首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A month-long investigation of phytoplankton biomass and primary production (PP) was carried out during a harmful algal bloom (HAB) in Daya Bay, China, in 2003. During the bloom, the phytoplankton community was dominated by Scrippsiella trochoidea and Chattonella marina. The phytoplankton biomass (Chl a) and PP reached peak levels of 519.21 mg m−3 and 734.0 mgC m−3 h−1, respectively. Micro-phytoplankton was the key contributor to Chl a and PP in a cage-culture area and in the adjacent HAB-affected waters, with percentages of up to 82.91% and 84.94%, respectively. The HAB had complicated relationships with hydrological and meteorological factors in Daya Bay. However, the water around the cage-culture area always showed statistically greater phytoplankton biomass and nutrient loadings than in adjacent waters, suggesting that this was the “trigger area” of the bloom. The spatial and temporal distribution of diverse HABs in Daya Bay, their ecological characteristics, and their environmental impacts are also discussed in this paper.  相似文献   

2.
We examined the effects of freshwater flow and light availability on phytoplankton biomass and production along the Louisiana continental shelf in the region characterized by persistent spring–summer stratification and widespread summer hypoxia. Data were collected on 7 cruises from 2005 to 2007, and spatially-averaged estimates of phytoplankton and light variables were calculated for the study area using Voronoi polygon normalization. Shelf-wide phytoplankton production ranged from 0.47 to 1.75 mg C m−2 d−1 across the 7 cruises. Shelf-wide average light attenuation (kd) ranged from 0.19–1.01 m−1 and strongly covaried with freshwater discharge from the Mississippi and Atchafalaya Rivers (R2=0.67). Interestingly, we observed that the euphotic zone (as defined by the 1% light depth) extended well below the pycnocline and to the bottom across much of the shelf. Shelf-wide average chlorophyll a (chl a) concentrations ranged from 1.4 to 5.9 mg m−3 and, similar to kd, covaried with river discharge (R2=0.83). Also, chl a concentrations were significantly higher in plume versus non-plume regions of the shelf. When integrated through the water-column, shelf-wide average chl a ranged from 26.3 to 47.6 mg m−2, but did not covary with river discharge, nor were plume versus non-plume averages statistically different. The high integrated chl a in the non-plume waters resulted from frequent sub-pycnocline chl a maxima. Phytoplankton production rates were highest in the vicinity of the Mississippi River bird's foot delta, but as with integrated chl a were not statistically different in plume versus non-plume waters across the rest of the shelf. Based on the vertical distribution of light and chl a, a substantial fraction of phytoplankton production occurred below the pycnocline, averaging from 25% to 50% among cruises. These results suggest that freshwater and nutrient inputs regulate shelf-wide kd and, consequently, the vertical distribution of primary production. The substantial below-pycnocline primary production we observed has not been previously quantified for this region, but has important implications about the formation and persistence of hypoxia on the Louisiana continental shelf.  相似文献   

3.
Phytoplankton size structure plays a significant role in controlling the carbon flux of marine pelagic ecosystems. The mesoscale distribution and seasonal variation of total and size-fractionated phytoplankton biomass in surface waters, as measured by chlorophyll a (Chl a), was studied in the Southern Yellow Sea using data from four cruises during 2006–2007. The distribution of Chl a showed a high degree of spatial and temporal variation in the study area. Chl a concentrations were relatively high in the summer and autumn, with a mean of 1.42 and 1.27 mg m−3, respectively. Conversely, in the winter and spring, the average Chl a levels were only 0.98 and 0.99 mg m−3. Total Chl a showed a clear decreasing gradient from coastal areas to the open sea in the summer, autumn and winter cruises. Patches of high Chl a were observed in the central part of the Southern Yellow Sea in the spring due to the onset of the phytoplankton bloom. The eutrophic coastal waters contributed at least 68% of the total phytoplankton biomass in the surface layer. Picophytoplankton showed a consistent and absolute dominance in the central region of the Southern Yellow Sea (>40%) in all of the cruises, while the proportion of microphytoplankton was the highest in coastal waters. The relative proportions of pico- and nanophytoplankton decreased with total biomass, whereas the proportion of the micro-fraction increased with total biomass. Relationships between phytoplankton biomass and environmental factors were also analysed. The results showed that the onset of the spring bloom was highly dependent on water column stability. Phytoplankton growth was limited by nutrient availability in the summer due to the strong thermocline. The combined effects of P-limitation and vertical mixing in the autumn restrained the further increase of phytoplankton biomass in the surface layer. The low phytoplankton biomass in winter was caused by vertical dispersion due to intense mixing. Compared with the availability of nutrients, temperature did not seem to cause direct effects on phytoplankton biomass and its size structure. Although interactions of many different environmental factors affected phytoplankton distributions, hydrodynamic conditions seemed to be the dominant factor. Phytoplankton size structure was determined mainly by the size-differential capacity in acquiring resource. Short time scale events, such as the spring bloom and the extension of Yangtze River plume, can have substantial influences, both on the total Chl a concentration and on the size structure of the phytoplankton.  相似文献   

4.
We investigated the response of phytoplankton and zooplankton to experimental alteration of nitrate and phosphate levels in outdoor enclosures. Experiments were conducted in summer and winter and in the absence and presence of a layer of soil. The tubs (12 in all) except the two plain water controls were manured initially with a mixture of fresh cowdung (50g 1−1), mustard oil cake (25 g l−1) and poultry wastes (25 g l−1; mostly excreta), prior to enrichment. Water samples were collected from the experimental tubs twice a week to measure selected physico-chemical and biological variables. Water temperature in the summer experiments ranged from 20–30 °C and during the winter experiments from 11–15 °C. The pH values ranged from 8.0 to 9.5 and the dissolved oxygen levels from 8.2–10.0 mg l−1. The levels of soluble reactive phosphorus and nitrate nitrogen ranged from undetectable levels to 1800 μg l−1 and 6000 μg l−1, respectively. The increase in chlorophyll-a following enrichment was rapid (3–7 days) during summer, but slower in winter (7–14 days). The predominant phytoplankton species observed in the tubs belong to the genera Sphaerocystis, Chlorella, Scenedesmus, Cosmarium, Ulothrix, Zygnema, Gonium and Pandorina. The rotifer species observed were Brachionus calyciflorus, Rotaria neptunia, Lecane bulla, L. luna, L. unguitata, Euchlanis dilatata, Asplanchna intermedia, Pseudoharringia spp., Eosphora spp., Lepadella ovalis, Epiphanes brachionus, Hexarthra mira and Cephalodella gibba. The cladocerans observed were Macrothrix spp. and Alona spp.  相似文献   

5.
The abundance and the biomass of bacterial, phytoplanktonic, and ciliate communities were estimated at different depths during the spring planktonic development in an oligo-mesotrophic lake (the Pavin lake).The bacterial population, which consists mainly of free bacteria (94% of the total bacterial abundance), displays only low cell densities (0.6 to 7 × 105 cells · ml–1) and represents low biomass values (0.9 to 11.5 µgC·l–1) The bacteria represent from 0.9 to 23.8% (M = 9.7%) of the microplanktonic biomass (with the exclusion of heterotrophic nanoflagellates, i.e. bacteria + phytoplankton + ciliates, size range 0.2–160 µm). The abundance of the phytoplankton varies between 0.5 and 1.8 × 106 cells·l–1, and the biomass values between 12 and 118 µC·l–1. The phytoplankton population constitutes the largest part of the microplanktonic biomass (51.9 to 96.6%, M = 80.6%), and the diatomMelosira italica subsp.subarctica is the largely dominant species of this community. The population of ciliates, essentiallyOligotrichida andScuticociliatida, displays densities between 1.3 and 38.3 × 103 cells·l–1 (M = 6.7 × 103 cells·l–1), and biomass values vary from 0.10 to 16.30 µgC·l–1 (M = 6.01 µgC·l–1). The ciliates constitute thus from 0.1 to 26.4% (M = 9.8%) of the microplanktonic biomass. Whereas the oligotrichs are best represented in the euphotic zone, the small-sized scuticociliates dominate in the hypolimnion. Besides, species having symbionts and considered to be mixotrophic (Strobilidium gyrans, Strombidium viride, Stokesia vernalis) develop preferentially in the epilimnion and constitute more than 50% of the total ciliate biomass.  相似文献   

6.
An understanding of the dynamic relationship between nitrogen supply and the formation of phytoplankton biomass is important in predicting and avoiding marine eutrophication. This relationship can be expressed as the short-term yield q of chlorophyll from dissolved available inorganic nitrogen (DAIN), the sum of nitrate, nitrite and ammonium. This paper communicates the results of a continuous culture nitrate enrichment experiment undertaken to investigate the cumulative yield of chlorophyll from DAIN (q). The purposes of the study were: to acquire a better understanding of the relationship between chlorophyll formation and DAIN; to obtain values that could be used in models for predicting eutrophication. The results of a time series experiment carried out using microplankton (all organisms <200 μm in size) indicate that the parameter q does not have a single value but is affected by the ecophysiological response of phytoplankton to changing nutrient status after an enrichment event. It is also dependent on changes in the allocation of nitrogen between autotrophs and heterotrophs. The value of yield obtained at the height of the bloom can be represented by q (max) (2.35 μg chl (μmol N)−1). The post-bloom, steady state value of q can be represented by qeq (0.95 μg chl (μmol N)−1). The microcosm steady state yield was not significantly different from the median value obtained from synoptic studies of Scottish west coast waters. It is proposed that qeq is the most appropriate value for assessing the general potential for eutrophication resulting from continuous nutrient enrichment into coastal waters. It is further proposed that q (max) be used for cases of sporadic enrichment and where a short burst of unrestricted growth may be detrimental.  相似文献   

7.
During July and August 1981 subsurface intrusion of upwelled nutrient-rich Gulf Stream water was the dominant process affecting temporal and spatial changes in phytoplankton biomass and productivity of the southeastern United States continental shelf between 29 and 32°N latitude. Intruded waters in the study area covered as much as 101 km including virtually all of the middle and outer shelf and approximately 50% of the inner shelf area.Within 2 weeks following a large intrusion event in late July, middle shelf primary production and Chl a reached 3 to 4 gC m d−1 and 75 mg m, respectively. At the peak of the bloom 80% of the water column primary production occurred below the surface mixed-layer, and new primary production (i.e., NO3-supported) exceeded 90% of the total. Chl a-normalized photosynthetic rates were very high as evidenced by high mean assimilation number (15.5 mg C mg Chl a−1 h−1), high mean α (14 mg C mg Chl a−1 Ein−1 m), and no photoinhibition. As a result of the high photosynthetic rates, mean light-utilization index (Ψ) was 2 to 3 times higher than reported for temperature sub-arctic and arctic waters.The results imply a seasonal (June to August) middle shelf production of 150 g C m−1, about 15% higher than previous estimates of annual production on the middle shelf. Intrusions of the scale we observed in 1981 may not occur every summer. However, when such events do occur, they are by far the most important processes controlling summer phytoplankton dynamics of the middle and outer shelf and of the inner shelf in the southern half of the study area.  相似文献   

8.
During a summer period we studied the vertical variation of in vivo and chlorophyll a specific phytoplankton absorption spectra in relation to the underwater light climate of ten deep North Patagonian Andean lakes of Argentina. The lakes were thermally stratified, and the underwater light climate was characterized by extended euphotic zones which included highly illuminated epilimnetic layers (both UVR and PAR) and metalimnia exposed to dim blue-green light. Most of the lakes presented the development of Deep Chlorophyll Maxima (DCM) at the metalimnetic layers, near 1% of surface PAR irradiance. Analyzing the fourth-derivative plots of in vivo phytoplankton absorption spectra [dIVaph(λ)], we were able to identify several maxima absorption values attributed to different pigments. Considering lakes with DCM, a significant positive linear relationship was found between dIVaph (495–500 nm) normalized by chlorophyll a and downward irradiance. Indeed, a negative significant relationship was found between dIVaph (495–500 nm) normalized by chlorophyll a and diffuse PAR attenuation coefficients. These results point out an increase in the relative concentration of different carotenoids at surface layers indicating the role of photoprotection of these pigments. On the other hand, significant negative linear relationships were found between fourth-derivative spectra normalized by chlorophyll a at 650, 590–595, 560–565 and 520–525 nm and downward irradiance. These results indicated an increase in the relative concentration of photosynthetic accessory pigments at deep layers of the euphotic zone. Furthermore, we found a decrease in depth of specific absorption spectra at 440, 670 nm and in the ratio aph* (440 nm) to aph* (670 nm). This pattern was associated with the package effect concept. The increase in relative photosynthetic accessory pigment concentrations and the decrease in values of specific absorption spectra at the bottom of the euphotic zone were attributed to changes in phytoplankton communities between surface and deep layers. These outcomes pointed out that the underwater light climate and temperature water structure are, like in marine systems, very important factors governing the distribution of phytoplanktonic organisms. In addition, the possession of specific photosynthetic accessory pigments suggests that dominant species in the DCM are well adapted to these dim blue-green light scenarios.  相似文献   

9.
Monthly collections of phytoplankton were supported by physical–chemical data and measures of chlorophyll a concentrations in the search for particular environmental factors that could explain the constant presence of desmids in a Mexican tropical lake, a characteristic not common among the phytoplanktic communities of Mexican lakes. Samplings were taken from the water column in the deepest part of the lake (40 m) and intensified in the metalimnetic zone, whose establishment was monitored by observations of temperature and oxygen profiles. The general behavior of Lake Zirahuén was typical of warm monomictic tropical lakes at high elevation: a short mixing phase during the hemispheric winter. The depth of ZMIX and Zeu revealed a well-illuminated epilimnion, suggesting that phytoplankton communities are not likely to be light-limited. The oligotrophic nature of the lake is indicated by discrete concentrations of inorganic nutrients, PTOT in the interval of 0.01–0.03 mg l−1 and chlorophyll a between 0.23 and 3.98 μg l−1. These characteristics together with a low concentration of calcium, define a lacustrine environment different from other Mexican lakes, and one that could be suitable for desmids communities.  相似文献   

10.
In order to study the sediment response to different addition of organic matter, we added cultures of the dinoflagellates Scrippsiella hangoei and Woloszynskia halophila and the diatom Pauliella taeniata to aquaria containing natural sediment. The biomass added was 1550–3260 mg C m−2, and in the control, no biomass was added (n=3). Oxygen profiles at the sediment–water interface and inorganic nutrients in the near bottom water were determined once a week. In the additions of P. taeniata and W. halophila the sediment quickly became anoxic, and subsequently there was a flux of >1 mmol PO43− m−2 d−1 out of the sediment in these treatments. The majority of the released P came from P stored in the sediment and not from the organic phosphorus added. The result was very different for the S. hangoei addition. This species underwent a life cycle change to form temporary cysts. During this process there was a net uptake of nutrients. After the formation of cysts the concentration of inorganic nutrient was similar to that of the control. Cysts generally survive for long periods in the sediment (months to years) before germinating, but can also be permanently buried in the sediment. The novel idea presented here is that the phytoplankton composition may directly affect sediment processes such as oxygen consumption and phosphorus release, through species-specific life cycle changes and yields of resting stages produced prior to sedimentation. This can be an important aspect of nutrient cycling in eutrophic waters, like the Baltic Sea, where there is large year-to-year difference in the amount of resting stages settling at the sea floor, mainly due to differences in abundance of diatoms and dinoflagellates during the spring bloom. If yields of resting stages change, e.g. due to changes in the phytoplankton community, it may lead to alterations in the biogeochemical cycling of nutrients.  相似文献   

11.
During 1986 planktonic primary production and controlling factors were investigated in a small (A0 = 11.8 · 103 m2, Zmax = 11.5 m) meromictic kettle lake (Mittlerer Buchensee). Annual phytoplankton productivity was estimated to ca 120 gC · m–2 · a–1 (1,42 tC · lake–1 · a–1). The marked thermal stratification of the lake led to irregular vertical distributions of chlorophylla concentrations (Chla) and, to a minor extent, of photosynthesis (Az). Between the depths of 0 to 6 m low Chla concentrations (< 7 mg · m–3) and comparatively high background light attenuation (kw = 0,525 m–1, 77% of total attenuation due to gelbstoff and abioseston) was found. As a consequence, light absorption by algae was low (mean value 17,4%) and self-shading was absent.Because of the small seasonal variation of Chla concentrations, no significant correlation between Chla and areal photosynthesis (A) was observed. Only in early summer (June–July) biomass appears to influence the vertical distribution of photosynthesis on a bigger scale. Around 8 m depth, low-light adapted algae and phototrophic bacteria formed dense layers. Due to low ambient irradiances, the contribution of these organisms to total primary productivity was small. Primary production and incident irradiance were significantly correlated with each other (r2 = 0.68). Although the maximum assimilation number (Popt) showed a clear dependence upon water temperature (Q10 = 2.31), the latter was of minor importance to areal photosynthesis.  相似文献   

12.
Preliminary results of a seasonal study of the pelagic community at a station on the outer edge of the Cornwallis Estuary suggest that the seasonal variation in plankton community respiration (PCR) is related to organic inputs from nearby salt marshes. Annual phytoplankton production is low (<30 g C m−2 y−1) and exhibits a seasonal cycle very different from PCR. There is no indication that resuspension of benthic diatoms is an important energy input to the pelagic system. PCR, however, is quite high and exhibits a seasonal trend similar to the export of salt marsh detritus. Zooplankton densities (5–200 l−1) and biomass (<0.4 g m−3) appear to be much greater than could be supported by phytoplankton alone. The Cornwallis Estuary may be an estuarine system exhibiting a net export of organic matter to nearby offshore waters.  相似文献   

13.
云南程海浮游植物初级生产力的时空变化及其影响因子   总被引:1,自引:0,他引:1  
2016年4月-2017年2月,采用黑白瓶法研究了云南程海单点(码头点位)浮游植物初级生产力的垂直分布及其季节变化,同时基于全湖9个点位的现场调查和生产力垂向归纳模型(VGPM)估算并探讨了程海浮游植物初级生产力的时空变化及其主要影响因子.结果显示,码头点位的年均(均值±标准误)水柱(0~3 m)总初级生产力(GPPC)、净初级生产力(NPPC)和呼吸消耗量(RC)分别为5.40×103±0.64×103、2.36×103±0.63×103和3.06×103±0.82×103 mg O2/(m2·d);不论春夏季(4-8月)、秋冬季(9月-次年2月)还是全年,码头点位的单位生物量GPP(GPP/Chl.a)和单位生物量NPP(NPP/Chl.a)的最大值和最小值均分别出现在水下0.5 m和3.0 m处.经VPGM估算,程海全湖的初级生产力(PPeu)年均值为6.54×103±0.30×103 mg C/(m2·d)(2.74×103~18.62×103 mg C/(m2·d)).PPeu的时空变化方面,春夏季是PPeu快速上升的时节,秋冬季PPeu的月变化则呈波动状态,春夏季与秋冬季PPeu无显著性差异;PPeu整体空间异质性较弱,仅在降水最为充沛的7、8月表现出南北向的异质性,这与降水条件和流域营养盐输入的空间异质性有关.回归分析发现,虽然程海PPeu的主要影响因子具有季节异质性,但不论春夏季、秋冬季还是全年,浮游植物生物量均是重要的影响因子,水温亦是春夏季的重要影响因子.  相似文献   

14.
为探究呼伦湖浮游植物群落的季节变化特征及其与环境因子的关系,本研究分别于2019年3、5 10月对呼伦湖浮游植物的种类、细胞密度和生物量及湖水水质进行调查.结果显示,共鉴定出120种浮游植物,隶属于7门72属.从浮游植物群落季节组成差异上来看,春季绿藻门种类数最多,其次是硅藻门、蓝藻门;夏秋季绿藻门种类数最多,蓝藻门次之;冬季硅藻门种类数最多,绿藻门次之.呼伦湖浮游植物优势种主要为硅藻门的梅尼小环藻(Cyclotella meneghiniana)、蓝藻门的卷曲长孢藻(Anabaena circinalis)和细小平裂藻(Merismopedia minima),种类数在春季最多,秋冬季最少.浮游植物细胞密度在春季(123.52×104cells/L)和冬季(16.41×104cells/L)较夏季(280.80×104cells/L)和秋季(380.63×104cells/L)低,春冬季绿藻门细胞密度最高,夏秋季蓝藻门细胞密度最高.就浮游植物生物量而言,夏季(0.38mg/L)最大,其次是秋季(0...  相似文献   

15.
为了解西北干旱区水库浮游植物群落结构特征,并进一步探究浮游植物与环境因子之间的相关关系,于2017年对张掖境内不同分布区域的8座典型水库进行为期4个季度的采样调查.结果显示,调查期间共计检出浮游植物8门106属294种,其中硅藻门、绿藻门和蓝藻门占比分别为48.35%、26.64%和14.47%.浮游植物密度在0.3×...  相似文献   

16.
Planktonic algae and epiphyton of the littoral in lake Peipsi, Estonia   总被引:3,自引:0,他引:3  
The littoral plankton of Lake Peipsi (3555 km2, mean depth 7.1 m) was studied in summer 1980 and 2000–2002, and the epiphyton was studied on two dominating macrophytes, Phragmites australis (Cav.) Trin. ex Steud. and Potamogeton perfoliatus L., in 2000. The purpose of the study was to estimate to what extent the littoral phytoplankton and epiphytic algae (their biomass, chlorophyll a content and dominant species) can be used as a criterion for the trophic state of the lake. In wind-open areas, phytoplankton biomass in the littoral is commonly more than ten times higher than in open water due to the presence of the macroscopic cyanobacterium Gloeotrichia echinulata (J.S. Smith) P. Richter. This alga is abundant in the moderately eutrophic northern lake's part and rare in the strongly eutrophic southern part; hence also biomass in the southern part is considerably lower. In open water, phytoplankton biomass increases southward with increasing trophy. Algal biomass in the littoral depends on wind direction and can change completely in a few days. Epiphyton biomass and Chla content increased southward with increasing trophic state. They both revealed significant Spearman correlations (P < 0.05) with wind index and transparency (negative), and with abundance of the host plant, both reed and pondweed (positive). The phytoplankton biomass of the littoral of the large and shallow Lake Peipsi can not be used as a criterion of trophic state, however, the species composition of the dominants, particularly cyanobacteria, is well applicable for this purpose. The biomass and Chla content of the epiphyton can be used as a criterion for trophic state.  相似文献   

17.
为探究长江中下游富营养化浅水湖泊的浮游植物初级生产力季节性演替特征及其驱动因子,本研究于2020年4月(春)、8月(夏)、10月(秋)及2021年1月(冬)对湖北长湖浮游植物进行采样调查,同时运用黑白瓶测氧法及VGPM模型估算法分别估算了其浮游植物生产力水平,并探究驱动初级生产力季节性变化的主要环境因子。结果显示,4个季节共鉴定出浮游植物194种,其中绿藻门(95种,49%)和硅藻门(40种,21%)居绝对优势地位;黑白瓶法测得浮游植物水柱总生产力(Pt)季节变化为:夏季((1841.24±345.93) mg C/(m2·d))>秋季((1324.14±208.34) mg C/(m2·d))>春季((847.50±247.72) mg C/(m2·d))>冬季((711.43±133.52) mg C/(m2·d)),其中M2站位在夏季采样时(2424.66 mg C/(m2·d))水柱总生产力最高;在垂直空间上,浮游植物总生产力(G...  相似文献   

18.
The use of phytoplankton patterns of diversity for algal bloom management   总被引:1,自引:0,他引:1  
Guillermo Chalar   《Limnologica》2009,39(3):200-208
Many biotic and abiotic processes contribute to variability in phytoplankton diversity in aquatic ecosystems. Depending on their intensity and on their frequency, these may drive non-equilibrium dynamics and enhance the species diversity. Different studies propose that biodiversity buffers ecosystem functioning against environmental fluctuations leading to more predictable aggregate community or ecosystem properties. Salto Grande reservoir is polymictic and eutrophic with recurrent summer cyanobacterial blooms. The aim of this study was to determine the key variable(s) related with phytoplankton diversity in order to predict the possible occurrence of an algal bloom at the ecosystem. A preliminary analysis of the data matrix suggested non-linear relationships between diversity and the selected variables: phytoplankton abundance and the vertical attenuation coefficient (Kd). The best function fitting of the scatter plot of phytoplankton diversity versus phytoplankton abundance was a rational function. The inflection point of phytoplankton diversity estimated by the second derivate of this function was 2.7 bit cell−1 which corresponded to an abundance of 3000 cells ml−1. The relationship of phytoplankton diversity and vertical attenuation coefficient values also show a humped distribution pattern (Gauss function). The inflection point of this function corresponded to a diversity value of 1.9 bit cell−1 and 2.5 m−1 for Kd. These inflection points were, respectively, related with the resource competition among the present species and the light limitation conditions. The showed patterns of diversity and the estimated threshold values could be integrated to construct a predictive model for the reservoir based on phytoplankton diversity and the probable ambient conditions of the reservoir.  相似文献   

19.
Two nanociliates of the order Prostomatida,Pseudobalanion planctonicum (12–18 µm) andUrotricha furcata (12–21 µm), were found to be the most abundant ciliates in the epilimnion of Piburger See, a small mesotrophic lake. Temperature and food availability were the main factors controlling the sudden increase in abundance, which reached a maximum of 101 cell ml–1 at the beginning of summer. During their exponential development in numbers and biomass, a strong decrease in chlorophylla and in the abundance of phytoplankton, especiallyRhodomonas, was observed. We assume, therefore, thatPseudobalanion planctonicum andUrotricha furcata together with rotifers, mainlyPolyarthra dolichoptera, are able to reduce the phytoplankton biomass in the upper epilimnion to the same level as found during the clearwater phase. Preliminary results of grazing on bacteria suggest that these nanociliates are omnivorous, although their impact on bacterial assemblages was low (3.1% of the standing stock grazed per day). Feeding on the base of the food web combined with their high abudance at certain times makes them an important link for higher trophic levels. This study constitutes the second report onPseudobalanion as an important component of the microbial food web in lakes.  相似文献   

20.
Trophic cascade hypotheses predict that fish will affect the structure and biomass of pelagic plankton communities. In order to investigate trophic cascade effects from fish down to phytoplankton, whole-lake studies were performed in five hypertrophic (mean total phosphorus (TP) concentrations higher than 1000 mg m−3) shallow lakes located in the Pampa Plain. The main climatic characteristic of this region is the alternation between periods of drought and flood, with corresponding changes of lake depth and conductivity of lake water. All lakes were studied from April to December 2000. Samples were taken of their physical and chemical characteristics and biotic communities, focusing on the zooplankton community. Fish were manipulated in four lakes (Capurro, Longinotti, Vedia 1, Vedia 2), while the fifth (Lake Vedia 3) was left undisturbed as a reference system. High abundance of planktivorous minnows (Jenynsia multidentata and Cheirodon interruptus) dominated the fish community in the reference lake. In the manipulated lakes, fish stocks were largely reduced in late autumn (May). During winter, Capurro, Longinotti and Vedia 1 were stocked with a visual planktivore, the pampean silverside (Odontesthes bonariensis, Atherinidae). Fish stocking was 24, 33 and 19 kg ha−1, respectively. In contrast, no fish were stocked in Lake Vedia 2. Following fish removal, large Daphnia appeared in these lakes and grazed intensively on the phytoplankton. In contrast, no Daphnia were found in the reference lake (Vedia 3). The stocking of O. bonariensis in lakes Capurro, Longinotti and Vedia 1 led to a decrease in the percentage of large cladocerans and a rise in the phytoplankton biomass:TP ratio. Moreover, the lakes mentioned were stocked with different quantities of silversides over different periods of time. These differences were reflected temporarily in the plankton dynamics, affecting mainly larger sized zooplankton. Nevertheless, the presence of Daphnia was short lived in the lake where fish had been removed and no O. bonariensis were stocked. Competition for resources and recruitment of remaining fish probably caused a collapse in the zooplankton biomass. Our results support the idea that fish predation on zooplankton and its effect on phytoplankton is very intense in small pampean lakes. Fish removal was short lived, however. This could be because in small pampean lakes fish recolonization is favored, and minnows are highly prolific. Moreover, if manipulation of the trophic structure of lakes is undertaken in the pampean region, high nutrient loading from the watershed, climate and hydrology should also be taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号