygen consumption zones located below the steepest parts of the halocline. Both oxygen and sulfide were transported conservatively on 18 June. Their fluxes were 1·2 and 2 mol m−2 d−1, respectively. The oxygen flux was 30% of that stoichiometrically needed to oxidize the sulfide transported, suggesting that the oxygen consumption zone was advancing to shallower, less saline water, thus increasing the volume of anoxic water. Although oxygen was transported conservatively, sulfide was produced as it was transported through the anoxic water on 8 July.The anoxic water was supersaturated with respect to ferrous sulfide on 18 June, but most of the anoxic water was saturated on 8 July. Precipitation of ferrous sulfide had little effect on the sulfide flux on 18 June. The manganese(II) concentration/salinity profile exhibited a maximum in the oxygen consumption zone on 18 June. On 8 July the profile was independent of salinity at high salinities. Iron(II) and manganese(II) consumed little if any oxygen in the oxygen consumption zone.Soluble reactive phosphate was transported conservatively through the anoxic water on 18 June. It was produced as it was transported on 8 July. All of the phosphate was consumed in the oxygen consumption zones by sulfide oxidizing bacteria. On 18 June its flux, estimated to be 2·8 mmol m−2 d−1, was less than 10% of that required for bacterial oxidation of the sulfide reaching the oxygen consumption zone. The rest was oxidized chemically. The growth and activity of the bacteria were limited by the rate at which soluble reactive phosphate was transported to the oxygen consumption zone.Little or none of the sulfide, iron(II), or phosphate originated in the bottom sediment at the station. The results indicate that they were transported into the water sampled from deeper more saline water downstream, suggesting that they originated in the deep trough that extends along the spine of the Bay. Manganese(II), however, resulted from the reduction and dissolution of oxidized manganese particles as they sank into the anoxic water.  相似文献   

18.
《Marine Chemistry》2002,79(1):37-47
Profiles of dissolved organic carbon (DOC) were measured in the pore water of sediments from 1000, 2000 and 3500 m water depth in the eastern North Atlantic. A net DOC accumulation in the pore waters was observed, which followed closely the zonation of microbial respiration in these sediments. The concentration of pore water DOC in the zone of oxic respiration was elevated relative to that in the bottom ocean water. The resulting upward gradient across the sediment–water interface indicated a steady state diffusive benthic flux, FDOC, of 0.25–0.44 mmol m−2 day−1 from these sediments. Subsequent increase in the concentration of DOC in the pore water occurred only in the sediments from 1000 and 2000 m water depth that supported anoxic respiration, leading to a deep concentration maximum. By contrast, in the sediments from 3500 m water depth, a deep concentration minimum was measured, coincident with minimal postoxic respiration in this near-abyssal setting. The gradient-based FDOC represented approximately 14% of the total remineralized organic carbon (TCR=sum of FDOC and depth-integrated organic carbon oxidation rate) in the sediments from 1000 and 2000 m water depth, while it was 36% of the TCR in the sediments from 3500 m water depth. A covariance of particulate organic carbon (POC) and pore water DOC with depth in the sediments was evident, more consistently at the deepest site. While the covariance can be related to biotic processes in these sediments, an alternative interpretation suggests a possible contribution of sorption to the biotic control on sedimentary organic carbon cycling. The steady state diagenetic conditions in which this may occur can be conceivable for some organic-poor deep-sea locations, but direct evidence is clearly required to validate them.  相似文献   

19.
A one-dimensional quasi-Eulerian model, describing the biological and chemical interactions of autotrophic and heterotrophic plankton populations within the upper 100 m of the water column, was used to explain the relative impact of iron fertilization from Saharan dust on phosphorus cycling by the cyanobacterium, Trichodesmium spp. We examined the Caribbean surface waters off the west coast of Barbados using seasonal cases of dust delivery (summer peak) in relation to periods of elevated phosphorus stocks found in episodic pulses of Amazon River water advected past Barbados by the Guiana Current. The additional iron and phosphorus supplied by fluvial sources, available after biological depletion of nitrogen, could alleviate the growth limitation of Trichodesmium far downstream of the river plumes. The model results were compared with measurements made of Trichodesmium stocks 8 km off the west coast of Barbados. Modeled concentrations within the low-salinity Amazon plumes reached ∼7.4 mg chl m−2, as seen at Barbados. In the absence of the low-salinity signal, the Trichodesmium biomass shifted to phosphorus limitation with little response to iron fertilization. This indicates that Trichodesmium stocks may indeed be mainly a function of phosphorus availability within the upper water column. Therefore, the supply of phosphorus from subtropical/tropical rivers, such as the Amazon and Orinoco, limits the potential cyanophyte response, despite adequate atmospheric iron delivery. This alters our view not only of the western North Atlantic nitrogen budget, but potentially several regions downstream of low N:P river systems.  相似文献   

20.
A hydrographic survey and a 25-hour stationary observation were carried out in the western part of Suo-Nada in the summer of 1998 to elucidate the formation mechanism of the oxygen-deficient water mass. A steep thermocline and halocline separated the upper layer water from the bottom water over the observational area except for near the Kanmon Strait. The bottom water, in comparison with the upper layer water, indicated lower temperature, higher salinity, lower dissolved oxygen, higher turbidity, and higher chlorophyll a. Turbidity in the upper layer water changed with semi-diurnal period while the bottom water turbidity showed a quarter-diurnal variation, though the M2 tidal current prevailed in both waters. From the turbidity distribution and the current variation, it is revealed that the turbidity in the upper layer water is controlled by the advection due to the M2 tidal current. On the other hand, the quarter-diurnal variation in the bottom water turbidity is caused by the resuspension of bottom sediments due to the M2 tidal current. The steep thermocline and halocline were maintained throughout the observation period in spite of the rather strong tidal currents. This implies an active intrusion of the low temperature and high salinity water from the east to the bottom of Suo-Nada. Based on the observational results, a hypothesis on the oxygen-deficient water mass formation was proposed; the periodical turbidity variation in the bottom water quickly modifies the oxygen-rich water in the east to the oxygen-deficient bottom water in Suo-Nada in a course of circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号