首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
因台风风暴潮的突发性、情景演变时间的连续性和路径的不确定性,导致应急决策者在应急救援中难以做出正确决策,针对这一现状,将“情景—应对”应用在台风风暴潮应急决策中。本文在分析台风风暴潮情景、情景要素的概念模型基础上,首先通过资料搜集、属性识别等方法提取关键情景要素,采用框架表示法构建情景;然后分析台风风暴潮情景演变规律及演变路径;其次通过动态贝叶斯网络法构建台风风暴潮动态情景网络;最后利用先验概率与条件概率计算情景状态概率,实现了台风风暴潮的关键情景推演。本文以2018年9月16日11时至17时山竹台风对广东省沿海城市影响为例,演示了台风风暴潮的情景推演流程及关键技术。实证分析结果表明,溃堤、海水倒灌、洪水、滑坡发生的概率分别为85%、81%、74%、54%,验证了情景推演在风暴潮中应用的合理性。  相似文献   

2.
There are obvious periodic oscillations in the observations of storm surges in the East China Sea. The storm surges are not only controlled by the wind stresses and isolated long wave caused by typhoons but also affected by the interaction between astronomical tides and storm surges. In the present paper we simulate the interaction between tides and storm surges by using a two dimensional numerical model. In our numerical experiments we use the data of the storm surge induced by Typhoon 8114. The calculations tally with the measured data well. The results indicate that the periodic oscillations occurring in the elevations of the surge are mainly caused by the interaction between the tide and the storm surge. The numerical experiments also indicate that the forecasting precision may be notably improved if the nonlinear interaction between tides and storm surges is taken into account.  相似文献   

3.
1 Introduction Thestormsurgeisoneofthemostimportantphe nomenathatendangerthecoastalengineeringfacili ties .Everyyearthereareabout 1 2tropicalcyclonesmakinglandfallatthemainlandofChinafromMaytoOctober (MuandTu ,2 0 0 0 ) .Whentheastronomictideishigh ,the…  相似文献   

4.
Based on the ultra-shallow water storm surge theory proposed by Qin and Feng[1] (1975), an ultra-shallow water storm surge model, taking into consideration the effect of the earth's rotation and the quadratically depth-varying eddy viscosity, is developed. Using the model wind stress fields as a guide for representing the effect of wind stress forcing in our model, a numerical investigation of the Bohai Sea wind surge is made. As a better means for solving the mathematical model, the Galerkin finite element technique is employed in numerical solutions. Under the control of the main weather situation, namely, the cold wave combined with the extratropical cyclone, two storm surge processes experienced on the Bohai Sea are simulated numerically. It is found that the experimental results, in the main, are in agreement with the observations.  相似文献   

5.
Dike failure and marine losses are quite prominent in Laizhou Bay during the period of cold wave storm surges because of its open coastline to the north and flat topography. In order to evaluate the intensity of cold wave storm surge, the hindcast of marine elements induced by cold waves in Laizhou Bay from 1985 to 2004 is conducted using a cold wave storm surge–wave coupled model and the joint return period of extreme water level, concomitant wave height, and concomitant wind speed are calculated. A new criterion of cold wave storm surge intensity based on such studies is developed. Considering the frequency of cold wave, this paper introduces a Poisson trivariate compound reconstruction model to calculate the joint return period, which is closer to the reality. By using the newly defined cold wave storm surge intensity, the ‘cold wave grade' in meteorology can better describe the severity of cold wave storm surges and the warning level is well corresponding to different intensities of cold wave storm surges. Therefore, it provides a proper guidance to marine hydrological analysis, disaster prevention and marine structure design in Laizhou Bay.  相似文献   

6.
The northern South China Sea(SCS) is frequently affected by typhoons. During severe storm events, wave-current interactions produce storm surges causing enormous damage in the path of the typhoon. To evaluate the influence of wave-current interactions on storm surge, we used a coupled ocean-atmospherewave-sediment transport(COAWST) modeling system with radiation-stress and vortex-force formulations to simulate two typically intense tropical storms that invaded the SCS, namely Typhoons Nuri(2008) and Hagupit(2008), and compared results with observations from the Hong Kong Observatory. Both radiationstress and vortex-force formulations significantly improved the accuracy of the simulation. Depending on which typhoon and the topography encountered, the influence of surface waves on the oceanic circulation showed different characteristics, including the differences of range and intensity of storm surge between vortex-force and radiation-stress experiments. During typhoon landing, strong sea-surface elevation in concert with wave set-up/set-down caused the adjustment of the momentum balance. In the direction perpendicular to the current, but especially in the cross-shore direction, the pressure gradient and wave effects on the current dominated the momentum balance.  相似文献   

7.
The current storm wave hazard assessment tends to rely on a statistical method using wave models and fewer historical data which do not consider the effects of tidal and storm surge.In this paper,the wave-current coupled model ADCIRC+SWAN was used to hindcast storm events in the last 30 years.We simulated storm wave on the basis of a large set of historical storms in the North-West Pacific Basin between 1985 and 2015 in Houshui Bay using the wave-current coupled model ADCIRC+SWAN to obtain the storm wave level maps.The results were used for the statistical analysis of the maximum significant wave heights in Houshui Bay and the behavior of wave associated with storm track.Comparisons made between observations and simulated results during typhoon Rammasun(2014)indicate agreement.In addition,results demonstrate that significant wave height in Houshui Bay is dominated by the storm wind velocity and the storm track.Two groups of synthetic storm tracks were designed to further investigate the worst case of typhoon scenarios.The storm wave analysis method developed for the Houshui Bay is significant in assisting government's decision-making in rational planning of deep sea net-cage culture.The method can be applied to other bays in the Hainan Island as well.  相似文献   

8.
To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We applied a principal component back-propagation neural network (PCBPNN) to predict the deviation in typhoon storm surge, in which data of the typhoon, upstream flood, and historical case studies were involved. With principal component analysis, 15 input factors were reduced to five principal components, and the application of the model was improved. Observation data from Huangpu Park in Shanghai, China were used to test the feasibility of the model. The results indicate that the model is capable of predicting a 12-hour warning before a typhoon surge.  相似文献   

9.
In recent years, fast economic development demands for more land use and thus many reclamation projects are initiated around the Sanmen Bay, Zhejiang, SE China in the East China Sea, for which tidal and storm surge levels are reassessed. A two-dimensional numerical model based on an advanced circulation model(ADCIRC) was applied to evaluate the impact of reclamation projects on tidal and storm surge levels in the bay. The results show that the shoreline relocation and topographic change had opposite effects on tidal heights. Shoreline relocation decreased the tidal amplitude, while siltation caused topographic change and increased the amplitude. Such variations of the amplitude were significant in the top areas of Sanmen Bay. Three types of typhoon paths were selected for a case study to investigate the impacts of shoreline relocation and topographic change on storm surge level. Results show that the maximum increase in storm surge level due to shoreline relocation was less than 0.06 m. The rise of peak surge level due to the change of topography was significant and the peak surge level rose when siltation increased. The maximum surge level rise occurred in the path of northwest landing typhoons, which exceeded 0.24 m at the top of the bay. The rise in peak surge level can potentially lead to severe damages and losses in Sanmen Bay and more attention needs to be paid to this problem of shoreline change in the future.  相似文献   

10.
A typhoon-induced storm surge simulation system was developed for the Qingdao area, including a typhoon diagnostic model for the generation of wind and pressure fields and a 2D Advanced Circulation (ADCIRC) model for simulating the associated storm surge with a 200 m resolution along the Qingdao coastline. The system was validated by an extreme surge event Typhoon Mamie (8509) and the parameters of Typhoon Mamie were used to investigate the sensitivity of typhoon paths to Qingdao storm surges with four selected paths: the paths of Typhoons Mamie (8509), Opal, 3921 and 2413, the selection being made according to their relative position to Qingdao. Experiments based on the Typhoon Mamie (8509) storm surge were also conducted to study the possible influences of future climate changes, including the sea level rise and sea surface temperature (SST) rise, on storm surges along the Qingdao coast. Storm surge conditions under both present day and future (the end of the 21st century) climate scenarios associated with the four selected paths were simulated. The results show that with the same intensity, when typhoons follow the paths of 3921 and 2413, they would lead to the most serious disasters in different areas of Qingdao. Sea level and SST affect storm surges in different ways: sea level rise affects storm surge mainly through its influence on the tide amplitude, while the increased SST has direct impact on the intensity of the surges. The possible maximum risk of storm surges in 2100 in the Qingdao area caused by typhoons like Mamie (8509) was also estimated in this study.  相似文献   

11.
In order to forecast storm surge inundation, a two-dimensional model is established. In the model, an alternating computation sequence method is used to solve the governing equations, and the dry and wet method is introduced to treat the moving boundary. This model is easy to use. It has a friendly input interface and Arcview GIS is used as the output interface. The model is applied to the Shantou area to simulate the storm surge elevations and inundations caused by Typhoons 6903 ane 0104 using the same relevant parameters. The calculated results agree well with the observations.  相似文献   

12.
Using statistically downscaled atmospheric forcing, we performed a numerical investigation to evaluate future climate's impact on storm surges along the Gulf of Mexico and U.S. east coast. The focus is on the impact of climatic changes in wind pattern and surface pressure while neglecting sea level rise and other factors. We adapted the regional ocean model system(ROMS) to the study region with a mesh grid size of 7–10 km in horizontal and 18 vertical layers. The model was validated by a hindcast of the coastal sea levels in the winter of 2008. Model's robustness was confirmed by the good agreement between model-simulated and observed sea levels at 37 tidal gages. Two 10-year forecasts, one for the IPCC Pre-Industry(PI) and the other for the A1 FI scenario, were conducted. The differences in model-simulated surge heights under the two climate scenarios were analyzed. We identified three types of responses in extreme surge heights to future climate: a clear decrease in Middle Atlantic Bight, an increase in the western Gulf of Mexico, and non-significant response for the remaining area. Such spatial pattern is also consistent with previous projections of sea surface winds and ocean wave heights.  相似文献   

13.
Back propagation is employed to forecast the current of a storm with various characteristics of storm surge; the technique is thus important in disaster forecasting. One of the most fuzzy types of information in the prediction of geological calamity is handled employing the information diffusion method. First, a single-step prediction model and neural network prediction model are employed to collect influential information used to predict the extreme tide level. Second, information is obtained using the inf...  相似文献   

14.
利用磁静日时序叠加方法和FFT频谱分析方法对红池坝地电场观测资料进行逐月处理,并与巫山建坪台地磁观测资料进行对比,分析红池坝地电场静日变化特征;计算红池坝台站磁暴期间产生的感应电场,与地电场观测数据对比,分析地电暴的特征。结果表明,静日随着月份的变化,相位发生变化,与巫山建坪地磁Sq变化一致;1月、2月、11月、12月的地电场日变幅明显小于其他月份;地电场显著周期成分与磁静日地磁场相同,并且通过周期成分的逐月对比分析得到,地电场与地磁D分量的不同周期成分的频谱值随时间的变化基本一致;某一方向的地电暴与该垂直方向的磁暴和该地区的电性结构有关;地电暴观测值与地磁感应电流计算值呈线性关系;地电暴变化与K值呈指数关系。  相似文献   

15.
Around 30 October 2012, Hurricane Sandy made landfall along the New Jersey shoreline after its completion of extratropical transition and transformation into an extratropical cyclone. The strong gale induced a catastrophic storm surge, and caused 72 death and damage of more than $50 billion. In this paper, the evolutionary process and spatial structure of the Hurricane Sandy during its extratropical transition were investigated by using Weather Research and Forecasting(WRF) version 3.3.1 modeling results and National Center for Environmental Prediction(NCEP) Coupled Forecast System model version 2 reanalysis datasets(CFSv2). It is found that during the upper-level trough interaction on 29 October, Sandy gradually fused with a pre-existing mid-latitude low-pressure system, and finished the re-intensification. WRF modeling results showed that the second peak occurred mainly due to the enhanced vertical motion, reduced vertical wind shear as well as the supplement of potential vorticity resulting from trough interaction over the southeast of Great Lakes. The cold continental air from the back of trough was encircled within the warm core system cyclonically, forming the characteristic of warm seclusion.  相似文献   

16.
Strom surges are not only determined by the atmospheric forcing,but also influenced by the coastal geometry and bathymetry.The Bohai Sea,as one of China’s marginal seas,is seriously harmed by storm surges,especially those caused by cold-air outbreaks.As the coastline of the Bohai Sea has changed evidently these years,storm surges may have new characteristics due to the changes in the local geometry.This paper aims to find out these new characteristics by primarily investigating the influence of the changes in the local geometry on storm surges with numerical methods.20 scenarios were constructed based on the track and inten-sity of the cold-air outbreaks to describe the actual situation.By analyzing the model results of the control scenarios,it is found that the main changes of the maximum surge elevation occur in the Bohai Bay and the Laizhou Bay.At the top of the Bohai Bay,the maximum surge elevation is obviously decreased,while in the Laizhou Bay,it is enhanced by the growing Yellow River Delta.This,however,does not suggest that the storm surges in the Laizhou Bay become more serious.A comparison of the risk assessment of storm surges in the Tanggu,Huanghua and Yangjiaogou regions shows that the risk of storm surges in these coastal areas is lightened by the evolvement of the coastal geometry.Particularly near Yangjiaogou,though the maximum surge elevation becomes higher to subject more areas to risk,the risk is still reduced by the evolvement of the Yellow River Delta.  相似文献   

17.
Storm surge is one of the predominant natural threats to coastal communities. Qingdao is located on the southern coast of the Shandong Peninsula in China. The storm surge disaster in Qingdao depends on various influencing factors such as the intensity, duration, and route of the passing typhoon, and thus a comprehensive understanding of natural coastal hazards is essential. In order to make up the defects of merely using the warning water level, this paper presents two statistical distribution models(Poisson Bi- variable Gumbel Logistic Distribution and Poisson Bi-variable Log-normal Distribution) to classify the intensity of storm surge. We emphasize the joint return period of typhoon-induced water levels and wave heights measured in the coastal area of Qingdao since 1949. The present study establishes a new criterion to classify the intensity grade of catastrophic storms using the typhoon surge estimated by the two models. A case study demonstrates that the new criterion is well defined in terms of probability concept, is easy to implement, and fits well the calculation of storm surge intensity. The procedures with the proposed statistical models would be useful for the disaster mitigation in other coastal areas influenced by typhoons.  相似文献   

18.
Wang  Kai  Hou  Yijun  Li  Shuiqing  Du  Mei  Li  Rui 《中国海洋大学学报(英文版)》2020,19(2):263-271
Storm surge inundation is a major concern in marine hazard risk assessment during extreme weather conditions.In this study,a high-resolution coupled model(the ADVanced CIRCulation model+the Simulating WAves Nearshore model)was used to investigate the storm surge inundation in the southwestern Hangzhou Bay region during Typhoon Chan-hom in 2015.The simulated hydrodynamic processes(sea surface wave and storm tide)were validated with measured data from wave buoys and tide gauges,indicating that the overall performance of the model was satisfactory.The storm surge inundation in the coastal area was simulated for several idealized control experiments,including different wave effects(wave-enhanced wind stress,wave-enhanced bottom stress,and wave radiation stress).Dike overflowing cases with different dike heights and dike breaking cases with different dike breach lengths were considered in the simulation.The results highlight the necessity of incorporating wave effects in the accurate simulation of storm surge inundation.Dike height significantly influences the magnitude and phase of the maximum inundation area in the dike overflowing cases,and dike breach length is an important factor impacting the magnitude of the maximum inundation area in the dike breaking cases.This study may serve as a useful reference for accurate coastal inundation simulation and risk assessment.  相似文献   

19.
In this study,a coupled tide-surge-wave model was developed and applied to the South Yellow Sea.The coupled model simulated the evolution of storm surges and waves caused by extreme weather events,such as tropical cyclones,cold waves,extratropical cyclones coupled with a cold wave,and tropical cyclones coupled with a cold wave.The modeled surge level and significant wave height matched the measured data well.Simulation results of the typhoon with different intensities revealed that the radius to the maximum wind speed of a typhoon with 1.5 times wind speed decreased,and its influence range was farther away from the Jiangsu coastal region;moreover,the impact on surge levels was weakened.Thereafter,eight hypothetical typhoons based on Typhoon Chan-hom were designed to investigate the effects of varying typhoon tracks on the extreme value and spatial distribution of storm surges in the offshore area of Jiangsu Province.The typhoon along path 2 mainly affected the Rudong coast,and the topography of the Rudong coast was conducive to the increase in surge level.Therefore,the typhoon along path 2 induced the largest surge level,which reached up to 2.91 m in the radial sand ridge area.The maximum surge levels in the Haizhou Bay area and the middle straight coastline area reached up to 2.37 and 2.08 m,respectively.In terms of typhoons active in offshore areas,the radial sand ridge area was most likely to be threatened by typhoon-induced storm surges.  相似文献   

20.
针对地基增强系统(GBAS)非完好性事件的极端性,开展GBAS完好性算法研究,给出H0和H1假设下的机载端保护级计算方法,并分析GBAS中引起“虚警”和“漏警”两类非完好性事件的主要误差源。实验结果表明,机载端伪距经过差分校正后其位置精度优于1 m,可用性大于99.999 9%,满足CAT Ⅰ精密进近着陆导航需求。同时,进行非完好性事件仿真验证的结果表明,卫星几何分布和电离层风暴是引起“虚警”和“漏警”的主要误差源,未来CAT Ⅲ GBAS需将单星座扩展为包括北斗在内的多星座,将单频升级为双频,其中多星座可以优化卫星的几何布局,双频可以消除电离层风暴的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号