首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Upper Cretaceous (Turonian-Campanian) Muti Formation (Sayja Member) documents the transition from a passive continental margin to a foreland basin, related to overthrusting of continental margin and ophiolitic nappes derived from the Tethys ocean. Upper Cretaceous northeastward subduction culminated in collision of a trench with the Arabian margin. As the trench docked with the margin the lithosphere was flexed, forming a peripheral bulge that migrated cratonward with time. The platform edge was initially uplifted (Turonian) and deeply eroded, creating the ‘Wasia-Aruma break’. After passage of the peripheral bulge subsidence began, with accumulation first of ferruginous crusts on hardgrounds. Lime-muds were then deposited on a deepening unstable sea-floor, along with phosphatic nodules and crusts (Turonian-Coniacian). Passage of the overthrust load over the Arabian continental-margin edge downflexed the lithosphere (Santonian-Campanian), resulting in drastic foundering of the old shelf edge to form a foredeep. Upper platform horizons collapsed as slump-sheets and debris-flows. Limestone blocks and lithoclastic debris-flows were shed by mass-wasting of the already deeply eroded old platform edge. Mud and silt were derived from the uplifted Arabian continent and deposited by mainly gravitational processes in a foredeep below the C.C.D. Subsidence of the Arabian platform edge allowed the Semail ophiolite nappe finally to override the Muti basin (late Campanian) with little internal deformation. Submarine emplacement is suggested by the absence of ophiolitic detritus in the Muti Formation. The stratigraphic evolution of the Muti Formation is in good general agreement with a model of the transition of an old, thermally mature, passive continental margin to a foreland basin, where the emplaced load is submerged.  相似文献   

2.
The depositional environments and bivalve assemblages are determined for the Upper Cretaceous Hinoshima Formation of the Himenoura Group, Kamishima, Amakusa Islands, Kyushu, Japan. The Hinoshima Formation is characterized by a thick transgressive succession that varies from incised-valley-fill deposits to submarine slope deposits with high aggradation rates of depositional systems. The incised valley is filled with fluvial, bayhead delta, brackish-water estuary, and marine embayment deposits, and is overlain by thick slope deposits.Shallow marine bivalves are grouped into five fossil assemblages according to species composition: Glycymeris amakusensis (foreset beds of a bayhead delta), Nippononectes tamurai (foreset beds of a bayhead delta), Ezonuculana mactraeformisNucula formosa (central bay), Glycymeris amakusensisApiotrigonia minor (slope), and Inoceramus higoensisParvamussium yubarensis (slope). These bivalve assemblages all represent autochthonous and parautochthonous conditions except for a Glycymeris amakusensisApiotrigonia minor assemblage found in debris flow and slump deposits. The life habitats of these bivalves and the compositions of the assemblages are discussed in terms of the ecological history of fossil bivalves of the mid- to Late Cretaceous.  相似文献   

3.
The shore‐normal transport of fine‐grained sediments by shelf turbidity currents has been the focus of intense debate over the last 20 years. Many have argued that turbidity currents are unlikely to be a major depositional agent on the shelf. However, sedimentological, architectural, stratigraphic and palaeogeographic data from the Campanian Aberdeen Member, Book Cliffs, eastern Utah suggests otherwise and clearly demonstrates that storm‐generated and river flood‐generated underflows can transport a significant volume of fine‐grained sediments across the shelf. These across‐shelf flowing turbidity currents cut large subaqueous channel complexes up to 7 m deep, tens of kilometres basinward of their time‐equivalent shoreface. The shelf channels were filled with organic‐rich siltstones, mudstones and very fine‐ to fine‐grained Bouma‐like sandstone beds, including wave‐modified turbidites, hyperpycnites and classical turbidites. Deposition was above storm wave base. Palaeocurrent data reveal an overwhelmingly dominant across‐shelf (east–south‐east), offshore‐directed transport trend. Tectonic activity and/or concomitant palaeogeographic reorganization of the basin may favour the generation of these turbidite‐rich shelf deposits by altering the relative balance of wave versus fluvial energy. Increased erosion and sediment supply rates, because of tectonic uplift of the hinterland, may have increased the probability of fluvial dominance along the coastline and, hence, the possibility of submarine channelization in front of the river mouths. Additionally, the coastline may have become more sheltered from direct wave energy, thus allowing the fluvial processes to dominate. Seasonal increases in rainfall and storm activity may also favour the generation of across‐shelf underflows. On wave‐dominated shorelines, isolated shelf channels and lobes are most likely to be found down‐dip of fluvial‐feeder systems in relatively high sediment supply settings. These features are also most likely to occur in systems tracts that straddle a sequence boundary, especially those which are tectonically generated, as these would enhance the potential for altering basin morphology and, hence, the balance of fluvial and wave energy. Isolated shelf channels are recognized in older and younger strata in the Book Cliffs region, implying that wave‐supported gravity flows were a recurrent phenomena in the Campanian of Utah. It is probable that isolated shelf bodies are preserved in other stratigraphic intervals in the Cretaceous Western Interior of North America, and other basins worldwide, and are currently being overlooked or misidentified. Shoreface‐to‐shelf facies models should be revised to incorporate turbidite‐rich shelf deposits in some shelf settings.  相似文献   

4.
The Upper Cretaceous Prairie Canyon Member of the Mancos Shale, Book Cliffs, Utah, contain outstanding examples of prodeltaic turbidity and hyperpycnal flow deposits. Sandstone‐rich, heterolithic and mudstone‐rich channel fills occur near the north‐west entrance to Tusher Canyon, Gunnison Butte and Bootlegger Wash. Mudstone‐rich and heterolithic‐rich hyperpycnal channel deposits are mostly unbioturbated, locally displaying a few specimens of Phycosiphon incertum, Protovirgularia dichotoma, Rosselia socialis, Schaubcylindrichnus coronus and Palaeophycus tubularis. Sandstone‐rich channel deposits consist of wave‐reworked turbidites and hyperpycnites, containing Helminthoidichnites tenuis, Lockeia siliquaria, Phycodes isp., Phycosiphon incertum, Protovirgularia dichotoma, Rosselia socialis, Skolithos linearis and Fugichnia. Scolicia isp. and Chondrites isp. occur locally. Strata along the south‐west entrance of Tusher Canyon record deposition in a prodelta turbidite lobe, but far from its axis. With the exception of a few specimens of Ophiomorpha isp., bioturbation is restricted to the top of the succession, where Curvolithus simplex, Gyrochorte comosa, Lockeia siliquaria, Palaeophycus tubularis and Ptychoplasma excelsum occur. Strata at Hatch Mesa record deposition in a hyperpycnal lobe, near to its axis. Sandstone beds include Curvolithus simplex, Gyrochorte comosa, Ophiomorpha nodosa, Palaeophycus tubularis, Phycosiphon incertum, Protovirgularia dichotoma, Ptychoplasma excelsum, Schaubcylindrichnus freyi, Skolithos linearis, large specimens of Rosselia socialis and indeterminate crustacean burrows. Chondrites isp. is present in the mudstone. High rates of both episodic and sustained sedimentation, degree of substrate consolidation, freshwater discharge and water turbidity are the most important stress factors in both channels and lobes. Taxonomic composition, uneven distribution of bioturbation through the successions, and overall low ichnodiversity help to distinguish these prodeltaic deposits from bathymetrically equivalent offshore strata in the same basin. Hyperpycnal flow deposits are formed in a wide variety of environmental settings, therefore displaying high ichnological variability. Such variability is summarized by characterising ichnofaunas from four different depositional settings: (i) lakes; (ii) shelf deltas; (iii) shelf‐edge deltas; and (iv) deep‐marine systems.  相似文献   

5.
Progradational shoreface tongues preserve a near-complete depositional record of relative sea-level highstands, falls and lowstands. Two distinct styles of progradational shoreface tongue are examined in an extensive outcrop and subsurface dataset from Late Cretaceous strata of the Book Cliffs area, Utah, representing (i) highstand through attached lowstand progradation and (ii) highstand through detached lowstand progradation. Using this dataset, key geometrical attributes of the shoreface tongues and their internal facies architecture are identified and quantified that enable the reconstruction of relative sea-level fall history. For example, attached, wave-dominated lowstand shoreface deposits record a slow (0.2– 0.3 mm yr–1), low-magnitude (> 14 m) relative sea-level fall punctuated by minor rises. Detached, weakly wave-influenced lowstand shoreface deposits record a more rapid (0.4–0.5 mm yr–1), high-magnitude (> 45 m) relative sea-level fall synchronous with a marked change in sediment delivery and depositional process regime at the shoreline.  相似文献   

6.
The Mesaverde Group consists of a thick wedge of fluvial, littoral-deltaic and shallow marine clastics shed into the Cretaceous Western Interior Seaway of North America. The western parts of the seaway lay within the strongly subsiding foredeep of the active Sevier fold and thrust belt further to the west. The study area is located east of the axis of maximum subsidence and is thus in a favourable position to record competing effects of eustasy, sediment supply and thrust-load induced subsidence. Facies and sequence analysis carried out on high quality outcrop and well log data led to the recognition of a complex depositional cycle hierarchy within the typical storm- and wave-dominated inner shelf/shoreface/strand plain and delta systems of the Mesaverde. Fourth-order parasequences and parasequence bundles of estimated 100–400 ka duration are the best recognizable, ubiquitous and most useful stratigraphic units. Their arrangement with respect to sequence boundaries, however, varies with their overall stratigraphic position and also differs from the Exxon models. Mesaverde progradation was interrupted by a major transgression that occurred out of phase with the aggradational to progradational stacking trend of third-order sequences. A proposed genetic model relates large-scale (second-order) sequence architecture to tectonics: a Sevier thrust event as well as Laramide uplift within the foredeep controlled non-linear changes in the accommodation/supply ratio. Parasequence stacking patterns and sequence boundary formation, in contrast, were the product of (global?) eustasy enhanced by short-term, perhaps local, changes in the rates of subsidence and detrital influx.  相似文献   

7.
The Cenozoic record of the north-western domain of the Duero basin is articulated at the surface through a set of continental depositional sequences called, from base to top, the Vegaquemada sequence, the Candanedo sequence, and the Barrillos sequence. These depositional sequences were deposited in continental sedimentary environments. The deposition of the first sequence occurred through a fluvial system with floodplains cut by low-sinuosity channels. The Vegaquemada sequence was developed between the Middle Eocene and the Early Agenian. The second sequence was formed by a set of highly efficient transport alluvial fans that evolved laterally towards fluvial systems with low-sinuosity fluvial channels and an extensive floodplain, where several types of palaeosols were formed. This sequence developed between the Early Agenian and the Late Vallesian. The third unit–the Barrillos sequence (between the Late Vallesian and the Turolian/Ruscinian transition), was generated by a set of highly efficient transport alluvial fans dominated by low-sinuosity fluvial channels.In subsurface geology, seismic and well data are used to rebuild the stratigraphic architecture. The two basal depositional sequences can be identified with two seismic units: the Palaeogene Seismic Unit (PgSU) and the Neogene Seismic Unit (NgSU), respectively. In the present work, we obtained the isovelocity, isochron, and isobath maps for the top and base of the two Cenozoic units. The Palaeozoic (PzSU) and Mesozoic (MzSU) seismic units are found under these two units. Through study of the logs of the various boreholes, it was only possible to analyse the upper 700 m of the Candanedo Sequence (NgSU), without encompassing the total thickness of the unit. Several middle-order sequences were differentiated, in general showing a sequential fining-upwards evolutionary character. Additionally, for the boreholes analysed two main types of electrofacies were identified, both representing fluvial channels and floodplain deposits.The north-western domain of the Duero basin is interpreted to have been formed in response to the tectonic uplifting of the Cantabrian Mountains since Middle-Eocene times. Integration of the data concerning the surface and subsurface geology in this domain reveals that this basin edge behaved as a foreland basin during Cenozoic stages. The foredeep, with a depth of 2800 m, is oriented east–west and has a sediment thickness of up to 3500 m. The forebulge is located in the southwestern zone and represents an area of basement uplifting in which a minimum thickness of materials from the Cenozoic depositional sequences has accumulated.  相似文献   

8.
盆山转换与沉积地质记录——以楚雄前陆盆地分析为例   总被引:3,自引:1,他引:3  
楚雄盆地位于扬子陆块的西南边缘,为一中生代周缘型前陆盆地。根据沉积相特征、层序地层结构和古地理演化的详细研究,结合古哀牢山造山带的构造演化,笔者认为楚雄盆地经历了从古生代被动大陆边缘沉积到中生代前陆盆地沉积的演化。前陆盆地演化的阶段性明显:晚三叠世卡尼期(云南驿组沉积期)和诺利早、中期(罗家大山组沉积期)为前陆复理石沉积;诺利晚期(花果山组沉积期)—古新世(赵家店组沉积期)为前陆磨拉石沉积。磨拉石沉积可分为海相含煤磨拉石和陆相红色磨拉石两种类型。其中陆相磨拉石沉积时间跨度长,分布面积广,沉积厚度大,沉积演化可细分为盆地成形、强烈沉降、回返充填和萎缩消亡四个阶段。随着逆冲造山楔的不断向上生长和向克拉通方向加载,楚雄前陆盆地经历了一个早期向上突然加深、变细和晚期向上变浅、变粗的沉积充填过程;盆地由早期复理石沉积演变为晚期磨拉石沉积;盆地基底形态由早期的窄而深演化为晚期的宽而浅;分布于造山楔前缘的盆地沉降与沉积中心也不断地向北东克拉通方向迁移。古流向、岩石学和岩石地球化学数据都显示楚雄前陆盆地沉积物的主要物源区为古哀牢山造山带,其次为东部隆起带,因此,盆地沉积物的供给具有明显的双物源特征。  相似文献   

9.
The Upper Oligocene–Miocene deposits of the foreland Austral Basin of Tierra del Fuego represent the youngest foredeep fill, developed in front of the adjacent fold and thrust belt. They consist of superbly exposed, sub-horizontal clastic successions of more than 600 m of sedimentary thickness. The study of 11 sections by means of facies analysis and sequence stratigraphic criteria enabled the identification of five depositional sequences (SISV), bounded by unconformities (dI-dV) involving hiatuses of different magnitudes. The basal sequence (SI) includes two members: A, mudstone dominated, deposited by cohesive flows; and B, glauconite-rich, sandstone dominated, deposited by episodic turbidity currents. The remaining sequences (SIISV) are composed of complex arrangements of fine conglomerates, coarse- to fine-grained sandstones, and mudstones that were deposited mainly by hyperpycnal flows. The basal unconformities of the SI to SIV involve minor hiatuses, while that of the SV is a major order unconformity. Two types of clinofom geometries are recognized in the foredeep sequences. Type a clinoforms present a wedge shaped geometry and characterize the foredeep infill during the compressional tectonic regime. Regarding this clinoform type, SI is situated closer to the orogen and shows variations in the bedding dip with development of internal unconformities. SII to SIV are situated towards the foreland and are characterized by subhorizontal conformable beds of large lateral extension. Type b clinoforms, with sigmoidal geometry, show a clear northeast progradation related to a progressive foredeep fill under tectonic quiescence. This clinoform type characterizes the deposits in SV. The recognition of hyperpycnites and different types of clinoform geometries in these sequences incorporates new concepts in reservoir prospects, which are critical for the evaluation of the petroleum system in the Austral Basin.  相似文献   

10.
Dominantly coarse-grained, shallow-marine, metasedimentary rocks of the Early Proterozoic Uncompahgre Group (UG) record periods of shoaling and drowning on different temporal scales that are attributed to episodic long-term oscillations in relative sea-level with superimposed shorter duration excursions in relative sea-level. Long-term events are probably tectonic whereas short-term events are eustatic. The 2–5 km thick Uncompahgre Group consists of 250–600 m thick, dominantly coarse-grained quartzite units (Q1–Q4) and 200–300 m thick mudstone/pelite units (P1–P5). Five depositional systems comprise the Uncompahgre Group. The outer shelf system (OSS) is composed of Bouma-type beds and intercalated mudstones that are transitional vertically to parallel-laminated to wave-rippled sandstones and hummocky cross-stratified sandstones of the inner shelf system (ISS). Trough cross-stratified sandstones comprise the shoreface system (SHS). The tidal inner shelf/shoreface system (TIS/SHS) consists of a complex interlayering of cross-bedded sandstones, thin-bedded conglomerates, mudstones and rippled sandstones. Trough cross-bedded pebbly sandstones and thin- to thick-bedded conglomerates represent the alluvial system (ALLS). Depositional systems in the UG are associated in transgressive and highstand-systems tracts that make up four sequences (1 to 4). Sequence boundaries do not correspond with lithostratigraphic boundaries but are defined by subtle unconformities. The basal Q1–P1 unit (lower sequence 1) consists of ALLS to TIS/ SHS to ISS comprising a transgressive systems tract. A maximum marine incursion is reflected by deposition of OSS facies in stratigraphic units P1–P2. Shoaling in the transition from P2 to the uppermedial portion of Q2 (OSS—ISS—SHS to a thick TIS/SHS—ALLS) records the highstand systems tract of upper sequence 1. A subtle disconformity/paraconformity delineates a type 2 sequence boundary at the top of the highstand systems tract. The drowning to shoaling pattern is replicated in sequence 2 (upper Q2 to P3 to upper medial Q3); sequence 3 (upper Q3 to P4 to upper-medial Q4); and an incomplete sequence 4 (upper Q4 through P5). Thinner shoaling intervals of OSS—ISS—SHS in P3 and in lower Q2, Q3 and Q4 represent parasequences. Sequences of 107 years duration are attributed to periods of increasing and decreasing subsidence rates due to tectonism marginal to the sedimentary basin. Parasequences record shorter duration temporal controls of c. 104 to 105 years related to eustatic oscillations. As a consequence of shoaling and aggradation/ progradation in the highstand systems tract, TIS/SHS and ALLS overlie and are temporally separated from OSS to ISS to SHS. This transition records filling of the basin to sea-level leading to a shelf geometry that was conducive to tidal amplification. A composite relative sea-level curve integrating long-term pulsatory subsidence and short-term eustasy best explains the stratigraphic evolution of the Uncompahgre Group.  相似文献   

11.
Large scale sedimentary structures present in the Upper Turonian to Santonian chalks of Haute Normandie (northern France) represent the remains of a carbonate bank complex which formerly extended over an area of at least 1500 km2. Cliff exposures along the Channel coast from St Valéry-en-Caux to Cauville and along the Seine from Sandouville to Lillebonne show sections of banks up to 50 m high and 1500 m across, their internal structures picked out by hardgrounds, nodular chalks and horizons of burrow flint. Associated with banks are slump sheets up to 20 m thick, slump scars, sedimentary breccias, injection phenomena and faults contemporaneous with sedimentation. Later diagenetic features include extensive dolomitization and silicification. These structures compare closely with the Waulsortian banks of the Palaeozoic, and bryozoan bioherms known from the Upper Cretaceous and Palaeocene of Denmark. Frame-building, sediment trapping and stabilizing organisms are absent, and bank development and stabilization was probably due to a plant covering, either algal or of marine angiosperms. Banks generated much of their own sediment, whilst a pelagic constituent (calcareous nannofossils and Foraminiferida) is also present. The distribution of the bank complex is related to a basement controlled swell area, whilst the life of the complex was limited to a relatively shallow water, regressive episode in the predominantly transgressive Upper Cretaceous history of the region. Les falaises littorales du Pays de Caux comprises entre Antifer et St Valèry-enCaux, et les affleurements de la basse vallée de la Seine permettent d'observer des formations du Turonien supérieur-Sénonien inférieur qui présentent des stratifications irrégulières soulignées par de nombreux hardgrounds, des horizons de craie noduleuse et des cordons de silex. Ces structures sont identifiées à des accumulations de calcilutite et calcarénite sous forme de bancs sous-marins dont la hauteur peut atteindre 50 m et qui couvrent une surface supérieure à 1500 km2; ils apparaissent au-dessus de hardgrounds subhorizontaux qui indiquent un haut-fond régional stable. Des glissements sous-marins sont associés à ces bancs et engendrent des niveaux avec des déformations souples atteignant 20 m d'épaisseur. Des brèches apparaissent localement et contiennent des blocs basculés de hardgrounds fragmentés lors du glissement; on y observe aussi de petites failles intrasédimentaires et des phénomènes d'injection. Aucun organisme constructeur ou capable de piéger et retenir le sédiment n'a été observé. La stabilisation de ces bancs serait due à une couverture végétale (algues ou angiospermes marines) dont on sait qu'elle peut disparâitre sans laisser de trace lors de la fossilisation. La croissance de ces bancs serait réalisée par un apport de sédiment comprenant une part de nourrissage autochtone comme cela existe pour les bancs récents en eau peu profonde, associée au dépôt d'une fraction pélagique.  相似文献   

12.
Marginal marine deposits of the John Henry Member, Upper Cretaceous Straight Cliffs Formation, were deposited within a moderately high accommodation and high sediment supply setting that facilitated preservation of both transgressive and regressive marginal marine deposits. Complete transgressive–regressive cycles, comprising barrier island lagoonal transgressive deposits interfingered with regressive shoreface facies, are distinguished based on their internal facies architecture and bounding surfaces. Two main types of boundaries occur between the transgressive and regressive portions of each cycle: (i) surfaces that record the maximum regression and onset of transgression (bounding surface A); and (ii) surfaces that place deeper facies on top of shallower facies (bounding surface B). The base of a transgressive facies (bounding surface A) is defined by a process change from wave‐dominated to tide‐dominated facies, or a coaly/shelly interval indicating a shift from a regressive to a transgressive regime. The surface recording such a process change can be erosional or non‐erosive and conformable. A shift to deeper facies occurs at the base of regressive shoreface deposits along both flooding surfaces and wave ravinement surfaces (bounding surface B). These two main bounding surfaces and their subtypes generate three distinct transgressive – regressive cycle architectures: (i) tabular, shoaling‐upward marine parasequences that are bounded by flooding surfaces; (ii) transgressive and regressive unit wedges that thin basinward and landward, respectively; and (iii) tabular, transgressive lagoonal shales with intervening regressive coaly intervals. The preservation of transgressive facies under moderately high accommodation and sediment supply conditions greatly affects stratigraphic architecture of transgressive–regressive cycles. Acknowledging variation in transgressive–regressive cycles, and recognizing transgressive successions that correlate to flooding surfaces basinward, are both critical to achieving an accurate sequence stratigraphic interpretation of high‐frequency cycles.  相似文献   

13.
The Dakota Formation in southern Utah (Kaiparowits Plateau region) is a succession of fluvial through shallow-marine facies formed during the initial phase of filling of the Cretaceous foreland basin of the Sevier orogen. It records a number of relative sea-level fluctuations of different frequency and magnitude, controlled by both tectonic and eustatic processes during the Early to Late Cenomanian. The Dakota Formation is divided into eight units separated by regionally correlatable surfaces that formed in response to relative sea-level fluctuations. Units 1–6B represent, from bottom to top, valley-filling deposits of braided streams (unit 1), alluvial plain with anastomosed to meandering streams (2), tide-influenced fluvial and tide-dominated estuarine systems (3A and 3B), offshore to wave-dominated shoreface (4, 5 and 6A) and an estuarine incised valley fill (6A and 6B). The onset of flexural subsidence and deposition in the foredeep was preceded by eastward tilting of the basement strata, probably caused by forebulge migration during the Early Cretaceous, which resulted in the incision of a westward-deepening predepositional relief. The basal fluvial deposits of the Dakota Formation, filling the relief, reflect the onset of flexural subsidence and, possibly, a eustatic sea-level rise. Throughout the deposition of the Dakota Formation, flexure controlled the long-term, regional subsidence rate. Locally, reactivation of basement faults caused additional subsidence or minor uplift. Owing to a generally low subsidence rate, differential compaction locally influenced the degree of preservation of the Dakota units. Eustasy is believed to have been the main control on the high-frequency relative sea-level changes recorded in the Dakota. All surfaces that separate individual Dakota units are flooding surfaces, most of which are superimposed on sequence boundaries. Therefore, with the exception of unit 6B and, possibly, 3B, most of the Dakota units are interpreted as depositional sequences. Fluvial strata of units 1 and 2 are interpreted as low-frequency sequences; the coal zones at the base and within unit 2 may represent a response to higher frequency flooding events. Units 3A to 6B are interpreted as having formed in response to high-frequency relative sea-level fluctuations. Shallow-marine units 4, 5 and 6A, interpreted as parasequences by earlier authors, can be divided into facies-based systems tracts and show signs of subaerial exposure at their boundaries, which allows interpretation as high-frequency sequences. In general, the Dakota units are good examples of high-frequency sequences that can be misinterpreted as parasequences, especially in distal facies or in places where signs of subaerial erosion are missing or have been removed by subsequent transgressive erosion. Both low- and high-frequency sequences represented by the Dakota units are stacked in an overall retrogradational pattern, which reflects a long-term relative sea-level rise, punctuated by brief periods of relative sea-level fall. There is a relatively major fall near the end of the M. mosbyense Zone, whereas the base of the Tropic shale is characterized by a major flooding event at the base of the S. gracile Zone. A similar record of Cenomanian relative sea-level change in other regions, e.g. Europe or northern Africa, suggests that both high- and low-frequency relative sea-level changes were governed by eustasy. The high-frequency relative sea-level fluctuations of ≈100 kyr periodicity and ≈10–20 m magnitude, similar to those recorded in other Cenomanian successions in North America and Central Europe, were probably related to Milankovitch-band, climate-driven eustasy. Either minor glacioeustatic fluctuations, superimposed on the overall greenhouse climate of the mid-Cretaceous, or mechanisms, such as the fluctuations in groundwater volume on continents or thermal expansion and contraction of sea water, could have controlled the high-frequency eustatic fluctuations.  相似文献   

14.
The Gongila Formation in the Hawal Basin displays lithological characteristics, textural variations and sedimentary structures that facilitate palaeoenvironmental reconstruction. The 41 m thick Gongila succession is divisible into: (i) a mudstone facies association (at the bottom) composed of fossiliferous limestone, clay shale, and sharp-based, graded and swaly-bedded shell debris; and (ii) a cross-stratified sandstone facies association that constitutes the uppermost 60% of the entire succession. The cross-stratified sandstone facies association is further subdivided, on the basis of sedimentary structures, into: (i) a lower interval represented by a coarsening upward fine- to medium-grained sandstone, siltstone and shale in which units characterised by parallel lamination and hummocky cross-stratification pass upward through a zone of small-scale low angle cross-stratification into units characterised by planar cross-stratification and sparse Teichichnus and Skolithos burrow traces; and (ii) an upper interval dominated by fine- to medium-grained sandstone and bioturbated siltstone characterised by erosive based, high angle tangential foresets, subhorizontal laminations and burrow structures belonging to the Thalassinoides, Ophiomorpha and Skolithos ichnogenera.The overall sequence of the Gongila Formation represents progradation on a wave influenced coast, passing from shelf mudstone at the base to lower and upper shoreface sandstones at the top. Each facies association displays an alternation between relatively high energy conditions when sediment was mainly deposited by decelerating suspension laden currents, and relatively low energy conditions when wave reworked fine-grained sediment as it was deposited from suspension. The influence of storms in these conditions is inferred from the associated lithofacies, textural characteristics and sedimentary structures.  相似文献   

15.
The investigations involved geophysical, sedimentological, palynological, chemical and mineralogical studies, supported by field-based infrared spectrometry. The Baganuur Basin, Central Mongolia, is among the rift or pull-apart-basins, which subsided at the boundary between the Jurassic and the Lower Cretaceous in East Asia. During the Berriasian, peat accumulation began in the area under study in Central Mongolia. The palynoflora is akin to the Siberian palynological province. Based on the phytoclast assemblages and the ratios of total sulfur content to total organic content, marine transgressions into this intermontane basin may be ruled out. The coal interseam sediments were laid down prevalently under neutral to slightly alkaline conditions; only in some carbonaceous sediments, the pH of intrastratal solutions was lowered. Suboxic to anoxic conditions persisted during almost the entire Lower Cretaceous period in the Baganuur Basin. Based on the distribution of fining- and coarsening-upward sequences and the organic matter, the basin fill has been subdivided into seven depositional units (A: fluvial–swamp, B: fluvial–lacustrine, C: deltaic–fluvial, D: fluvial, E: fluvial–deltaic–lacustrine/floodplain (?), F: lacustrine–deltaic–swamp, G: swamp–fluvial). A conspicuous change in the fluvial–lacustrine regime and an increase in the sediment supply may be observed at the boundary between depositional units B and C. A strong uplift triggered the onset of an intensive delta sedimentation. Lithoclasts, heavy minerals (e.g., apatite, zircon, garnet, anatase, brookite, epidote, sphene, tourmaline) and phyllosilicates (e.g., kaolinite, smectite, mica, chlorite) attest to a mixing of detrital material. One provenance area was abundant in acidic plutonic rocks as shown by the granitic lithoclasts, the other in volcanic rocks, which produced the vitroclastic debris deposited as tephra fallout. Post-depositional alteration of the siliciclastic interseam sediments was favored by a distinctive facies association of transmissive and sealing horizons. It led to a re-deposition of Ca, U and Sr in the siliciclastics. Post-depositional alteration of the organic material converted it into lignite to subbituminous C coal.  相似文献   

16.
Continental sediments of the Cloverly and Lakota Formations (Lower Cretaceous) in Wyoming are subdivided into three depositional systems: perennial to intermittent alluvial, intermittent to ephemeral alluvial, and playa. Chert-bearing sandstones, conglomerates, carbonaceous mudrocks, blocky mudrocks, and skeletal limestones were deposited by perennial to intermittent alluvial systems. Carbonaceous mudrocks contain abundant wood fragments, cuticle and cortical debris, and other vascular plant remains representing deposition in oxbow lakes, abandoned channels, and on floodplains under humid to seasonal conditions. Intraformational conglomerates, sandstones, bioturbated and blocky mudrocks with caliche nodules, and bioturbated limestones characterize deposition in intermittent to ephemeral alluvial systems. Bioturbated limestones are encased in bioturbated mudrocks with abundant pseudo-slickensides. The presence of caliche nodules in some of the blocky to bioturbated mudrocks is consistent with supersaturation and precipitation of calcium carbonate from groundwater under semi-arid conditions. Caliche nodules, pseudo-slickensides, and carbonate-rich floodplain sediments are interpreted to have been deposited by intermittent to ephemeral alluvial systems under seasonal to semi-arid climatic conditions. Laminated mudrocks, siltstones, vuggy carbonates, bedded to nodular evaporites, pebbly mudrocks, and diamictites were deposited in evaporative alkaline lakes or playas. Pebbly mudrocks and diamictites are interpreted to represent deposition from channelized and unchannelized hyperconcentrated flows on a playa, resulting from intense rain events within the basin.The areal abundance and distribution of these depositional systems change systematically across the overfilled portion of the Early Cretaceous Cordilleran foreland basin in Wyoming. The lower part (A-interval) of the Cloverly and Lakota Formations is characterized by deposits of perennial to intermittent rivers that existed 300 to 1000 km east of the Sevier fold-and-thrust belt. Proximal to the Sevier fold-and-thrust belt, the A-interval of the Cloverly Formation and upper Ephraim Formation of the Gannett Group are typified by deposits of intermittent to ephemeral rivers and their associated floodplains. In the middle part (B-interval) of the Cloverly Formation, intermittent to ephemeral alluvial systems expand to 600 km into the basin. The upper part (C-interval) of the Cloverly Formation is characterized by playa deposits in the Bighorn and Wind River Basins and intermittent to ephemeral alluvial deposits along the front of the ancestral Sevier Mountains. Deposits of perennial to intermittent alluvial systems in the C-interval of the Cloverly and Lakota Formations are restricted to the Black Hills region, almost 900 km to the east of the Sevier Mountains. The change in the areal distribution of depositional systems through time within this continental foreland basin may be attributed to the development of a rain shadow associated with the uplift of the Sevier Mountains in the Early Cretaceous.  相似文献   

17.
川东北前陆盆地须家河组层序-岩相古地理特征   总被引:24,自引:3,他引:24  
根据控制高分辨率层序的构造和天文因素将川东北前陆盆地晚三叠世须家河期划分为2个超长期、5个长期、18个中期及数十个短期旋回层序,并分析了须家河组超长期层序的岩相古地理特征与演化。在SLSC1超长期旋回时期,米仓山-大巴山构造山系尚处于低幅稳定隆升状态,而龙门山构造山系的逆冲推覆作用较为活跃,川东北前陆盆地属于受龙门山逆冲推覆作用远端效应影响的前陆斜坡,沿米仓山-大巴山前缘地带主要发育辫状河三角洲沉积,而盆地西南部主要发育浅湖沉积。在SLSC2超长期旋回时期,龙门山逆冲推覆进一步增强,同时,米仓山-大巴山开始进入逆冲推覆前的强烈构造隆升阶段,川东北前陆盆地有较大幅度的持续拗陷沉降,在继承SLSC1古地理演化的基础上,形成了以沿龙门山和米仓山-大巴山两逆冲推覆带前缘广泛发育的、以巨厚块状砾岩为特征的大型冲积扇沉积体系。  相似文献   

18.
Intracontinental subduction of the South China Block below the North China Block in the Late Triassic resulted in formation of the transpressional Sichuan foreland basin on the South China Block. The Upper Triassic Xujiahe Formation was deposited in this basin and consists of an eastward-tapering wedge of predominantly continental siliciclastic sedimentary rocks that are up to 3.5 km thick in the western foredeep depocenter and thin onto the forebulge and into backbulge depocenters.Five facies associations (A–E) make up the Xujiahe Formation and these are interpreted, respectively, as alluvial fan, transverse and longitudinal braided river, meandering river, overbank or shallow lacustrine, and deltaic deposits. This study establishes a sequence stratigraphic framework for the Xujiahe Formation which is subdivided into four sequences (SQ1, 2, 3 and 4). Sequence boundaries are recognized on the basis of facies-tract dislocations and associated fluvial rejuvenation and incision, and systems tracts are identified based on their constituent facies associations and changes in architectural style and sediment body geometries. Typical sequences consist of early to late transgressive systems tract deposits related to a progressive increase in accommodation and represented by Facies Associations A, B and C that grade upwards into Facies Association D. Regionally extensive and vertically stacked coal seams define maximum accommodation and are overlain by early highstand systems tract deposits represented by Facies Associations D, E and C. Late highstand systems tract deposits are rare because of erosion below sequence boundaries. Sequence development in the Xujiahe Formation is attributed to active and quiescent phases of thrust-loading events and is closely related to the tectonic evolution of the basin. The Sichuan Basin experienced three periods of thrust loading and lithospheric flexure (SQ1, lower SQ2 and SQ3), two periods of stress relaxation and basin widening (upper SQ 2 and SQ3) and one phase of isostatic rebound (SQ4). Paleogeographic reconstruction of the Sichuan Basin in the Late Triassic indicates that the Longmen Mountains to the west, consisting of metamorphic, sedimentary and pre-Neoproterozoic basement granitoid rocks, was the major source of sediment to the foredeep depocenter. Subordinate sediment sources were the Xuefeng Mountains to the east to backbulge depocenters, and the Micang Mountains to the northwest during the late history of the basin. This study has demonstrated the viability of sequence stratigraphic analysis in continental successions in a foreland basin, and the influence of thrust loading on sequence development.  相似文献   

19.
《International Geology Review》2012,54(16):2030-2059
Seismic and sequence stratigraphic analysis of deep-marine forearc basin fill (Great Valley Group) in the central Sacramento Basin, California, reveals eight third-order sequence boundaries within the Cenomanian to mid-Campanian second-order sequences. The third-order sequence boundaries are of two types: Bevelling Type, a relationship between underlying strata and onlapping high-density turbidites; and Entrenching Type, a significantly incised surface marked by deep channels and canyons carved during sediment bypass down-slope. Condensed sections of hemipelagic strata draping bathymetric highs and onlapped by turbidites form a third important type of sequence-bounding element, Onlapped Drapes. Five tectonic and sedimentary processes explain this stratigraphic architecture: (1) subduction-related tectonic tilting and deformation of the basin; (2) avulsion of principal loci of submarine fan sedimentation in response to basin tilting; (3) deep incision and sediment bypass; (4) erosive grading and bevelling of tectonically modified topography by sand-rich, high-density turbidite systems; and (5) background hemipelagic sedimentation. The basin-fill architecture supports a model of subduction-related flexure as the principal driver of forearc subsidence and uplift during the Late Cretaceous. Subduction-related tilting of the forearc and growth of the accretionary wedge largely controlled whether and where the Great Valley turbiditic sediments accumulated in the basin. Deeply incised surfaces of erosion, including submarine canyons and channels, indicate periods of turbidity current bypass to deeper parts of the forearc basin or the trench. Fluctuations in sediment supply likely also played an important role in evolution of basin fill, but effects of eustatic fluctuations were overwhelmed by the impact of basin tectonics and sediment supply and capture. Eventual filling and shoaling of the Great Valley forearc during early Campanian time, coupled with dramatically reduced subsidence, correlate with a change in plate convergence, presumed flat-slab subduction, cessation of Sierran arc volcanism, and onset of Laramide orogeny in the retroarc.  相似文献   

20.
通过对风火山盆地白垩系砂岩薄片的粒度统计分析.划分出3种概率累计曲线。代表3种沉积相。分别为三角洲、河流和湖泊;并对研究区的沉积环境进行了划分。确定了该区为一套陆相沉积环境。这对于研究风火山盆地有重要的地质意义。而且对于该区找矿有重要的现实意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号