首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The name Mérida Glaciation is proposed to designate the alpine glaciation which affected the central Veneruelan Andes; during the Late Pleistrocenc. Two main morainie levels have been recognired: one between 2600 and 2700 m, and another between 3000 and 3500 m elevation. The snow line during the last glacial advance was lowered approximately 1200 m below the present snow line (3700 m). Rodiocarbon dating indicates that the moraines are older than 10,000 years B.P., and probahly older than 13,000 years B.P. The lower morainie level probably corresponds to the main Wisconsin glacial advance. The upper level probably represents the last glacial advance (Late Wisconsin).  相似文献   

2.
Morphological, seismic and lithostratigraphic investigations of a moraine deposit at Bleik (the Bleik moraine), northern Andøya, show short-distance transported till overlying long-distance transported predominantly glaciofluvial ice-marginal deposits. Consolidated glaciomarine sediments from a core at present sea-level, c . 400 m distally to the moraine complex, contain 31 species of foraminifera, among which Cassidulina reniforme, Islandiella helenae and Trifarina fluens dominate, and fragments of the molluscs Mya truncata and Astarte sp. and the echinoid Strongylocentrotus sp. Amino acid analyses of the foraminifera Cibicides lobatulus and the mollusc Mya truncata indicate ages between 22,000 and 16,000 BP. Radiocarbon dating of fragments of Mya truncata from the upper part of the core gave an age of 17,940 ± 245 BP, while a dating of unidentified shell fragments from the lower part gave an infinite age (>40,000 BP). The sediment was probably disturbed by icebergs beyond the end moraine zone, and the radiocarbon and amino acid dating of Mya truncata therefore represent a maximum age for this process. This new evidence indicates two phases with a higher relative sea-level than at present at Bleik, c . 18,000 and >40,000 BP. The Bleik moraine probably represents the early Late Weichselian glacial maximum ( c . 22,000 BP), while the underlying deglaciation deposit and associated beach-ridge (Bruvollen) is of pre-Late Weichselian age. Moraine ridges 3–4 km to the south of Bleik probably indicate advances of local glaciers between 22,000 and 18,000 BP.  相似文献   

3.
西南地区晚二叠世层序-古地理及聚煤特征   总被引:3,自引:0,他引:3  
西南地区上二叠统赋存有丰富的煤炭资源,含煤地层自下而上分别是峨眉山玄武岩组、龙潭组(宣威组中、下段或吴家坪组)和长兴组(宣威组上段或汪家寨组)。本文对该区晚二叠世含煤岩系层序地层、岩相古地理及聚煤作用进行研究,以区域不整合面、沉积相转换面以及下切谷砂体底部冲刷面等为层序界面,结合石灰岩标志层向古陆方向延伸距离而显示的旋回性特征,将区内含煤岩系划分为3个三级层序和相应的低位、海侵及高位体系域。层序1形成于晚二叠世吴家坪阶早期,主要分布在川南隆起的南北两侧,包括川东北及滇东、黔西地区;层序2形成于吴家坪阶中期,层序3形成于吴家坪阶晚期及长兴阶,层序2和层序3在西南全区均发育。三个层序的发育特征反映出海侵自东向西脉动推进、东深西浅的古地理格局,当时物源区主要为西侧的康滇古陆,沉积相单元有从西到东依次为陆相冲积平原-过渡相潮坪及三角洲-海相碳酸盐台地的沉积相展布规律。成煤环境主要为河流岸后沼泽、三角洲平原分流间湾沼泽、海湾(泻湖)-潮坪沼泽等,以三角洲体系成煤作用最强。总体上随着海水自东向西不断侵进,有利的成煤环境亦随着海平面的上升而不断向西迁移,聚煤中心亦有逐渐向西迁移的规律。  相似文献   

4.
Examination of late Pleistocene packrat middens from the northern and central Chihuahuan Desert disclosed macrofossils of Colorado piñon (Pinus edulis) and Texas piñon (P. remota). Radiocarbon dating indicates that Texas piñon was widespread in Trans-Pecos Texas and northeastern Mexico between 30,000 and 11,000 yr B.P. Today it is found in small refugia east of its former range. In the late Pleistocene Colorado piñon occurred at lower elevations on the northern edge of the Chihuahuan Desert. Both species occurred in the Hueco Mountains, near El Paso, Texas. No clear evidence was found of the presence of Mexican piñon (P. cembroides), though today it is abundant in the Davis and Chisos Mountains. A paleoclimate is postulated that had the following characteristics: increased winter precipitation from Pacific frontal sources, reduced summer temperatures and precipitation, and milder winter temperatures due to a reduced frequency of Arctic airmass incursion. Winter precipitation appears to have decreased from north to south, while winter temperatures, and, possibly, summer precipitation, increased from north to south. During the late Pleistocene, the northern Chihuahuan Desert was dominated by woodlands of piñon pines, junipers, and oaks. The desert-scrub communities that characterize the area today are a Holocene phenomenon.  相似文献   

5.
Post‐Late Paleozoic Collisional Framework of Southern Great Altai   总被引:1,自引:0,他引:1  
We outline the post-Late Paleozoic (latest Permian to Cenozoic) collisional framework of the southern Great Altai (Central Asia) produced by the convergence between the Tuva-Mongolia and Junggar continental terranes (microplates). The collisional structures in the region classified on the basis of their geometry and deformation style, dynamic metamorphism, and compositions of tectonites are of three main types: (1) mosaic terranes made up of large weakly deformed Paleozoic blocks separated by younger shear zones; (2) contractional deformation systems involving structures formed in post-Late Paleozoic time, parallel faults oriented along collisional deformation systems, and relict lenses of Paleozoic orogenic complexes; and (3) isolated zones of dynamic metamorphism composed mostly of collisional tectonites different in composition and alteration grade.  相似文献   

6.
Latest field research and palæoenvironmental reconstructions have revealed that within less than 6000 years the eastern Sahara experienced a dramatic climatic change similar to that in the western Sahara, passing from hyperaridity to semi-aridity (dry savanna) to its present hyperarid state. Groundwater levels started to rise about 9300 years before present (14C years BP), leading to the formation of a mosaic of freshwater lakes and swamps. Within a few decades, the aquifers were loaded and the palæopiezometric surface was as much as 25 m higher than it is today. The uplands generated up to 800 km long fluvial systems, which put an end to the endorheic drainage of the region and functioned as migration paths for large savanna mammals. These wetter conditions persisted in Western Nubia during the Holocene until ca 5000 years BP The climatic deterioration began around 5700 years BP as shown by evaporitic sediments. Reversal events prior to aridification during the Late Holocene were not recorded systematically in the sediments of the eastern Sahara because of the stability of the ecosystems. Changes in land-surface conditions such as palæolakes, swamps and vegetation created water vapour sources that generated local rainfall and buffered short dry spells. Radiocarbon-dated charcoal indicates that Neolithic human occupation culminated during this Early Holocene wet phase and ended ca 2000 years after the fading of the wet phase at about 3000 years BP, when the shallow aquifers were exhausted.  相似文献   

7.
8.
BOREAS Vorren, K.-D. 1978 03 01: Late and Middle Weichselian stratigraphy of Andøya, north Norway, Boreas, Vol. 7, pp. 19–38. Oslo. ISSN 0300–9483.
Bio-stratigraphy and 14C datings from Lake Endletvatn, 69o 44'N and 19o05'E, approx. 35 m above sea level, suggest that the lacustrine sedimentation started about 18,000 B.P. The Middle Weichselian vegetation was probably a dry arctic, partly barren, grassland type with abundant Draba spp. and perhaps also Braya spp. Two climatic ameliorations of this chronal substage, named Endletvatn thermomers 1 and 2 (ET 1 and 2), have been recorded. During ET 2, the beginning of which has been dated at about 15,000 B.P., a humid climate prevailed, with a July temperature probably not deviating much from the present one. The colonization by low alpine and subalpine species probably started in the Bølling Chronozone. During the early Allerød Chronozone, protocratic conditions with grasses RumexlOxyria, Papaver and Sagina of. saginoides prevailed. During the middle of the Allerød, stable soil and continuous vegetation was established at sheltered places. At the transition to the Younger Dryas Chronozone a climate favouring Artemisia changed this vegetational development. The middle of the Younger Dryas was cool and humid, probably with an upper low alpine vegetation. The end of this chronozone was characterized by a vegetation of low alpine heaths with Empetrum and Dryas.
Diatom analysis (Foged 1978) suggests that there has been no direct marine influence in the basin. The marginal moraine stratigraphy, the marine limit and the climatic development are discussed.  相似文献   

9.
A U–Pb zircon age of 91.2 ± 0.2 Myr from western India (St. Mary islands) confidently links India with the Late Cretaceous magmatic province in Madagascar (≈ 84–92 Ma), and the U–Pb age is within analytical error of the U–Pb age of the Analalava gabbro pluton (91.6 ± 0.3 Myr) in northeastern Madagascar. Palaeomagnetic data from India and Madagascar allow us to postulate a new India–Madagascar fit (Euler latitude = 14.24°, longitude = 38.8° and rotation angle = –69.2°). This fit is applicable to the Late Cretaceous, directly prior to and during the early phase of Madagascar–India separation. In our Late Cretaceous reconstruction, south-west India runs roughly subparallel with the first known break-up related magnetic anomaly (A34); it maintains a close connection between Mada-gascar and India, but places India slightly rotated compared to the eastern margin of Madagascar and more northerly compared with some reconstructions. St. Mary magmatism is linked to the initial break-up between India and Madagascar, and magmatism probably resulted from rift-related extensional processes initially induced by the Marion hotspot underlying southern Madagascar during the Late Cretaceous.  相似文献   

10.
Nioghalvfjerdsfjorden in North-East Greenland is at present covered by a floating glacier. Raised marine deposits in the surrounding area contain shells of marine molluscs, bones of marine mammals and pieces of driftwood. A fairly systematic sampling of such material has been conducted, followed by extensive radiocarbon dating. We suggest that the Greenland ice sheet extended onto the shelf offshore North-East Greenland during isotope stage 2, perhaps even reaching the shelf break. During the subsequent recession of the ice sheet, the entrance of Nioghalvfjerdsfjorden had become ice-free by 9.7 cal. ka BP. The recession culminated between 7.7 and 4.5 cal. ka BP, during which time the fjord was glacier-free along its entire 80 km length. No dates younger than 4.5 cal. ka BP are available on marine material from the fjord, and it seems probable that the fjord has been continuously covered by the floating glacier since this time. The maximum glaciation was attained around AD 1900, after which thinning and recession took place. The marine limit increases from c. 40 m above sea level near the present margin of the Inland Ice to c. 65 m above sea level at the outer coast. These figures fit into the regional pattern of the marine limit for areas both to the south and north. The marine fauna comprise two bivalves, Macoma calcarea and Serripes groenlandicus, that may represent a southern element present during the Holocene temperature optimum. Remains of three taxa of southern extralimital terrestrial and limnic plants were dated to 5.1 cal. ka BP, and remains of another extralimital plant were dated to 8.8 and 8.5 cal. ka BP. The known Holocene time ranges of the willow Salix arctica and the lemming Dicrostonyx torquatus have been extended back to 8.8 and 6.4 cal. ka BP, respectively, providing minimum dates for their immigration to Greenland.  相似文献   

11.
Sediment budgets since the Late-glacial were constructed for five alluvial-fan–source-basin systems in Japan. The Late-glacial and Holocene sediment yield from each source area was estimated based on digital elevation data and the morphometric analyses of geomorphological maps, in which all hillslopes and fluvial surfaces were classified. Late-glacial and Holocene sediment storage in each fan was calculated from stratigraphical data. The results have revealed that the ratio of sediment storage in a fan to sediment supply is between ca. 0.3 and 0.8. Such high ratios of sediment storage over long time periods cast doubt on the previously proposed steady-state theory of alluvial fan development. The storage ratio decreases if fan sediments are removed by neighbouring large rivers. The maximum storage ratio of 0.8 reflects the ratio of washload to total load for Japanese mountain rivers. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Lake El′gygytgyn is situated in a 3·6 Myr old impact crater in North‐eastern Siberia. Its sedimentary record probably represents the most complete archive of Pliocene and Quaternary climate change in the terrestrial Arctic. In order to investigate the influence of gravitational sediment transport on the pelagic sediment record in the lake centre, two sediment cores were recovered from the lower western lake slope. The cores penetrate a sub‐recent mass movement deposit that was identified by 3·5 kHz echo sounding. In the proximal part of this deposit, deformed sediments reflect an initial debris flow characterized by limited sediment mixture. Above and in front of the debrite, a wide massive densite indicates a second stage with a liquefied dense flow. The mass movement event led to basal erosion of ca 1 m thick unconsolidated sediments along parts of its flow path. The event produced a suspension cloud, whose deposition led to the formation of a turbidite. The occurrence of the turbidite throughout the lake and the limited erosion at its base mainly suggest deposition by ‘pelagic rain’ following Stokes’ Law. Very similar radiocarbon dates obtained in the sediments directly beneath and above the turbidite in the central lake confirm this interpretation. When applying the depositional model for the Late Quaternary sediment record of Lake El′gygytgyn, the recovered turbidites allow reconstruction of the frequency and temporal distribution of large mass movement events at the lake slopes. In total, 28 turbidites and related deposits were identified in two, 12·9 and 16·6 m long, sediment cores from the central lake area covering approximately 300 kyr.  相似文献   

13.
Late-glacial-Holocene forest history of southern Isla Chiloé (latitude 43°10′ S) was reconstructed on the basis of pollen analysis in three profiles (Laguna Soledad, Laguna Chaiguata, Puerto Carmen). Prior to 12,500 yr B.P. pollen records are dominated by plant taxa characteristic of open habitats (Zone I). From 12,500 yr B.P. to the present, tree species predominate in the pollen records (Zones II–V). Between 12,500 and 9500 yr B.P. ombrophyllous taxa (Nothofagus, Podocarpus nubigena. Myrtaceae, Fitzroya/Pilgerodendron, and Drimys) are frequent in all pollen diagrams, suggesting a wetter and colder climate than the present. Between 9000 and 5500 yr B.P. Valdivian forest elements, such as Nothofagus dombeyi type, Weinmannia, and Eucryphia/Caldcluvia, dominate, indicating a period of drier and warmer climate. From 5500 yr B.P. onward, the expansion of mixed North Patagonian-Subantarctic forest elements and the increased frequence of Tepualia suggest increased rainfall and temperatures oscillating around the modern values.The change from open to forest vegetation (ca. 12,500 yr B.P.) probably represents the most pronounced climatic change in the record and can be interpreted as the glacial-postglacial transition in the study area.  相似文献   

14.
This synopsis highlights some of the main results presented in this issue of Boreas. The collection of papers deals with ice sheet reconstruction in space and time, isostatic and eustatic response to deglaciation, land to shelf sediment interaction, and Eemian and Holocene environmental variations. The most significant new results are that the last glacial maximum of the Kara Sea and Barents Sea ice sheets were both much smaller and much older than in most previous hypotheses. This puts new constraints on, for example, climate and ice sheet linkages, ice sheet interactions (Scandinavian-Barents Sea-Kara Sea), and land-ocean riverine input through time.  相似文献   

15.
Quantitative studies of foraminiferal faunas and isotope ratios have been done in two gravity cores from the Vøring Plateau. Core 23199 from about 2000 m water depth included sediments younger than oxygen Stage 7. Core 23205 from about 1400 m ended in sediments from Stage 5. According to the transfer temperatures, the onset of abundances of Cibicidoides wuellerstorfi and the δ13C values of Neogloboquadrinapachyderma , the Vøring Plateau was covered by pack-ice during Stages 6,4,2 and, to some extent, also during Stage 3. Ice-free sea-surface conditions prevailed from late Substage 5e throughout Stage 5 and during stage 1. The transition from Stage 6 to Stage 5 (Termination II) took place in two steps: Ila is defined by the δ18O signal of N. pachyderma (reduced global ice volume) and lib by the increased occurrence of C. wuellerstorfi (melting of local pack-ice). A contemporaneous development of an interglacial deep-water circulation system is indicated.  相似文献   

16.
The late Quaternary glacial history of the Nun‐Kun massif, located on the boundary between the Greater Himalaya and the Zanskar range in northwestern India, was reconstructed. On the basis of morphostratigraphy and 10Be dating of glacial landforms (moraines and glacial trimlines), five glacial stages were recognized and defined, namely: (i) the Achambur glacial stage dated to Marine Oxygen Isotope Stage 3 to 4 (38.7–62.7 ka); (ii) the Tongul glacial stage dated to the early part of the Lateglacial (16.7–17.4 ka); (iii) the Amantick glacial stage dated to the later part of the Lateglacial (14.3 ka, 11.7–12.4 ka); (iv) the Lomp glacial stage dated to the Little Ice Age; and (v) the Tanak glacial stage, which has the youngest moraines, probably dating to the last few decades or so. Present and former equilibrium‐line altitudes (ELAs) were calculated using the standard area accumulation ratio method. The average present‐day ELA of ~4790 m above sea level in the Greater Himalaya is lower than those in the Ladakh and Zanskar ranges, namely 5380 and ~5900 m a.s.l., respectively. The ELA in the Zanskar range is higher than in the Ladakh range, possibly due to the higher peaks in the Ladakh range that are able to more effectively capture and store snow and ice. ELA depressions decrease towards the Ladakh range (i.e. inner Plateau). Peat beds interbedded with aeolian deposits that cap the terminal moraine of Tarangoz Glacier suggest millennial‐time‐scale climate change throughout the Holocene, with soil formation times at c. 1.5, c. 3.4 and c. 5.2 ka, probably coinciding with Holocene abrupt climate change events. Given the style and timing of glaciation in the study area, it is likely that climate in the Nun‐Kun region is linked to Northern Hemisphere climate oscillations with teleconnections via the mid‐latitude westerlies.  相似文献   

17.
This paper presents a considerably revised biostratigraphy for Upper Albian through Coniacian pelagic limestone and shale sequences in the northeastern Caucasus region based primarily on planktic foraminiferal distributions. The use of concentrated acetic acid for the extraction of microfossils from the hard limestones has yielded a much more detailed planktic foraminiferal biostratigraphy than has been documented previously. Because of the low latitude location of the study area the high diversity assemblages contain many of the biomarkers used to identify standard Tethyan biozones ranging from the Rotalipora appenninica Zone through the Dicarinella concavata Zone. A key result of this study is the recognition of an apparently continuous Cenomanian/Turonian boundary interval within a laminated, dark marl that is enriched in organic carbon. Extinction of the single-keeled rotaliporids corresponds with the onset of deposition of the laminated marl beds.  相似文献   

18.
The eastern part of the Western Cordillera of Ecuador includes fragments of an Early Cretaceous (≈123 Ma) oceanic plateau accreted around 85–80 Ma (San Juan–unit). West of this unit and in fault contact with it, another oceanic plateau sequence (Guaranda unit) is marked by the occurrence of picrites, ankaramites, basalts, dolerites and shallow level gabbros. A comparable unit is also exposed in northwestern coastal Ecuador (Pedernales unit).

Picrites have LREE-depleted patterns, high Ndi and very low Pb isotopic ratios, suggesting that they were derived from an extremely depleted source. In contrast, the ankaramites and Mg-rich basalts are LREE-enriched and have radiogenic Pb isotopic compositions similar to the Galápagos HIMU component; their Ndi are slightly lower than those of the picrites. Basalts, dolerites and gabbros differ from the picrites and ankaramites by flat rare earth element (REE) patterns and lower Nd; their Pb isotopic compositions are intermediate between those of the picrites and ankaramites. The ankaramites, Mg-rich basalts, and picrites differ from the lavas from the San Juan–Multitud Unit by higher Pb ratios and lower Ndi.

The Ecuadorian and Gorgona 88–86 Ma picrites are geochemically similar. The Ecuadorian ankaramites and Mg-rich basalts share with the 92–86 Ma Mg-rich basalts of the Caribbean–Colombian Oceanic Plateau (CCOP) similar trace element and Nd and Pb isotopic chemistry. This suggests that the Pedernales and Guaranda units belong to the Late Cretaceous CCOP. The geochemical diversity of the Guaranda and Pedernales rocks illustrates the heterogeneity of the CCOP plume source and suggests a multi-stage model for the emplacement of these rocks. Stratigraphic and geological relations strongly suggest that the Guaranda unit was accreted in the late Maastrichtian (≈68–65 Ma).  相似文献   


19.
Despite the presence of numerous active volcanoes in the northern half of Ecuador, few, if any, distal tephras have been previously recognized in the southern one third of the country. In this article, we document the presence of thin (0.1–1.0-cm-thick) distal tephras comprising glass and/or phenocrysts of hornblende and feldspar in sediment cores from five glacial lakes and one bog in Las Cajas National Park (2°40′–3°00′S, 79°00′–79°25′W). The lake cores contain from 5 to 7 tephras, and each has a diagnostic major element geochemistry as determined from electron microprobe analysis of 710 glass shards and 440 phenocrysts of feldspar and hornblende. The loss of sodium with exposure to the electron microbeam causes a 10±7 wt.% (±1σ) reduction in Na content, which we empirically determined and corrected for before correlating tephras among the sediment cores. We use a similarity coefficient to correlate among the sediment cores; pair-wise comparison of all tephras generally yields an unambiguous correlation among the cores. Six tephras can be traced among all or most of the cores, and several tephras are present in only one or two of the cores. Twenty-six accelerator mass spectrometry 14C dates on macrofossils preserved in the sediment cores provide the basis for establishing a regional tephrochronology. The widespread tephras were deposited 9900, 8800, 7300, 5300, 2500, and 2200 cal yr B.P. The oldest tephras were deposited 15,500 and 15,100 cal yr B.P., but these are not found in all cores. Two of the tephras appear correlative with volcaniclastic strata on the flanks of Volcán Cotopaxi and one tephra may correlate with strata on the flanks of Volcán Ninahuilca; both volcanoes are in central Ecuador. The absence of tephras in sediment cores correlative with the numerous eruptions of active volcanoes of the past two millennia implies that the earlier eruptions, which did deposit tephras in the lakes, must have been either especially voluminous, or southerly winds must have prevailed at the time of the eruption, or both.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号