首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linking ages to metamorphic stages in rocks that have experienced low‐ to medium‐grade metamorphism can be particularly tricky due to the rarity of index minerals and the preservation of mineral or compositional relicts. The timing of metamorphism and the Mesozoic exhumation of the metasedimentary units and crystalline basement that form the internal part of the Longmen Shan (eastern Tibet, Sichuan, China), are, for these reasons, still largely unconstrained, but crucial for understanding the regional tectonic evolution of eastern Tibet. In situ core‐rim 40Ar/39Ar biotite and U–Th/Pb allanite data show that amphibolite facies conditions (~10–11 kbar, 530°C to 6–7 kbar, 580°C) were reached at 210–180 Ma and that biotite records crystallization, rather than cooling, ages. These conditions are mainly recorded in the metasedimentary cover. The 40Ar/39Ar ages obtained from matrix muscovite that partially re‐equilibrated during the post peak‐P metamorphic history comprise a mixture of ages between that of early prograde muscovite relicts and the timing of late muscovite recrystallization at c. 140–120 Ma. This event marks a previously poorly documented greenschist facies metamorphic overprint. This latest stage is also recorded in the crystalline basement, and defines the timing of the greenschist overprint (7 ± 1 kbar, 370 ± 35°C). Numerical models of Ar diffusion show that the difference between 40Ar/39Ar biotite and muscovite ages cannot be explained by a slow and protracted cooling in an open system. The model and petrological results rather suggest that biotite and muscovite experienced different Ar retention and resetting histories. The Ar record in mica of the studied low‐ to medium‐grade rocks seems to be mainly controlled by dissolution–reprecipitation processes rather than by diffusive loss, and by different microstructural positions in the sample. Together, our data show that the metasedimentary cover was thickened and cooled independently from the basement prior to c. 140 Ma (with a relatively fast cooling at 4.5 ± 0.5°C/Ma between 185 and 140 Ma). Since the Lower Cretaceous, the metasedimentary cover and the crystalline basement experienced a coherent history during which both were partially exhumed. The Mesozoic history of the Eastern border of the Tibetan plateau is therefore complex and polyphase, and the basement was actively involved at least since the Early Cretaceous, changing our perspective on the contribution of the Cenozoic geology.  相似文献   

2.
The Orlica–?nie?nik complex (OSC) is a key geological element of the eastern Variscides and mainly consists of amphibolite facies orthogneisses and metasedimentary rocks. Sporadic occurrences of eclogites and granulites record high‐pressure (HP) to ultrahigh‐pressure (UHP) metamorphic conditions. A multimethod geochronological approach (40Ar–39Ar, Rb–Sr, Sm–Nd, U–Pb) has been used to gain further insights into the polymetamorphic evolution of eclogites and associated country rocks. Special attention was given to the unresolved significance of a 370‐ to 360 Ma age group that was repeatedly described in previous studies. Efforts to verify the accuracy of c. 370 Ma K–Ar phengite and biotite dates reported for an eclogite and associated country‐rock gneiss from the location Nowa Wie? suggest that these dates are meaningless, due to contamination with extraneous Ar. Extraneous Ar is also considered to be responsible for a significantly older 40Ar–39Ar phengite date of c. 455 Ma for an eclogite from the location Wojtowka. Attempts to further substantiate the importance of 370–360 Ma zircon dates as an indicator for a melt‐forming high‐temperature (HT) episode did not provide evidence in support of anatectic processes at this time. Instead, SHRIMP U–Pb zircon dating of leucosomes and leucocratic veins within both orthogneisses and (U)HP granulites revealed two age populations (490–450 and 345–330 Ma respectively) that correspond to protolith ages of the magmatic precursors and late Variscan anatexis. The results of this study further underline the importance of Late Carboniferous metamorphic processes for the evolution of the OSC that comprise the waning stages of HP metamorphism and lower pressure HT overprinting with partial melting. Eclogites and their country rocks provided no chronometric evidence for an UHP and ultrahigh‐temperature episode at 387–360 Ma, as recently suggested for granulites from the OSC, based on Lu–Hf garnet ages ( Anczkiewicz et al., 2007 ).  相似文献   

3.
Five detrital white mica concentrates from very low-grade, metaclastic sequences within pre-Variscan basement and post-Variscan cover units of the Upper Austroalpine Nappe Complex (Eastern Alps) have been dated with 40Ar/39Ar incremental heating techniques to constrain the age of tectonothermal events in their respective source areas. Two samples from early Palaeozoic sandstone exposed within the same Alpine nappe record slightly discordant age spectra. The maximum age recorded in one is 562.2±0.7?Ma, whereas the other yielded a 40Ar/39Ar plateau age of 607.3±0.3?Ma. These results indicate a source area affected by Cadomian tectonothermal activity. Three detrital muscovite concentrates from post-Variscan, Late Carboniferous and Permian cover sequences exposed within three different Alpine nappes yielded 40Ar/39Ar plateau ages of 359.6?±?1.1?Ma, 310.5±1.2?Ma, and 303.3±0.2?Ma. The contrasting detrital white mica ages are interpreted to reflect different source areas. Detrital muscovite from a post-Variscan Carboniferous molasse-type sequence and from a Permian Verrucano-type sequence record ages which indicate “late” Variscan (e.g. 330–300?Ma) metamorphic sources. By contrast, detrital white mica from another Permian Verrucano-type sequence suggests a source area affected by “early” Variscan (e.g. 400–360?Ma) metamorphism. These results help clarify palinspastic relationships and tectonic correlations between pre-Late Carboniferous metamorphic basement sequences and Carboniferous to Permian cover sequences.  相似文献   

4.
Abstract The St Malo region in north-west France contains migmatites and anatectic granites derived by partial melting of metasedimentary protoliths during Cadomian orogenesis at c. 540 Ma. Previously reported Rb–Sr model ages for muscovite and biotite range from c. 550 to c. 300 Ma, and suggest variable resetting of mineral isotopic systems. These rocks display microscopic evidence for variably intense Cadomian intracrystalline plastic strain but record no obvious evidence of penetrative Palaeozoic regional deformation. 40Ar/39Ar mineral ages have been determined to evaluate better the extent, timing and significance of Palaeozoic overprinting. Eleven muscovite concentrates and one whole-rock phyllite have been prepared from various units exposed in the St Malo and adjacent Mancellian regions. In the Mancellian region, muscovite from two facies of the Bonnemain Granite Complex record 40Ar/39Ar plateau ages of c. 527 and 521 Ma. An internally discordant 40Ar/39Ar release spectrum characterizes muscovite from protomylonitic granite within the Cadomian Alexain-Deux Evailles-Izé Granite Complex, and probably records the effects of Variscan displacement along the North Armorican Shear Zone. Muscovite concentrates from anatectic granite and from Cadomian mylonites along ductile shear zones within the north-western sector of the St Malo region exhibit internally discordant 40Ar/39Ar release spectra which suggest variable and partial late Palaeozoic rejuvenation. By contrast, muscovite concentrates from samples of variably mylonitic Brioverian metasedimentary rocks exposed within the south-eastern sector of the St Malo region display internally concordant apparent age spectra which define plateaux of 326–320 Ma. A whole-rock phyllite sample from Brioverian metasedimentary rocks exposed along the eastern boundary of the St Malo region displays an internally discordant argon release pattern which is interpreted to reflect the effects of a partial late Palaeozoic thermal overprint. Muscovite from the Plélan granite, part of the Variscan Plélan-Bobital Granite Complex, yields a 40Ar/39Ar plateau age of c. 307 Ma. The 40Ar/39Ar results indicate that Cadomian rocks of the St Malo region have undergone a widespread and variable Palaeozoic (Carboniferous) rejuvenation of intracrystalline argon systems which apparently did not affect the Mancellian region. This rejuvenation was not accompanied by penetrative regional deformation, and was probably of a static thermal–hydrothermal origin. The heat source for rejuvenation was probably either the result of heating during Variscan extension or advection from Variscan granites which are argued to underlie the St Malo region.  相似文献   

5.
《International Geology Review》2012,54(10):1270-1293
ABSTRACT

The Chinese southwestern Tianshan HP–UHP/LT metamorphic complex possesses well-preserved mafic layers, tectonic slices/blocks, boudins/lens of different sizes, and lithology embedded within dominant metavolcanoclastics. A recent study on the ultra-high pressure (UHP) eclogite revealed a short timescale of exhumation (≤10 Ma, ~315 ± 5 Ma). However, controversies still exist on some key questions: (1) the reasonable interpretation of spatially close-outcropped high pressure (HP) and UHP slices with respect to regional geodynamics, and (2) if the previous regional scatter Ar–Ar ages proved the existence of internally coherent sub-belts or troubled by dating on samples with notable 40Ar retention. This study focusses on detailed PT–time (phengite Ar closure) recovery of samples from a HP eclogite lens and its host rock, the UHP thick-layered eclogite. Based on data from bulk–rock, microprobe analysis, and muscovite Ar–Ar chronological dating, we link phengite growth to potential garnet growth stages via thermodynamic modelling. Facilitated by the PT–Ar retention% graph, we collect all the regional muscovite Ar–Ar data together with results in this study for evaluating the significance of regional muscovite Ar–Ar ages and set back to geodynamics. According to modelling results, the HP lens eclogite reached peak metamorphism at ~550°C, 2.50 GPa with an Ar–Ar muscovite plateau age of 316.9 ± 1.0 Ma that could date the mass phengite growth event during prograde metamorphism. In contrast, the UHP layered eclogite experienced UHP peak burial at ~510°C, 2.95 GPa, and then to HP peak metamorphism at ~560°C, 2.60 GPa with ~311.6 ± 0.7 Ma plateau age that may constrain the cooling age during early exhumation. Noteworthy, both of them share a quite similar early exhumation path despite bearing contrasting prograde metamorphic experiences. With considering updated regional exhumation pattern, this might imply the existence of a potential deep juxtaposing (capture) process between HP slices and exhumating UHP complex, at about 45–60 km depth along subduction plate interface.  相似文献   

6.
The Kurtoğlu metamorphic complex, that forms part of the pre-Liassic basement of the Sakarya zone in northern Turkey, consists of at least two tectonic units. Blueschist-facies rocks of unknown metamorphic age in the southern part of the complex are tectonically overlain by Variscan low-pressure high-temperature metamorphic rocks. The latter comprise mica schists and fine-grained gneisses, cut by metaleucogranitic dikes, as well as migmatitic biotite gneisses and subordinate amphibolite intercalations. Structural data indicate that metamorphism and penetrative deformation occurred after dyke intrusion. Peak metamorphic conditions of the mica schists, fine-grained gneisses and metaleucogranites are estimated to ∼650°C and ∼0.4 GPa, based on phase relationships in the system NCKFMASH, Fe–Mg partitioning between garnet and biotite as well as garnet-aluminosilicate-quartz-plagioclase (GASP) and garnet-plagioclase-biotite-quartz (GBPQ) barometry. Peak temperatures of the migmatitic biotite gneisses and amphibolite intercalations are not well constrained but might have been significantly higher (690–740°C), as suggested from hornblende-plagioclase thermometry. 40Ar–39Ar incremental dating on muscovite and biotite fractions from the mica schists and fine-grained gneisses yielded plateau ages of ∼323 Ma. Significantly older model ages of ∼329 and ∼337 Ma were obtained on muscovite fractions from two metaleucogranite samples. These fractions contain both relict igneous and newly formed metamorphic muscovite.  相似文献   

7.
New eclogite localities and new 40Ar/39Ar ages within the Western Gneiss Region of Norway define three discrete ultrahigh‐pressure (UHP) domains that are separated by distinctly lower pressure, eclogite facies rocks. The sizes of the UHP domains range from c. 2500 to 100 km2; if the UHP culminations are part of a continuous sheet at depth, the Western Gneiss Region UHP terrane has minimum dimensions of c. 165 × 50 × 5 km. 40Ar/39Ar mica and K‐feldspar ages show that this outcrop pattern is the result of gentle regional‐scale folding younger than 380 Ma, and possibly 335 Ma. The UHP and intervening high‐pressure (HP) domains are composed of eclogite‐bearing orthogneiss basement overlain by eclogite‐bearing allochthons. The allochthons are dominated by garnet amphibolite and pelitic schist with minor quartzite, carbonate, calc‐silicate, peridotite, and eclogite. Sm/Nd core and rim ages of 992 and 894 Ma from a 15‐cm garnet indicate local preservation of Precambrian metamorphism within the allochthons. Metapelites within the allochthons indicate near‐isothermal decompression following (U)HP metamorphism: they record upper amphibolite facies recrystallization at 12–17 kbar and c. 750 °C during exhumation from mantle depths, followed by a low‐pressure sillimanite + cordierite overprint at c. 5 kbar and c. 750 °C. New 40Ar/39Ar hornblende ages of 402 Ma document that this decompression from eclogite‐facies conditions at 410–405 Ma to mid‐crustal depths occurred in a few million years. The short timescale and consistently high temperatures imply adiabatic exhumation of a UHP body with minimum dimensions of 20–30 km. 40Ar/39Ar muscovite ages of 397–380 Ma show that this extreme heat advection was followed by rapid cooling (c. 30 °C Myr?1), perhaps because of continued tectonic unroofing.  相似文献   

8.

40Ar‐39Ar age spectra on minerals from granitic, metamorphic and hydrothermal rocks confirm that the Early Proterozoic Tennant Creek Block was affected by two thermal events during its evolution. Although extensive alteration of biotite and feldspar within the granites precludes the direct determination of their cooling history, 40Ar‐39Ar analyses for hydrothermal muscovite from several nearby gold‐copper deposits indicate that regional cooling to below ~ 300°C was not prolonged. Flat, uniform muscovite age spectra were obtained from gold deposits east of the Tennant Creek town site and indicate a minimum age of 1825–1830 Ma for their formation. These ages are within error of those for the felsic volcanism of the Flynn Subgroup, and a genetic relationship between the two may exist. Samples from gold deposits elsewhere in the area indicate disturbance of the K‐Ar isotope system. The second thermal event to affect the region occurred at around 1700 Ma, and is confirmed by the 40Ar‐39Ar muscovite ages for the ‘Warrego’ granite (1677 ± 4 Ma) and for the metamorphism of the Wundirgi Formation (1696 ± 4 Ma).  相似文献   

9.
The Solund–Hyllestad–Lavik area affords an excellent opportunity to understand the ultrahigh‐pressure Scandian orogeny because it contains a near‐complete record of ophiolite emplacement, high‐pressure metamorphism and large‐scale extension. In this area, the Upper Allochthon was intruded by thec. 434 Ma Sogneskollen granodiorite and thrust eastward over the Middle/Lower Allochthon, probably in the Wenlockian. The Middle/Lower Allochthon was subducted to c. 50 km depth and the structurally lower Western Gneiss Complex was subducted to eclogite facies conditions at c. 80 km depth by c. 410–400 Ma. Within < 5–10 Myr, all these units were exhumed by the Nordfjord–Sogn detachment zone, producing shear strains > 100. Exhumation to upper crustal levels was complete by c. 403 Ma. The Solund fault produced the last few km of tectonic exhumation, bringing the near‐ultrahigh‐pressure rocks to within c. 3 km vertical distance from the low‐grade Solund Conglomerate.  相似文献   

10.
West of the Main Uralian fault, the main suture in the southern Urals, 40Ar/39Ar apparent ages of amphibole, muscovite and potassium feldspar are interpreted as cooling ages. A fast exhumation of the metamorphic complex of Kurtinsky during Upper Carboniferous time is indicated by the small age difference (15 Ma) between cogenetic amphibole and muscovite. Differentiated movement in the footwall of the Main Uralian fault along strike is indicated by the age difference of 70 Ma between the metamorphic complexes of Kurtinsky (north) and Maksyutov (south). No Upper Paleozoic (Uralian) medium- to high-temperature event is recorded in 40Ar/39Ar data from the metamorphic complex of Beloretzk (MCB). An amphibole age of 718±5 Ma and the occurrence of mafic intrusions might signal the break-up of Rodinia and therefore indicate the rifting period followed by the separate movement of the "Beloretzk terrane". Muscovite ages of approximately 550±5 Ma, the unique pre-Ordovician tectonometamorphic evolution of the MCB and the Late Vendian sedimentary history of the western Bashkirian Megaanticlinorium (BMA) imply the existence of a Neoproterozoic orogeny at the eastern margin of Baltica. This orogeny might have been initiated by the accretion of the "Beloretzk terrane". The metamorphic grade of the overlain Silurian shales and the K/Ar microcline ages from the "Beloretzk terrane" give evidence for a new thermal event at approximately 370 Ma. A microcline age of 530–550 Ma obtained for the Vendian conglomerate in the western BMA suggests that a maximum temperature of approximately 200°C was reached in Cambrian or Vendian times. An orthoclase age (590–630 Ma) of the Vendian Zigan flysch deposits might be inherited from the eastern source area, the Cadomian orogen. An orthoclase age (910–950 Ma) from the Riphean Zilmerdak conglomerate coincides with a documented decrease in the subsidence rate of the Upper Riphean basin.  相似文献   

11.
A petrological and thermobarometric study of the Lago Teleccio hornfelses was undertaken to reconstruct the polymetamorphic evolution and constrain the P–T conditions of Permian contact metamorphism. The Lago Teleccio metasedimentary rocks record a Variscan regional metamorphism characterized by amphibolite facies mineral assemblages including quartz, plagioclase, K‐feldspar (Kfs 1), biotite, garnet (Grt 1) and staurolite; this was followed by a late‐Variscan mylonitization event. Metamorphism of the Variscan metamorphic rocks at the contact with a Permian granitic intrusion produced static recrystallization and/or new growth of quartz, garnet (Grt 2), plagioclase, K‐feldspar (Kfs 2), cordierite, green spinel, biotite and prismatic sillimanite (Contact 1). This thermal event, which occurred at a peak pressure of 0.23–0.35 GPa, temperature of 670–700 °C and aH2O of 0.751, was followed either during post‐contact metamorphism cooling or, more likely, during the early‐Alpine metamorphism by the breakdown of cordierite into an anhydrous kyanite + orthopyroxene + quartz assemblage. The poorly developed early‐Alpine eclogite facies metamorphism (Alpine 1) was characterized by relatively anhydrous mineral associations and low strain, which locally produced coronitic and pseudomorphous microstructures in metasedimentary rocks, with scanty formation of jadeite, zoisite and a new high‐pressure garnet (Grt 3). Greenschist facies retrogression (Alpine 2) was characterized by the local development of a chlorite‐ and muscovite‐bearing mineral association, suggestive of aqueous fluid incursion. In the hornfelses, the limited extent of metamorphic overprinting is suggested by the fine grain size of the Alpine mineral associations, which formed at the expense of the Permian contact metamorphic associations, and was favoured by the anhydrous mineralogy of the hornfelses.  相似文献   

12.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   

13.
We report SHRIMP U–Th–Pb monazite, conventional U–Pb titanite, Sm–Nd garnet and Rb–Sr muscovite and biotite ages for metamorphic rocks from the Danba Domal Metamorphic Terrane in the eastern Songpan‐Garzê Orogenic Belt (eastern Tibet Plateau). These ages are used to determine the timing of polyphase metamorphic events and the subsequent cooling history. The oldest U–Th–Pb monazite and Sm–Nd garnet ages constrain an early Barrovian metamorphism (M1) in the interval c. 204–190 Ma, coincident with extensive Indosinian granitic magmatism throughout the Songpan‐Garzê Orogenic Belt. A second, higher‐grade sillimanite‐grade metamorphic event (M2), recorded only in the northern part of the Danba terrane, was dated at c. 168–158 Ma by a combination of U–Th–Pb monazite and titanite and Sm–Nd garnet ages. It is suggested that M1 was a thermal event that affected the entire orogenic belt while M2 may represent a local thermal perturbation. Rb–Sr muscovite ages range from c. 138–100 Ma, whereas Rb–Sr biotite ages cluster at c. 34–24 Ma. These ages document regional cooling at rates of c. 2–3 °C Myr?1 following the M1 peak for most of the terrane. However, those parts of the terrane affected by the higher‐temperature M2 event (e.g. the migmatite zone) experienced initially more rapid (c. 8 °C Myr?1) cooling after peak M2 before joining the regional slow cooling path defined by the rest of the terrane at c. 138 Ma. Regional slow cooling between c. 138 and c. 30 Ma is thought to be the result of post‐tectonic isostatic uplift after extensive crustal thickening caused by collision of the South and North China Blocks. The clustering of biotite Rb–Sr ages marks the onset of rapid uplift across the entire terrane commencing at c. 30–20 Ma. This cooling history is shared with many other regions of the Tibet Plateau, suggesting that uplift of the Tibet Plateau (including the Songpan‐Garzê Orogenic Belt) occurred predominantly in the last c. 30 Myr as a response to the continuing northwards collision of India with Eurasia.  相似文献   

14.
High‐P/low‐T metamorphic rocks of the Hammondvale metamorphic suite (HMS) are exposed in an area of 10 km2 on the NW margin of the Caledonian (Avalon) terrane in southern New Brunswick, Canada. The HMS is in faulted contact on the SE with c. 560–550 Ma volcanic and sedimentary rocks and co‐magmatic plutonic units of the Caledonian terrane. The HMS consists of albite‐ and garnet‐porphyroblastic mica schist, with minor marble, calc‐silicate rocks and quartzite. Pressure and temperature estimates from metamorphic assemblages in the mica schist and calc‐silicate rocks using TWQ indicate that peak pressure conditions were 12.4 kbar at 430 °C. Peak temperature conditions were 580 °C at 9.0 kbar. 40Ar/39Ar muscovite ages from three samples range up to 618–615 Ma, a minimum age for high‐P/low‐T metamorphism in this unit. These ages indicate that the HMS is related to the c. 625–600 Ma subduction‐generated volcanic and plutonic units exposed to the SE in the Caledonian terrane. The ages are also similar to those obtained from detrital muscovite in a Neoproterozoic‐Cambrian sedimentary sequence in the Caledonian terrane, suggesting that the HMS was exposed by latest Neoproterozoic time and supplied detritus to the sedimentary units. The HMS is interpreted to represent a fragment of an accretionary complex, similar to the Sanbagawa Belt in Japan. It confirms the presence of a major cryptic suture between the Avalon terrane sensu stricto and the now‐adjacent Brookville terrane.  相似文献   

15.
The determination of the thermal (temperature–time) histories of high‐P metamorphic terranes has been commonly based on the concepts of slow cooling and closure temperatures. In this paper, we find that this approach cannot reconcile a geochronological data set obtained from the amphibolite‐facies allochthonous Leknes Group of the Lofoten islands, Norway, which reveals an extremely complex thermal history. Using detailed results from several different geochronometers such as 40Ar/39Ar, Rb–Sr and U–Pb, we show that a model invoking multiple, short‐lived thermal pulses related to hot‐fluid infiltration channelized by shear zones can reconcile this complicated data set. This model suggests that hot fluids infiltrated throughout basement shear zones and affected the overlying cold allochthon, partially resetting U/Pb rutile and titanite ages, crystallizing new zircon and produced identical 40Ar/39Ar and Rb/Sr ages in muscovite, biotite and amphibole in various rocks throughout the region. This paper shows the enormous potential of coupling laser Ar‐spot data with thermal modelling to identify and constrain the duration of short‐lived events. An optimal P–T–t history has been derived by modelling the age data from a previously dated large muscovite crystal (Hames & Andresen, 1996, Geology, 24 :1005) and using Zr‐in‐rutile thermometry which is consistent with all geochronological data and geological constraints from the basement zones and allochthon cover. This tectonothermal model history suggests that there have been three episodic hot‐fluid and 40Ar‐free infiltration events, resulting in the total resetting of Ar ages during the Scandian (425 Ma) for 1 Ma at 650°C and two reheating events at 415 Ma for 400 ka at 650°C and at 365 Ma for 50 ka at 600°C, which are modelled as thermal spikes above an ambient temperature of 300°C. Independent confirmation of these parameters was provided by Pb‐diffusion modelling in rutile and titanite. The model suggests that the amphibolite facies rocks of the Leknes Group probably remained cold before being exhumed for at least 60 Ma (425–365 Ma) and successfully explains the presence of different minerals that crystallized or were totally/partially reset in the allochthon and in the basement. The migration of hot fluids for short periods of times within conduits extending through the basement and allochthon rock units is likely associated with episodic seismic activity during the Caledonian orogeny.  相似文献   

16.
The Sistan Suture Zone (SSZ) of eastern Iran is part of the Neo‐Tethyan orogenic system and formed by convergence of the Central Iranian and Afghan microcontinents. Ar Ar ages of ca. 125 Ma have been obtained from white micas and amphibole from variably overprinted high‐pressure metabasites within the Ratuk Complex of the SSZ. The metabasites, which occur as fault‐bounded lenses within a subduction mélange, document peak‐metamorphic conditions in eclogite or blueschist facies followed by near‐isothermal decompression resulting in an epidote–amphibolite‐facies overprint. 40Ar/39Ar step heating experiments were performed on a phengite + paragonite mixture from an eclogite, phengites from two amphibolites, and paragonite from a blueschist; ‘best‐fit’ ages from these micas are, respectively, 122.8 ± 2.2, 124 ± 13, 116 ± 19 and 139 ± 19 Ma (2σ error). Barroisite from an amphibolite yielded an age of 124 ± 10 Ma. The ages are interpreted as cooling ages that record the post‐epidote–amphibolite stage in the exhumation of the rocks. Our results imply that both the high‐pressure metamorphism and the epidote–amphibolite‐facies overprint occurred prior to 125 Ma. Subduction of oceanic lithosphere along the eastern margin of the Sistan Ocean had therefore begun by Barremian (Early Cretaceous) times. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
羌塘中部高压变质带的退变质作用及其构造侵位   总被引:6,自引:1,他引:5  
董永胜  李才  施建荣  王生云 《岩石学报》2009,25(9):2303-2309
羌塘中部的高压变质带主要由榴辉岩、石榴石白云母片岩和蓝片岩等组成,它们在遭受高压变质作用之后折返,构造侵位于晚古生代展金组地层中,二者以韧性变形带为接触边界.本文以高压变质带中的榴辉岩和韧性变形带为研究对象,讨论了高压变质带折返过程中的退变质作用特征及折返时代.研究表明,榴辉岩在高峰期变质作用之后的折返过程中经历了由榴辉岩相→蓝片岩相→绿帘角闪岩相的退变质作用演化过程;在高压变质带构造侵位过程形成的韧性变形带中,白云母石英片岩的白云母40Ar-39Ar坪年龄为219±2Ma.高压变质带在219Ma左右构造侵位于展金组地层中,并于214Ma之前最终抬升出露地表.  相似文献   

18.
ABSTRACT The high-grade migmatitic core to the southern Brittany metamorphic belt has mineralogical and textural features that suggest high-temperature decompression. The chronology of this decompression and subsequent cooling history have been constrained with 40Ar/39 Ar ages determined for multigrain concentrates of hornblende and muscovite prepared from amphibolite and late-orogenic granite sheets within the migmatitic core, and from amphibolite of the structurally overlying unit. Three hornblende concentrates yield plateau isotope correlation ages of c. 303–298 Ma. Two muscovite concentrates record well-defined plateau ages of c. 306–305 Ma. These ages are geologically significant and date the last cooling through temperatures required for intracrystalline retention of radiogenic argon. The concordancy of the hornblende and muscovite ages suggest rapid post-metamorphic cooling. Extant geochronology and the new 40Ar/39Ar data suggest a minimum time-integrated average cooling rate between c. 725 °C and c. 125 °C of c. 14 ± 4°C Ma-1, although below 600 °C the data permit an infinitely fast rate of cooling. Mineral assemblages and reaction textures in diatexite migmatites suggest c. 4 kbar decompression at 800–750 °C. This must have pre-dated the rapid cooling. Emplacement of two-mica granites into the metamorphic belt occurred between 345 and 300 Ma. The youngest plutons were emplaced synkinematically along shallow-dipping normal faults interpreted to be reactivated Eo-Variscan thrusts. A penetrative, west-plunging stretching lineation developed in these granites suggests that extension was orogen-parallel. Extension was probably related to regional uplift and gravitational collapse of thermally weakened crust during constrictional (escape) tectonics in this narrow part of the Variscan orogen. This followed slab breakoff during the terminal stages of convergence between Gondwana and Laurasia; detachment may have been consequent upon a change in kinematics leading to dextral displacement within the orogen. Dextral ductile strike-slip displacement was concentrated in granites emplaced synkinematically along the South Armorican Shear Zone. Rapid cooling is interpreted to have resulted from tectonic unroofing with emplacement of granite along decollement surfaces. The high-grade migmatitic core of the southern Brittany metamorphic belt represents a type of metamorphic core complex formed during orogen-parallel extensional unroofing and regional-scale ductile flow.  相似文献   

19.
A new occurrence of kyanite eclogite in the Pirin Mountains of southwestern Bulgaria within the rocks belonging to the Obidim Unit of the Rhodope Metamorphic Complex is presented. This eclogite provides important information about the peak–pressure conditions despite strong thermal overprint at low pressure. Textural relationships, phase equilibrium modelling and conventional geothermobarometry were used to constrain the metamorphic evolution. Garnet porphyroblasts with inclusions of omphacite (up to 43 mol.% Jd), phengite (up to 3.5 Si p.f.u.), kyanite, polycrystalline quartz, pargasitic amphibole, zoisite and rutile in the Mg‐rich cores (XMg = 0.44–0.46) record a prograde increase in P–T conditions from ~2.5 GPa and 650 °C to ~3 GPa and 700–750 °C. Maximum pressure values fall within the stability field of coesite. During exhumation, the peak–pressure assemblage garnet + omphacite + phengite + kyanite was variably overprinted by a lower pressure one forming symplectitic textures, such as diopside + plagioclase after omphacite and biotite + plagioclase after phengite. The development of spinel (XMg = 0.4–0.45) + corundum + anorthite assemblage in the kyanite‐bearing domains at ~1.1 GPa and 800–850 °C suggests a thermal overprint in the high‐pressure granulite facies stability field. This thermal event was followed by cooling at ~0.8 GPa under amphibolite facies conditions; retrograde kelyphite texture involving plagioclase and amphibole was developed around garnet. Our results add to the already existing evidence for ultra high pressure (UHP) metamorphism in the Upper Allochthon of the Rhodope Metamorphic Complex as in the Kimi Unit and show that it is more widespread than previously known. Published age data and field structural relations suggest that the Obidim Unit represents Variscan continental crust involved into the Alpine nappe edifice of the Rhodopes and that eclogite facies metamorphism was Palaeozoic, in contrast to the Kimi Unit where age determinations suggest a Jurassic or Cretaceous age for UHP metamorphism. This implies that UHP metamorphism in the Upper Allochthon of the Rhodopes may have occurred twice, during Alpine and pre‐Alpine orogenic events, and that two independent HP/UHP provinces of different age overlap in this area.  相似文献   

20.
The Variscan Upper Allochthon is a continental‐affinity terrane that recorded a CambrianEdiacaran magmatic arc generation, a subsequent transition to a passive margin, and a collision‐related high‐P metamorphism during the DevonianCarboniferous amalgamation of Pangea. The objective of this article is to decipher which continental margin subducted in the Devonian high‐P–high‐T (HP–HT) event. To do so, a provenance study is presented using combined UPb (n = 613) and LuHf (n = 463) isotopic LAICPMS zircon analyses and SmNd whole–rock (n = 5) determinations. These analyses have been performed on five samples of the Banded Gneisses (Cabo Ortegal Complex, NW Iberia), which forms a part of the HP–HT bottom member of the Upper Allochthon. Palaeozoic–Neoproterozoic zircon ages (34.7%) have a maximum abundance at 522–512 Ma, peaks at 575, 561, 545 Ma and minor abundance peaks between 780 and 590 Ma, and show from their Lu–Hf compositions a volcanic arc mixing pattern. This arc was probably related to the Cadomian arc system. The Mesoproterozoic population is scarce and scattered (2.8%), and due to its Lu–Hf pattern, it is proposed that this population is also West Africa Craton derived. The Paleoproterozoic population (39.6%) is concentrated at 2.07 Ga and it is linked to the Eburnean Orogeny, where depleted mantle derived magmas intruded an Archean craton margin. This craton is represented by the Archean population (22.8%), which is grouped at 3.0, 2.68‐2.61 and 2.52‐2.48 Ga, and shows long‐term reworking processes and at least two juvenile magma intrusions. These data show that the Variscan Upper Allochthon has a West African provenance and therefore, it strongly suggests that the NW Iberian allochthonous complexes and their correlative European terranes are also West Africa derived. These results allow us to finally clarify that the first high‐P event, recorded during the eo‐Variscan amalgamation of Pangea, was attained by the subduction of the margin of Gondwana under Laurussia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号