首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
若尔盖与西秦岭地震反射岩石圈结构和盆山耦合   总被引:10,自引:0,他引:10       下载免费PDF全文
松潘地块北缘的若尔盖盆地与西秦岭造山带相接触,构成青藏高原东北缘典型的新生代盆山构造.其岩石圈结构与深部构造关系,记录了青藏高原东北缘板块碰撞的深部过程,同时又关联着若尔盖盆地油气远景的评价.2004年秋冬季,我们完成了第一条跨越若尔盖盆地和西秦岭造山带的深地震反射剖面.整个剖面全长254 km,分5段完成,其中第2段剖面(简称SP04_2)横过盆山结合部位.SP04_2剖面首次揭示若尔盖盆地-西秦岭造山带盆山结合部位的岩石圈结构,发现了若尔盖盆地和西秦岭造山带下地壳均以北倾为主的强反射特征,提供出若尔盖盆地下地壳整体向西秦岭造山带俯冲的地震学证据,揭示了若尔盖盆地和西秦岭造山带在挤压构造体系下形成的深部构造关系.而近于平的Moho反射特征又反映出两者在造山后期经历了强烈的伸展作用.  相似文献   

2.
青藏高原东北缘岩石圈厚度与上地幔各向异性   总被引:5,自引:5,他引:0       下载免费PDF全文
利用青海地震台网和甘肃地震台网2007-2009年记录的远震波形资料,提取S波接收函数和SKS分裂参数,得到了青藏高原东北缘的三维岩石圈厚度分布和上地幔各向异性特征.S波接收函数结果表明:昆仑-阿尼玛卿缝合带以南的松潘-甘孜地块东北缘和西秦岭造山带下方岩石圈较薄,厚度为125~135 km;昆仑-阿尼玛卿缝合带以北具有较厚的岩石圈,在昆仑和祁连地块下方岩石圈厚达145~175 km,并向柴达木盆地(175~190 km)和克拉通(鄂尔多斯南部约为170 km、阿拉善南缘约为200 km)下方增厚.上地幔各向异性结果显示:东北缘地区的SKS快波偏振方向为NW-SE向,与前人得到的昆仑断裂带南侧的快波方向存在较大差异,南侧自高原内部呈顺时针旋转,表明昆仑断裂带可能为上地幔变形的转换带.SKS快、慢波延迟时间为0.8~1.9 s,且在昆仑-阿尼玛卿缝合带以北,延迟时间与岩石圈厚度呈正相关关系,推断该区各向异性主要来源于地幔盖层的初期伸展变形.  相似文献   

3.
2013年7月22日甘肃岷县漳县交界处发生MS6.6地震后,横跨西秦岭造山带和地震区沿NE方向的剖面进行了45个大地电磁测点的观测。使用远参考和"Robust"技术以及相位张量分解技术处理数据,采用NLCG 2维反演方法,获得的深部电性结构图像揭示:西秦岭造山带自地表至深度约20km存在东北和西南浅、中部深的倒"梯形"高电阻体,在高阻体之下为低电阻层,高、低电阻层相互契合;西秦岭造山带西南侧的松潘-甘孜地块(北部)在深度约20km存在西南深、东北浅的中下地壳低阻层,其东北侧的陇西盆地具有稳定的成层性结构,显示出西秦岭造山带正处于松潘-甘孜地块向北挤压和陇西盆地向南的阻挡挤压作用中。东昆仑断裂带(塔藏段)错断了松潘-甘孜地块中下地壳低阻层,迭部-白龙江断裂和光盖山-迭山断裂带延伸深度不大,在深部归并于东昆仑断裂带(塔藏段),东昆仑断裂带(塔藏段)内部结构和介质的低阻特性是东昆仑断裂带在塔藏段水平滑动速率逐渐减小、垂向运动逐渐增强的深层原因。西秦岭北缘断裂为陡立的大型电性边界带,延伸深度穿过莫霍面;临潭-宕昌断裂带表现为具有一定宽度的低阻带,延伸深度归并到中下地壳低阻层中。2013年甘肃岷县漳县6.6级地震震源区处于倒"梯形"高阻体的西秦岭造山带的核部,即位于高低电阻体接触区,同时发生在低阻破碎带的临潭-宕昌断裂带附近。松潘-甘孜地块从SW向NE推挤、东北侧陇西盆地阻挡的相互作用是2013年岷县漳县MS6.6地震发生的动力学原因,岷县漳县地震震源区特殊的高低阻介质属性和接触关系是该次地震发生的内部因素。  相似文献   

4.
由于印度洋板块向亚欧板块俯冲使青藏高原不断隆起,其形成不仅导致了亚洲大陆内部强烈的晚新生代构造变形,还对其边缘地区的地貌格局产生重大影响.青藏高原东北缘是青藏高原向北东方向扩展的前缘部位,是印度与欧亚两大板块碰撞作用由近南北方向向北东、东方向转换的重要场所.本文利用2004年和2008年完成的深地震反射剖面资料,采用关键处理技术和参数开展唐克-合作剖面与合作-临夏剖面联线处理,获得总长约400 km的深地震反射剖面,完整揭示了西秦岭造山带及其两侧盆地的地壳结构和构造变形样式.结果显示西秦岭造山带下地壳向若尔盖逆冲推覆的深部构造特征;西秦岭下地壳北倾的强反射及其北侧南倾的强反射特征揭示出扬子与华北两个大陆板块在西秦岭造山带下的汇聚行为.Moho的埋深和起伏形态表明青藏高原东北缘地壳经历了高原隆升后强烈的伸展减薄作用.  相似文献   

5.
天山造山带基底结构的有限差分研究   总被引:5,自引:1,他引:5  
利用横跨天山造山带的库尔勒-吉木萨尔地震宽角反射/折射剖面Pg震相, 通过三维有限差分方法对天山造山带的基底和盖层构造进行反演, 获得了上地壳的速度分布及构造. 根据速度结构可将此剖面划分为塔里木盆地北缘、天山造山带及准噶尔盆地南缘3个部分, 天山造山带内具有三隆四凹的构造格局. 塔里木盆地北缘基底速度横向变化不大, 埋藏深度约10 km. 天山造山带内速度横向变化较大, 其中焉耆盆地的基底深度约为6 km, 往北基底迅速变浅, 到中天山基底几乎出露地表. 库米什南部为一小的山间盆地, 最大基底深度约为3 km, 到库米什附近基底变浅并几乎出露地表. 塔里木盆地与天山之间的北轮台断裂为边界断裂, 断层落差达5 km左右. 吐鲁番盆地具有巨厚的沉积, 其基底深度约7 km. 天山与吐鲁番盆地的边界断裂为博罗科努断裂, 其特点是基底深度迅速变深, 断层落差达7 km左右. 进入准噶尔盆地, 基底深度约为8 km. 虽然库尔勒-吉木萨尔剖面的地形是不对称的(南部平缓, 北部起伏强烈), 但有限差分法所揭示的基底结构具有以中天山为轴南北对称的特点, 并与该剖面所揭示的深部结构协调一致, 预示着天山两侧的塔里木盆地与准噶尔盆地向天山造山带的深部对冲. 但南侧的俯冲可能是更早的事件, 目前已经弱化; 而北侧的俯冲正方兴未艾, 致使博格达山快速隆升与吐鲁番盆地的快速沉降. 这种构造样式与横跨天山的另一条剖面, 即沙雅-布尔津剖面所揭示的岩石圈结构不同, 表明在这两条剖面之间可能存在重要的构造边界.  相似文献   

6.
祁连造山带位于青藏高原东北缘,距南侧的喜马拉雅碰撞带前缘1 500 km,以一个宽阔的(东西长约1 000 km,南北宽200~400 km)、NW走向的造山带的形式被夹持于北侧的河西走廊盆地与南侧的柴达木盆地之间,西侧被NEE走向的阿尔金左行走滑断裂带所截切,北缘以青藏高原北缘断裂带,祁连山北缘断裂带和祁连山东缘断裂带与河西走廊盆地相邻,南东方向与西秦岭造山带相接,东缘与鄂尔多斯地块相邻.记录了新生代以来印度板块和亚洲大陆板块碰撞和青藏高原边缘造山和地壳变形的重要过程.对其地壳深部结构的探测是研究青藏高原隆升和向北扩展,理解印度与欧亚大陆碰撞的大陆内部构造作用的关键手段.自1980年代以来,前人在研究区实施了多条宽角反射/折射剖面,以揭示祁连造山带及周缘的地壳深部结构.本文通过对这些宽角反射/折射剖面的收集汇总和梳理分析,以探讨祁连造山带不同区段下方莫霍面起伏及深度差异,研究结果显示:祁连造山带莫霍面埋深整体自西向东变浅,最深的莫霍面位于北祁连造山带内的哈拉湖附近;结合其他地质与地球物理资料,本文推测莫霍面深度的起伏及变化状态揭示了祁连造山带由西向东不同的地壳缩短方式,其中西段最深的...  相似文献   

7.
西秦岭造山带(中段)及其两侧地块深部电性结构特征   总被引:15,自引:5,他引:10       下载免费PDF全文
本文对跨过西秦岭造山带(中段)的阿坝—若尔盖—临潭—兰州大地电磁剖面(WQL-L1)所采集到的数据进行了精细化处理分析和二维反演研究,结合跨过2013年岷县漳县地震区的WQL-L6剖面大地电磁探测结果和以往的地质与地球物理资料,对西秦岭造山带(中段)的深部电性结构、主要断裂带延伸状况以及与南北两侧地块的接触关系等进行了分析研究,结果表明:东昆仑断裂带塔藏段、迭部—白龙江断裂和光盖山—迭山断裂带共同组成了东昆仑断裂系统,分隔了松潘—甘孜地块和西秦岭造山带(中段);西秦岭北缘断裂带为主要的高角度南倾大型电性边界带,延伸深度穿过莫霍面;临潭—宕昌断裂带具有电性边界带特征,其延伸情况具有东、西差异.西秦岭造山带(中段)自地表到深度约20km范围表现为东北和西南浅、中部深的倒"梯形"高阻层,在高阻层之下广泛发育低阻层,低阻层与高阻层相互契合,呈现相互挤压堆积的式样,其西南侧的松潘—甘孜地块中下地壳存在西南深、东北浅低阻层,其东北侧的陇西盆地具有稳定的成层性结构,显示出西秦岭造山带(中段)正处于松潘—甘孜地块向北挤压和陇西盆地向南的阻挡挤压作用中.松潘—甘孜地块从西南向东北推挤、东北侧陇西盆地相对阻挡的相互作用是2013年岷县漳县6.6级地震发生的外部动力学机制,同时地震震源区特殊介质属性是该次地震发生的内部因素.西秦岭造山带(中段)中上地壳倒"梯形"高阻体埋深西薄、东厚的分段差异与该段内部中强地震分布差异有关.东昆仑断裂玛沁段和塔藏段内部的深部电性结构差异和延伸状况与东昆仑断裂自西向东走滑速率减小有内在联系.  相似文献   

8.
北京地区地壳精细结构的深地震反射剖面探测研究   总被引:20,自引:4,他引:16       下载免费PDF全文
长度100 km、NW向穿过三河—平谷8.0级地震区和北京地区主要断裂构造的深地震反射剖面,揭示了该区地壳精细结构图像和断裂的深浅构造特征.结果表明,该区地壳以TWT6~7 s左右的强反射带为界分为上地壳和下地壳,上地壳厚约18~21 km,下地壳厚约13~15 km.剖面TWT3~4 s以上,反射层位丰富,构造形态清晰,且在剖面上具有明显不同的构造特征;在三河—平谷地震区以西,剖面揭示了2~3组反射能量较强的反射震相和一系列错断基底面的断裂,在三河—平谷地震区以东,为一套自东向西倾伏的密集强反射层,这套反射具有典型的沉积盆地特征,盆地最深处约为8~9 km.剖面揭示的地壳深断裂倾角陡直,该断裂切割、扰动了下地壳物质和壳幔过渡带,向上延伸至上地壳,将地壳深部构造与浅部断裂联系在一起,构成了该区最主要的深浅构造特征.  相似文献   

9.
利用青海和甘肃地震台网2007—2009年记录的远震波形资料,提取多频段P波接收函数,反演得到了青藏高原东北缘及相邻地块下方0~100km深度的地壳和上地幔S波速度结构.结果表明:(1)青藏高原东北缘的上、下地壳之间普遍存在一个S波速度低速层,其深度由南端的约35km向北变浅约为20km,推测该低速层为一壳内滑脱层,表明东北缘地区的上地壳变形与下地壳解耦,从滑脱层的深度分布可以认为青藏高原东北缘的地壳缩短自南向北进行,现阶段以上地壳增厚为主;(2)昆仑—西秦岭造山带的下地壳厚度较北侧的祁连地块薄,一种推测是西秦岭造山带的下地壳抗变形能力更强,也可能这种差异在块体拼合前已经存在;(3)青藏高原东北缘及鄂尔多斯和阿拉善地块的下地壳S波速度随深度的增加而增加,这种正梯度增加的S波速度结构反映较高黏滞性的下地壳,推测青藏高原东北缘的地壳结构不利于下地壳流的发育.  相似文献   

10.
2016年1月21日01时13分在青海省海北州门源县发生了MS6.4地震,震中位置位于青藏高原东北缘地区祁连造山带内的祁连—海原断裂带冷龙岭断裂部分附近,震源深度约11.4 km,震源机制解显示该次地震为一次纯逆冲型地震.我们于2015年7—8月期间完成了跨过祁连造山带紧邻穿过2016年1月21日青海门源MS6.4地震震中区的大地电磁探测剖面(DKLB-M)和古浪地震大地电磁加密测量剖面(HYFP).本文对所采集到的数据进行了先进的数据处理和反演工作,获得了二维电性结构图.结合青藏高原东北缘地区最新获得的相对于欧亚板块2009—2015年GPS速度场分布特征,1月21日门源MS6.4地震主震与余震分布特征以及其他地质与地球物理资料等,探讨了门源MS6.4地震的发震断裂,断裂带空间展布、延伸位置,分析了门源MS6.4地震孕震环境与地震动力学背景等以及祁连山地区深部构造特征等相关问题.所获结论如下:2016年门源MS6.4地震震源区下存在较宽的SW向低阻体,推测冷龙岭断裂下方可能形成了明显的力学强度软弱区,这种力学强度软弱区的存在反映了介质的力学性质并促进了地震蠕动、滑移和发生;冷龙岭北侧断裂可能对门源MS6.4地震主震和余震的发生起控制作用,而该断裂为冷龙岭断裂在青藏高原北东向拓展过程中产生的伴生断裂,表现出逆冲特征;现今水准场、重力场、GPS速度场分布特征以及大地电磁探测结果均表明祁连—海原断裂带冷龙岭断裂部分为青藏高原东北缘地区最为明显的一条边界断裂,受控于青藏高原北东向拓展和阿拉善地块的阻挡作用,冷龙岭断裂附近目前正处于青藏高原北东向拓展作用最强烈、构造转化最剧烈的地区,这种动力学环境可能是门源MS6.4地震发生的最主要原因,与1927年古浪MS8.0地震和1954年民勤MS7.0地震相似,2016年门源MS6.4地震的发生同样是青藏高原北东向拓展过程中的一次地震事件.  相似文献   

11.
利用中美德INDEPTH IV合作项目2007—2009年间布置于青藏高原中、北部140个宽频地震台站记录到的天然地震数据,经过接收函数成像处理,获得了3条穿过昆仑—阿尼玛卿缝合带清晰的壳幔结构图像.结果显示柴达木南缘莫霍面位于约50 km深度,羌塘地块、可可西里地块、东昆仑造山带莫霍面位于约65 km深度,昆仑—阿尼玛卿缝合带以北约50 km存在莫霍面深度突变.在可可西里和柴达木岩石圈地幔之间观测到北倾界面,这可能是可可西里岩石圈向北俯冲到柴达木地幔之下的证据.可可西里地块地壳内宽缓的负转换震相带是低速带的反映,其向北挤入到东昆仑山下发生挤压增厚,可能是东昆仑山隆升的原因;由于刚性柴达木岩石圈的阻挡,物质向东改向,则可能是该地区向东旋转的构造应力场产生的原因.本文研究结果不支持亚洲岩石圈地幔在东昆仑—柴达木交界处向南俯冲,据此,我们提出了新的东昆仑造山模式.  相似文献   

12.
本文利用中国地震科学探测台阵2013-2015年在南北地震带北段及其周缘架设的673个台站所记录到的远震波形所提取到的接收函数并应用H-κ扫描方法获取了南北地震带北段及其周缘的地壳厚度和泊松比,结果显示研究区地壳厚度从青藏高原东北缘向鄂尔多斯块体逐渐减小,从65 km逐渐减薄至40 km,不同块体之间地壳厚度存在明显差异.祁连造山带西部地壳厚度超过60 km,而东部地壳厚度仅为约50 km左右,表明祁连造山带东、西部地壳增厚变形存在着明显差异.西秦岭造山带地壳厚度从60 km减薄到40 km,其东部具有较薄的地壳厚度可能经历了拆沉.阿拉善块体作为华北克拉通西部块体的一部分,西部地壳厚度约50 km,而东部约45 km,表明阿拉善块体西部由于印度一欧亚板块碰撞也受到了活化改造,其克拉通性质只在其中东部残留.研究区泊松比变化范围为0.20~0.31,平均泊松比约0.25,表明地壳主要由长英质矿物组成,较高的泊松比主要分布在六盘山断裂带和银川一河套地堑.研究结果显示地壳厚度与高程之间具有较好的相关性,表明地壳整体上处于相对均衡的状态,而西秦岭造山带和祁连造山带东部的部分区域地壳可能处于不均衡状态.  相似文献   

13.
文中通过多源数据融合、模型构建、数据试验、二维离散小波变换和功率谱分析等方法获取了大别造山带东段深、浅部场源布格异常及其场源似深度,并结合地壳结构、地质构造、岩石圈有效弹性厚度和地震活动等资料,讨论了地壳深、浅部的结构特征及地震活动构造背景。结果表明,低频布格异常显示大别造山带东段与华北地块间深部构造缝合带在东部应位于青山-晓天断裂前缘,在落儿岭-土地岭断裂和商城-麻城断裂之间向N偏移至梅山-龙河口断裂之下,造山带南侧与扬子地块间深部构造缝合带位于襄樊-广济断裂以北约20km,造山带东侧与扬子地块间的深部构造转换带位于郯庐断裂带之下,造山带东段腹地显著的低频布格异常低值表明对应部位的莫霍面存在明显下凹,造山带内部的布格异常高梯度带表明其深部结构不完整;高频布格异常揭示肥中断裂、六安-合肥断裂、肥西-韩摆渡断裂和郯庐断裂带等主要断裂对地壳中上部密度结构的影响明显,落儿岭-土地岭断裂对地壳中上部密度结构的影响范围向N延伸至肥西-韩摆渡断裂前缘。结合地震活动资料进一步分析认为,大别造山带东段与华北地块在青山-晓天断裂前缘附近接触和相互作用,且大别造山带东段地壳深、浅部结构均不完整,不利于应力积累,趋向于在断裂交错的脆弱部位频繁释放应力,是霍山地区小地震活动频繁的主要原因。  相似文献   

14.
采用深地震反射剖面探测,结合地表地质信息,本文对芦山地区的地壳结构、深浅构造和隐伏活动断裂进行了分析.研究结果表明:该区上地壳结构特征清晰,深度约为15km左右;区内断裂由于受青藏高原向东南方向的推挤和坚硬的四川盆地阻挡的联合作用均属逆冲断裂,其中双石—大川断裂以低角度向深部延伸,主要表现为纯逆冲的运动学性质,并与周边小断裂共同组成叠瓦状断层构造.而广元—大邑断裂为上陡下缓式逆冲断裂,与其六条分支断裂共同组成了"正花状"构造,断裂活动是以逆冲为主,并伴随着小的水平滑动,是一条斜向逆冲的断裂.在芦山地震发震断裂的2km范围内推测存在一陡一缓两条断裂,并根据三者形态推测其在18km或以上收敛到一起并向深部延伸,从而使它们在芦山地震中被同时激活.研究结果揭示了研究区近地表活动断裂和地壳深部构造之间的关系,为进一步研究龙门山断裂带的深部构造环境、深浅构造关系以及断裂的活动性提供了有利的依据.  相似文献   

15.
秦岭—桐柏—大别复合造山带(以下称为秦岭大别造山带)属于中国中央造山带的一部分,由华北克拉通与扬子克拉通汇聚形成.对于秦岭大别造山带及其周缘地区的研究,可以为这一大陆碰撞造山带的形成与演化过程提供重要信息.本文整合研究区域的接收函数与背景噪声数据,采用H-κ叠加分析、接收函数与背景噪声联合反演、克希霍夫偏移成像等方法,得到了沿秦岭东西方向具有高分辨率的地壳及上地幔结构.研究结果显示:(1)莫霍面深度由西向东逐步抬升,由剖面西侧最深约55 km上升至剖面东侧最浅约30 km;莫霍面于东西秦岭之间起伏明显;桐柏以及东大别下方莫霍面局部加深.(2)西秦岭中下地壳观测到的高速异常阻隔了青藏高原东北缘地壳低速异常的向东扩张,反映了青藏高原东北缘的中下地壳流没有通过西秦岭继续向东流动.(3)西秦岭岩石圈地幔顶部高速异常延伸至100 km深度(剖面底部),桐柏—西大别岩石圈地幔顶部高速延伸至70 km深度,东大别、东秦岭岩石圈地幔顶部未见较大深度范围的高速异常.  相似文献   

16.
地质学家基于岩石年代学、峰期变质的压力差和阿尔卑斯变质沉积岩中柯石英的发现,推断在大别造山带地区发现的柯石英和榴辉岩乃是地幔深处120km左右折返至地壳浅部的结果.为了提供大别造山带与郯庐断裂带地域的壳、幔深部结构与深层动力过程的定量判据,本文利用瑞利(Rayleigh)波的频散效应反演该区S波的三维群速度结构分布.研究结果表明:(1)该区存在一由东向西陆内俯冲的高速板舌,其下插深度仅达160 km.在秦岭—大别造山带地域上地幔70km深处存在一顶部宽约500km的低速地幔热点.(2)出露的含柯石英榴辉岩是大别造山带深部物质和能量的交换,郯庐断裂带强烈平移错动及板内俯冲效应共同作用导致的深部物质(上地幔)运移和动力学效应的综合产物.  相似文献   

17.
史克旭  张瑞青  肖勇 《地球物理学报》1954,63(12):4369-4381
青藏高原东北缘作为高原向外扩张的最前缘地区,代表了高原最新的变形状态,是研究青藏高原变形加厚的关键地区.本文利用"中国地震科学台阵探测"项目在南北地震带北段布设的密集宽频带流动台阵资料,采用虚拟地震测深方法(VDSS),对青藏高原东北缘及周边地区的地壳厚度进行了研究,以期为研究青藏高原东北向扩展的前缘位置,以及扩展的动力学模式等提供地球物理学依据.波形模拟的结果显示,研究区地壳厚度变化剧烈.其中,祁连和西秦岭地块内地壳厚度存在明显的东西向横向变化,以103°E为界,东部地区为45~50 km,而西部地区地壳已明显增厚,约达到55 km以上.与祁连造山带相邻的阿拉善块体南缘地壳也明显加厚,接近55 km,而阿拉善块体内部地壳厚度约为45~50 km.与其他研究地区相比,鄂尔多斯地块地壳相对要薄,但整体而言,鄂尔多斯地块地壳呈现南北薄(约45 km)、中央厚(约50 km)的形态特征.此外,在六盘山断裂带台站下方观测到复杂的SsPmp震相,推测为双Moho界面结构.结合其他地球物理学证据,我们认为青藏高原东北缘地区地壳增厚方式以均匀缩短增厚为主,且高原向北东扩展的前缘已越过祁连山北缘断裂,进入阿拉善块体南缘地区.  相似文献   

18.
帕米尔东北侧地壳结构研究   总被引:50,自引:17,他引:50  
1998年在帕米尔东北侧伽师及其周边地区完成了两条深地震宽角反射/折射剖面. 结果表明,西昆仑、塔里木和天山在地壳速度结构、构造特征上显示出较大差异. 塔里木块体具有稳定地块的地壳结构特征,地壳平均速度较高(6.5km/s). 向南进入西昆仑,地壳明显增厚,厚度可达0km左右,且地壳平均速度偏低(6.0-6.2km/s),偏低的地壳平均速度主要来源于相对低速度的下地壳结构,反映了西昆仑褶皱系下地壳介质的特征. 向北进入天山后,地壳同样明显增厚,但增厚的程度低于西昆仑下,约为50-55km. 天山地壳同样具有明显低的平均速度(6.2km/s),显示了天山地壳相对"软"的特征,但天山地壳偏低的平均速度来源于广泛分布于中地壳的低速度层和速度偏低的下地壳. 在印度块体向北强烈推挤的作用下,该区地壳遭受强烈的不均匀变形,塔里木块体向南插入西昆仑下,向北插入天山下,形成了该区强烈地震频繁发生的深部构造环境.  相似文献   

19.
海原一六盘山构造带是青藏高原东北缘地区的一条重要边界,在海原断裂带和六盘山断裂带接触区形成了特殊的马东山挤压阶区,本文对跨过该挤压阶区一条密集测点大地电磁剖面数据进行了处理和二维反演,获得的深部电性结构图像揭示在马东山挤压阶区深部电性结构表现为在高阻背景下镶嵌多个向西南倾斜的低阻条带电阻率结构样式,并在深度约25 km汇聚到中下地壳低阻层内,共同组成"正花状"结构;海原一六盘山构造带西南侧到陇中盆地区间呈现高、低阻相互"楔合"的深部结构特征,而其东北侧的鄂尔多斯西缘带自地表到中下地壳为较完整的高阻块体.另外结合跨过海原断裂带中段和西秦岭造山带的大地电磁探测结果,对海原一六盘山构造带分段性及其两侧的陇中盆地和鄂尔多斯地块的接触关系进行了研究分析.大地电磁探测成果佐证了在海原断裂带中段为具有走滑特点的断裂,而其尾端与六盘山断裂带斜交区域的马东山地区发生了强烈的逆冲推覆与褶皱变形;活动构造研究发现沿海原断裂带所产生的左旋走滑位移被其尾端的马东山、六盘山以东西向的地壳缩短调节吸收,GPS观测表明青藏高原东北缘地区现今构造变形分布在海原一六盘山构造带以西上百公里的范围内,陇中盆地一海原一六盘山构造带和鄂尔多斯地块一线的深部电性结构图像也很好地解释了该区变形状态:海原一六盘山构造带带及西南盘的陇中盆地的中下地壳非常破碎,在青藏高原向北东方向的推挤下容易发生变形,而北东盘鄂尔多斯地块地壳结构完整,很难发生构造变形.对海原一六盘山构造带马东山阶区和龙门山构造带的深部电性结构及变形特征等进行了比较分析,发现该区有与2008年汶川地震相似的深部构造背景,应重视该区强震孕育环境的探测研究.  相似文献   

20.
西秦岭与南北地震构造带交汇区深部电性结构特征   总被引:15,自引:10,他引:5       下载免费PDF全文
西秦岭造山带与南北地震构造带接触区是中国大陆最重要的南北向和东西向构造转化的接合部位之一.本文介绍了分别位于该区106°E东、西两侧的LMS-L3和DBS-L1两条大地电磁剖面的探测结果,两条剖面分别跨过了龙门山构造带东北段的青川段和宁强段.采用大地电磁相位张量分解技术对两条剖面上各测点的电性走向、二维偏离度等进行了计算和分析,采用NLCG二维反演方法对TE+TM模式的视电阻率和阻抗相位数据进行了二维联合反演.反演得到二维电性结构,在经度106°西侧LMS-L3剖面的深部电性结构自北向南揭示出,西秦岭北缘、成县盆地北缘、康县(即勉略构造带)和平武-青川断裂带都表现为明显的电性梯度带,深部延伸可达几十公里;西秦岭造山带、碧口地块与龙门山构造带东北段3个构造单元整体表现为高电阻体、呈现往南叠合且角度逐渐变陡的趋势.在106°E西侧西秦岭造山带区域的深部存在壳内低阻层,而东侧区域表现为高电阻体,深部电性结构在106°E东、西两侧的差异与该区深部速度结构特征一致,东、西两侧深部结构差异可能是该区中强地震分布差异的深层原因.LMS-L3和DBS-L1两条剖面南段的深部电性结构图像揭示出龙门山构造带东北部的青川段和宁强段内的平武-青川断裂带具有明显不同的深部结构特征,平武-青川断裂带在青川段为明显的电性梯度带,在宁强段不再表现为电性梯度带,而是完整的高电阻块体.汶川强余震向东北发展止于青川青木川附近,与平武-青川断裂带延伸深度和向北东方向的延伸长度密切相关,同时高电阻块体的宁强段对汶川强余震东北发展起到了阻挡作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号