共查询到20条相似文献,搜索用时 15 毫秒
1.
δ 34S-values have been determined in 248 sulfide samples from different profiles through the ore bodies of the Sulitjelma pyrite-copper deposits. The values range for pyrite from ?4,1‰ to +9,2‰, but for an individual orebody the spread is generally much lower. Some profiles exhibit a systematic δ 34S decrease from the footwall to the hanging wall of the ore bodies, whereas laterally the S isotope composition in a distinct layer is rather uniform. Another trend from heavier to lighter sulfur exists from the center towards the margin of large porphyroblastic pyrite crystalls. Among the trace elements only the Co concentration in pyrite appears to be correlated with the δ-values. The sulfur-isotopic fractionation between coexisting sulfides is in agreement with the experience from other deposits, namely δ34Spyrite>δ34Spyrrhotite≈δ34Ssphalerite>δ34Schalcopyite 相似文献
2.
伟晶岩型锂矿中矿物原位微区元素和同位素示踪与定年研究进展 总被引:2,自引:0,他引:2
锂是重要的战略性关键金属,伟晶岩型锂矿是锂资源的主要来源之一。伟晶岩的成因及锂等关键金属在花岗质岩浆-热液演化过程中是如何富集成矿的,是人们十分关注的重要科学问题。多种方法可对伟晶岩的成岩成矿年龄进行限定,除锆石外,其他副矿物和矿石矿物如磷灰石、铌铁矿族矿物、锡石等的原位微区U-Pb定年己得到广泛应用,但需根据定年矿物的共生关系、结晶学及矿物化学特征进行系统研究,合理解释所获年龄的地质意义;伟晶岩型锂矿的成岩成矿一般具有同时性,个别存在多期成矿。伟晶岩的地球化学类型主要有LCT型(富集Li-Cs-Ta)和NYF型(富集Nb-Y-F)及它们的混合类型;成因有"母体花岗岩浆的结晶分异"和"源岩直接部分熔融"两种主要模型;多种矿物学和地球化学方法可用于区分这两种成因。伟晶岩型锂矿床的成矿机制研究包括成矿元素在源区的初始富集,成矿元素在岩浆过程中的富集和沉淀,以及在岩浆-热液过程中的行为和富集作用。伟晶岩中贯通性矿物和矿石矿物的原位微区分析是研究锂等关键金属成矿过程的重要方法。 相似文献
3.
The oxygen isotope and trace element composition of hydrothermal quartz has been integrated with scanning electron microscope-cathodoluminescence (SEM-CL) images and fluid inclusion properties to track fluid sources and hydrothermal processes in the Mt. Leyshon Au deposit, Australia. Oxygen isotope and trace element data were collected on parallel traverses across the same quartz sections, using secondary isotope mass spectrometry (SIMS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), respectively, with SEM-CL images obtained before analysis for petrographic context. Over the 280 to 650 °C quartz precipitation range suggested by fluid inclusion microthermometry, δ18Oquartz varies from 0.0 to 14.4‰, corresponding to a wide range of equilibrium δ18Ofluid values, from-6.1 to 10.2‰ (vs. V-SMOW). The δ18Oquartz signature varies systematically among distinct SEM-CL quartz generations (both within and between samples), and can be correlated with variations in temperature and fluid composition, but is independent of intra-generational oscillatory zoning. In contrast, Al and Li concentrations correlate broadly with CL intensity in oscillatory quartz, whereas their concentration is unpredictable in sealed fractures and overgrowths. Concentrations of B, Mg, Na, P, Cl, K, Ti, Mn, Fe, Ge, and Sn are independent of Al, Li, and oscillatory CL features, but Ti correlates with quartz precipitation temperature. Although no systematic correlation between δ18Oquartz and trace element concentrations was found, complementary patterns exist in narrow overgrowths of low δ18Oquartz ( 0‰) and high Al (> 10,000 ppma). These quartz zones likely formed during the incursion of 18O-depleted meteoric water into the magmatically-dominated Mt. Leyshon hydrothermal system. We interpret the highest Al concentrations as the result of high quartz precipitation rates, triggered by depressurisation of the hydrothermal cell. The decoupling of oxygen isotope and trace element patterns in quartz leads to the suggestion that (1) under most circumstances, temperature and fluid chemistry dominate δ18Oquartz, and (2) the trace element record, and in particular Al and Li, is influenced by the superimposed effects of quartz precipitation rate. 相似文献
4.
5.
流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用 总被引:4,自引:3,他引:4
流体包裹体LA-ICP-MS(激光剥蚀-电感耦合等离子体质谱仪)分析具有高精度、低检测限、多元素同时微区原位检测的特点,因此在精细刻画成矿过程、深入揭示成矿机理方面具有传统方法无可比拟的优势。通过人工合成石英Na Cl-H2O-Rb-Cs和Na Cl-KCl-Ca Cl2-H2O-Rb-Cs流体包裹体,使用NIST610为外标、显微测温Na Cl等效盐度(电价平衡方法)为内标,建立了流体包裹体L A-ICP-MS分析方法。分析结果的相对误差在±16%以内,绝大部分在±10%以内,相对标准偏差(RSD)小于7%。同时结合国际上推荐的石英标样,使用NIST610为外标、无内标法,建立了石英微量元素LA-ICP-MS分析方法。分析结果表明,石英中主要元素Li、Al和Ti的相对误差在±10%以内,相对标准偏差小于5%。利用建立的方法对鲁西早白垩世王家庄Cu-Mo矿开展了应用研究,结果显示该矿富气相包裹体更富Cu,而含子矿物包裹体富Mo,暗示Cu和Mo可能具有不同的搬运机制,Cu更倾向于气相,Mo则倾向于进入液相,结合流体沸腾现象的存在,这可能是导致该矿上铜下钼分带沉淀的重要因素。此外,从早期岩浆成因石英到成矿期热液石英以及成矿期后石英,微量元素具有明显的Ti降低而Al升高的趋势,暗示成矿元素Cu、Mo的沉淀可能同时还受到温度和流体酸碱度变化的控制。 相似文献
6.
对松多榴辉岩中单矿物进行的LA-ICP-MS原位微区微量元素分析研究结果表明,石榴石主要富集中、重稀土元素和Y,同时具有高丰度的Sc、V、Cr和Co等元素;绿辉石中的微量元素以中稀土元素、Sr、Sc、V、Cr、Co、Ni和Ti为主,含有一定量的Zr、Hf等。石榴石、绿辉石、角闪石和绿帘石中均显示轻稀土元素亏损的特点,表明在退变质过程中没有发生明显的富轻稀土元素的外来流体交代作用,因而其微量元素矿物地球化学的某些特点不同于苏鲁地区的榴辉岩。石榴石变斑晶中某些元素(如Ti、Zr)的分带性暗示了榴辉岩在紧随峰期变质之后的折返过程中发生了降压增温过程。榴辉岩主要变质矿物中微量元素的分配显然受到矿物主量元素的分配所控制,如MgO在石榴石和绿辉石之间的分配对Ni、Co、Ti分配的控制以及CaO的分配对Sr、Y、REE分配的控制等。退变质过程中矿物的形成或分解以及物理化学条件的改变都可以引起矿物间微量元素的重新分配。由绿辉石退变质而形成的角闪石,较之原先的绿辉石,其微量元素配分曲线总体特征会发生变化,但元素总体丰度相近,某些元素特点相似,又反映了绿辉石和角闪石之间的成生联系。金红石是Ti、Nb、Ta、Zr、Hf的主要赋存矿物,而与之共生的绿帘石所表现出来的高场强元素的亏损特征表明了金红石的存在所带来的影响。 相似文献
7.
激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)是一种固体微区分析新技术。用该技术来分析矿床中硫化物的微量元素组成可以为研究成矿流体特征、矿床成因及找矿勘探提供有关的科学信息。文中以安徽铜陵矿集区内新桥Cu-Au-S矿床中的黄铁矿为研究对象,在详细的野外观察和室内鉴定的基础上,将矿床中的黄铁矿分为具有沉积特征的胶状黄铁矿(PyⅠ)、具有变形重结晶和热液叠加作用特征的细粒他形黄铁矿(PyⅡ)和具热液成因特征的中—粗粒自形黄铁矿(PyⅢ)3种类型。LA-ICP-MS原位微量元素测定结果显示,PyⅠ中相对富含Ti、Co、Ni、As、Se、Te;PyⅡ继承了PyⅠ中富含Ti、Co、Ni、As、Se、Te、Bi的特征,同时还含有不均匀分布的少量成矿元素(Cu、Pb、Zn、Au、Ag);PyⅢ中成矿元素Cu、Pb、Zn、Ag、Au以及Bi元素的含量较高,Co、Ni、As的含量较低。在元素赋存状态方面,Co、Ni、As、Se和Te均以类质同象的形式进入到了黄铁矿的晶格中;Bi在PyⅡ中主要以含Bi矿物的微细包裹体形式存在,而在PyⅢ中的Bi还部分取代了Fe而占据了晶格;Cu、Pb、Zn、Au、Ag这些成矿元素中,Cu和Zn分别以黄铜矿和闪锌矿的矿物包裹体存在于黄铁矿中;PyⅡ中所含的少量Au、Ag,可能分别以自然金和自然银的形式存在,而在PyⅢ中Au可能主要以银金矿的形式存在,Ag除了以银金矿的形式存在以外还可能赋存于黄铁矿中含铋的矿物包裹体内;Pb主要赋存于黄铁矿中的方铅矿或含铋矿物的包裹体中。在综合分析黄铁矿的结构形态和微量元素组成特征的基础上认为,PyⅠ型黄铁矿可能形成于前人提出的晚古生代海底沉积或喷流沉积环境,PyⅡ和PyⅢ型黄铁矿分别形成于中生代区域构造变形-热液叠加改造的过渡环境和热液环境,PyⅡ和PyⅢ的形成时间相近。新桥矿床的形成可能经历了晚古生代海底沉积或喷流沉积期和燕山期热液期,胶黄铁矿主要形成于沉积成矿期,而矿床中成矿物质Cu、Pb、Zn、Au、Ag等主要来自燕山期岩浆侵入作用形成的热液成矿系统。 相似文献
8.
泥堡金矿床为黔西南地区新近发现的又一个重要的卡林型金矿床,显微镜下观察和电子探针分析显示,含砷黄铁矿是其主要的载金矿物。在详细的野外调研和室内观察的基础上,将该矿床中的载金含砷黄铁矿分为3种类型,即环带状含砷黄铁矿(PyⅠ)、胶状含砷黄铁矿(PyⅡ)和生物结构状含砷黄铁矿(PyⅢ)。电子探针和LA-ICP-MS原位主微量元素测定结果显示,PyⅠ明显存在继承核和增生环带,内核富S、Fe,贫Au、As、Ag、Cu等中低温成矿元素,为沉积成因或成矿前热液成因黄铁矿;增生环带则相对贫S、Fe,富Au、As、Ag、Cu等中低温成矿元素,为主成矿期热液成因黄铁矿。PyⅡ和PyⅢ均为均质结构,具有富Au、As、Ag、Cu等中低温成矿元素及贫S、Fe的特点,类似PyⅠ的增生环带,应与PyⅠ的增生环带为同一成因类型,可能是同期形成的。毒砂中普遍富As,而贫Au、Ag、Hg、Cu等元素,应为成矿热液晚期的结晶产物。综合分析认为,泥堡金矿床载金矿物的结晶顺序为:贫砷的沉积成因或早阶段热液成因黄铁矿(PyⅠ内核)→含砷黄铁矿颗粒+含砷黄铁矿环带(PyⅠ增生环带)→毒砂。矿床中Au、Ag、As、Cu等成矿物质主要来自于燕山晚期的岩浆热液系统。 相似文献
9.
Lead isotopic ratios of bulk sulphides from eleven stratigraphically equivalent deposits from the Köli Nappe sequence in the Trondheim district, and eleven from the Köli sequence at Sulitjelma Norway, have been determined. When plotted on 207Pb/204Pb-206Pb/204Pb diagrams, the data define a linear trend extending from the mantle to the upper crustal model growth curves of Doe and Zartman (1979). Moreover, the data from both districts lie on the same trend. This isotopic trend is interpreted as resulting from the mixing of lead from a mantle source (probably the host basalts) with that of an upper-crustal end member (either sialic basement or the terrigenous sediments surrounding the host basalts). It is also concluded that the deposits in both camps formed more or less contemporaneously. The isotopic mixing line is comparable with that obtained from Besshi ore pyrites in Japan, for which an aulacogenic depositional environment, similar to that found today in the Gulf of California, has been proposed (Fox 1984). It is concluded that a similar depositional environment was responsible for the Trondheim and Sulitjelma ores, although an ensialic back-arc basin, or other possible environments, cannot be entirely ruled out. 相似文献
10.
On the occurrence,trace element geochemistry,and crystallization history of zircon from in situ ocean lithosphere 总被引:8,自引:2,他引:8
Craig B. Grimes Barbara E. John Michael J. Cheadle Frank K. Mazdab Joseph L. Wooden Susan Swapp Joshua J. Schwartz 《Contributions to Mineralogy and Petrology》2009,158(6):757-783
We characterize the textural and geochemical features of ocean crustal zircon recovered from plagiogranite, evolved gabbro,
and metamorphosed ultramafic host-rocks collected along present-day slow and ultraslow spreading mid-ocean ridges (MORs).
The geochemistry of 267 zircon grains was measured by sensitive high-resolution ion microprobe-reverse geometry at the USGS-Stanford
Ion Microprobe facility. Three types of zircon are recognized based on texture and geochemistry. Most ocean crustal zircons
resemble young magmatic zircon from other crustal settings, occurring as pristine, colorless euhedral (Type 1) or subhedral
to anhedral (Type 2) grains. In these grains, Hf and most trace elements vary systematically with Ti, typically becoming enriched
with falling Ti-in-zircon temperature. Ti-in-zircon temperatures range from 1,040 to 660°C (corrected for a
TiO2 ≈ 0.7, a
SiO2 ≈ 1.0, pressure ≈ 2 kbar); intra-sample variation is typically ~60–150°C. Decreasing Ti correlates with enrichment in Hf
to ~2 wt%, while additional Hf-enrichment occurs at relatively constant temperature. Trends between Ti and U, Y, REE, and
Eu/Eu* exhibit a similar inflection, which may denote the onset of eutectic crystallization; the inflection is well-defined
by zircons from plagiogranite and implies solidus temperatures of ~680–740°C. A third type of zircon is defined as being porous
and colored with chaotic CL zoning, and occurs in ~25% of rock samples studied. These features, along with high measured La,
Cl, S, Ca, and Fe, and low (Sm/La)N ratios are suggestive of interaction with aqueous fluids. Non-porous, luminescent CL overgrowth rims on porous grains record
uniform temperatures averaging 615 ± 26°C (2SD, n = 7), implying zircon formation below the wet-granite solidus and under water-saturated conditions. Zircon geochemistry reflects,
in part, source region; elevated HREE coupled with low U concentrations allow effective discrimination of ~80% of zircon formed
at modern MORs from zircon in continental crust. The geochemistry and textural observations reported here serve as an important
database for comparison with detrital, xenocrystic, and metamorphosed mafic rock-hosted zircon populations to evaluate provenance. 相似文献
11.
安徽铜陵矿集区是我国长江中下游构造—岩浆—成矿带中一个重要的铜金多金属成矿区,区内广泛发育晚中生代以石英闪长岩和花岗闪长岩为主的中酸性闪长质侵入岩体,且其与成矿关系密切。关于铜陵矿集区侵入岩的成因,前人已有大量研究成果发表,但仍存有一定争议。本文在广泛收集前人研究资料和成果的基础上,选择区内铜官山石英闪长岩体和新屋里、胡村花岗闪长岩体开展全岩Sr-Nd同位素和锆石原位Hf-O同位素分析,以进一步探讨其成因机制。研究表明,石英闪长岩和花岗闪长岩的结构构造和矿物组成特征相似,全岩主量元素、微量元素和稀土元素组成特征也基本一致,均属高钾钙碱性岩石系列,并具有埃达克质岩石特征。石英闪长岩ISr值为0.707 2~0.709 0,εNd(t)值为-13.0~-8.3,锆石εHf(t)值为-23.5~-8.7,δ18O值为6.5‰~7.4‰;花岗闪长岩ISr值0.707 7~0.709 8,εNd(t)值为-13.6~-8.5,锆石εHf(t)值为-19.0~-7.4,δ18O值为6.7‰~8.1‰。石英闪长岩和花岗闪长岩Sr-Nd同位素组成特征和锆石Hf-O同位素组成特征亦基本一致,指示它们具有相同的成岩物质来源。结合区域地质背景和构造演化,本文认为,铜陵矿集区石英闪长岩和花岗闪长岩为富集岩石圈地幔岩浆与壳源埃达克质岩浆混合并上升侵位所形成,富集岩石圈地幔岩浆并非起源于古太平洋俯冲洋壳或俯冲洋壳析出流体交代的富集岩石圈地幔,而是新元古代华夏洋俯冲析出流体交代扬子板块岩石圈地幔所形成,壳源埃达克质岩浆为新元古代华夏板块与扬子板块碰撞之后形成的新生地壳熔融而成。铜陵矿集区晚中生代大规模岩浆作用的诱因是大陆板内构造背景下富集岩石圈地幔部分熔融岩浆上涌加热以及受古太平洋板块挤压和地壳加厚再转向拉张应力下的减压熔融。 相似文献
12.
Polymetallic vein-type Zn-Pb deposits are located in the Xiangxi–Qiandong zinc-lead metallogenic belt (XQMB) of the northwestern margin of the Jiangnan Orogen, South China. Ores are mainly found in fault-bounded quartz veins hosted in the upper part of the Banxi Group that consists of low-grade metamorphic sandstone, siltstone with minor tuff interbeds. The Zn-Pb deposits primarily contain sphalerite, galena, chalcopyrite and pyrite, accompanied by quartz and minor calcite. Zinc, lead, copper, indium and gallium are enriched in these ores. Investigation of the ore fluid reveals low temperature (87–262 °C) with scattered salinity (range from 2.73 to 26.64 wt% NaCleqv.). Hydrogen and oxygen isotopic compositions of fluid inclusions in quartz indicate mixing of magmatic hydrothermal fluid and meteoric water (δ18OH2O SMOW = 0.2‰ to 4.2‰; δDH2O SMOW = −126‰ to −80‰). Carbon and oxygen isotopic composition of carbonate samples indicate the magmatic hydrothermal origin of CO32− or CO2 in ore-forming fluid (δ13CPDB = −6.9‰ to −5.7‰, δ18OSMOW = 11.3‰ to 12.7‰). Sulfur and lead isotopic compositions (δ34SVCDT = 8.8–14.2‰ and 206Pb/204Pb = 17.156–17.209, 207Pb/204Pb = 15.532–15.508, 208Pb/204Pb = 37.282–37.546) demonstrate that sulfur sources were relatively uniform, and low radiogenic lead isotopic compositions indicate that ore metals were derived from a relatively unradiogenic source, probably by mixing of mantle with crust. Therefore, polymetallic vein-type Zn-Pb mineralization in this area probably arose from a magmatic-related hydrothermal system, and the deposition of sulfides occurred in response to cooling and boiling of magmatic hydrothermal fluids (high salinity, high δ18OH2O and δDH2O and metal-bearing), and is mainly the result of emplacement into open space and mixing with meteoric water (low salinity, low δ18OH2O and δDH2O). This study provides direct evidence that magmatism was involved in the ore-forming processes of the low temperature metallogenic district, South China, and it raises awareness about the presence of polymetallic vein-type Zn-Pb deposits in the northwest margin of Jiangnan Orogen and their potential as a source of zinc, copper, indium and gallium. 相似文献
13.
A. Mücke 《Mineralogy and Petrology》2003,77(3-4):215-234
Summary ?Detailed petrographic studies and microchemical analyses of titanomagnetite from igneous and metamorphic rocks and ore deposits
form the basis of this investigation. Its aim is to compare the data obtained and their interpretations with the experimentally
deduced subsolidus oxidation-exsolution model of Buddington and Lindsley (1964). The results are also considered relevant for the interpretation of compositional variations in black sands which
are recovered for titanium production. The arrangement of the samples investigated is in accordance with textural stages C1
to C5 caused by subsolidus exsolution with increasing degrees of oxidation (Haggerty, 1991).
Stage 1 is represented by two types of optically homogeneous TiO2-rich magnetite: a. An isotropic type considered to represent solid solutions of magnetite and ulvite containing between 5.2
to 27.5 wt% TiO2 corresponding to about 14.7 to 77.7 mol% Fe2TiO4 in solid solution with magnetite. The general formula of this type is Fe2+
1+x
Fe3+
2−2x
Ti
x
O4 (x = 0.0–1.0). b. The second type which has not been reported so far is anisotropic and shows complex internal twinning resembling
inversion textures. It is thus attributed to inversion of a high-temperature ilmenite modification (with statistical distribution
of the cations) which forms solid solutions with magnetite. TiO2 varies between 9.3 and 24.5 wt% corresponding to about 17.2 to 43.6 mol% ilmenite in solid solution with magnetite. This
type is interpreted as a cation-deficient spinel with the general formula Fe2+
12/12 + 1/4xFe3+
24/12 − 3/2x
□
0 + 1/4x
Ti
x
O4 (x = 0.0–16/12). Isotropic and anisotropic homogeneous magnetites occur in volcanic rocks only; the homogeneity of the solid
solutions was explained by fast cooling which prevented the development of exsolution textures.
Stages 2 and 3 are represented by magnetite with or without ulvite. The magnetite host contains ilmenite lamellae forming
trellis and sandwich textures. In contrast to the requirement of the oxidation-exsolution model, the ilmenite lamellae are
concentrated exclusively in the cores of the host crystals. The reverse host-guest relationship may also occur. Stages 4 and
5 are identical with thermally generated martite (= martite due to heating). The textures are characterized by very broad
lamellae of ferrian ilmenite or titanohematite dominantly concentrated along the margins of the host crystals. Thermally generated
martite is restricted to subsolidus-oxidation reactions.
The ilmenite lamellae of trellis and sandwich textures contain low Fe2O3-concentrations (average 4.8 mol%; to a maximum of 8.3), whereas the Fe2O3-content of thermally generated martite is between 32 to 71 mol%. With respect to the Fe2O3-concentrations in the ilmenite lamellae, no transition between the two types was observed.
The results of this paper show that the widely accepted oxy-exsolution model of Buddington and Lindsley (1964) which is based on experimental results can – with the exception of thermally generated martite – not explain the tremendous
variety of magnetite–ilmenite–ulvite relationships in natural rocks and ore deposits.
Received October 16, 2001; accepted May 2, 2002 相似文献
14.
Federica Schiavi Katsura Kobayashi Takuya Moriguti Eizo Nakamura Massimo Pompilio Massimo Tiepolo Riccardo Vannucci 《Contributions to Mineralogy and Petrology》2010,159(4):541-561
During its 1800-year-long persistent activity the Stromboli volcano has erupted a highly porphyritic (HP) volatile-poor scoriaceous
magma and a low porphyritic (LP) volatile-rich pumiceous magma. The HP magma is erupted during normal Strombolian explosions
and lava effusions, while the LP one is related to more energetic paroxysms. During the March–April 2003 explosive activity,
Stromboli ejected two typologies of juvenile glassy ashes, namely highly vesicular LP shards and volatile-poor HP shards.
Their textural and in situ chemical characteristics are used to unravel mutual relationships between HP and LP magmas, as
well as magma dynamics within the shallow plumbing system. The mantle-normalized trace element patterns of both ash types
show the typical arc-lava pattern; however, HP glasses possess incompatible element concentrations higher than LP glasses,
along with Sr and Eu negative anomalies. HP shards are generally characterized by higher Li contents (to ~20 ppm) and lower
δ7Li values (+1.2 to −3.8‰) with respect to LP shards (Li contents of 7–14 ppm and δ7Li ranging between +4.6 and +0.9‰). Fractional crystallization models based on major and trace element compositions, combined
with a degassing model based on open-system Rayleigh distillation and on the assumption that melt/fluidDLi > 1, show that abundant (~30%) plagioclase precipitation and variable degrees of degassing can lead the more primitive LP
magma to evolve toward a differentiated (isotopically lighter) HP magma ponding in the upper conduit and undergoing slow continuous
degassing-induced crystallization. This study also evidences that in March 2003 Stromboli volcano poured out a small early
volume of LP magma that traveled slower within the conduit with respect to later and larger volumes of fast ascending LP magma
erupted during the April 5 paroxysm. The different ascent rates and cooling rates of the two LP magma batches (i.e., pre-
and post-paroxysm) resulted in small, but detectable, differences in their chemical signatures. Finally, this study highlights
the high potential of in situ investigations of juvenile glassy ashes in petrologic and geochemical monitoring the volcanic
activity and of Li isotopes as tracers of degassing processes within the shallow plumbing system. 相似文献
15.
北苏鲁仰口地区变辉长岩中锆石U-Pb定年、微量元素和Hf同位素特征及其地质意义 总被引:2,自引:3,他引:2
北苏鲁仰口地区出露超高压的变辉长岩.锆石阴极发光图像和其内部矿物包体激光拉曼测试的联合研究结果表明,变辉长岩锆石具有弱发光效应的岩浆韵律环带的核和被改造的强发光效应的边.岩浆韵律环带的核部保存大量而复杂的矿物包体,包括普通辉石(Cpx)+斜方辉石(Opx)+斜长石(P1)+石英(Qtz)+黑云母(Bt)+钛铁矿(Ilm)+磷灰石(Ap);边部保存的矿物包体则相对较少,包括普通辉石(Cpx)+斜方辉石(Opx)+斜长石(Pl)+磷灰石(Ap).尽管岩浆韵律环带核部的稀土元素总合量比被改造的锆石边部明显偏高,但二者稀土元素配分模式具有明显的相似性,主要表现为轻稀土相对亏损,而重稀土明显富集,相应的(La/Yb)N=0.00015~0.00039,并具有明显的负Eu异常(Eu/Eu*=0.20~0.26)、相对明显的正Ce异常(Ce/Ce*=71.5~147.4)和较高的Th/U比值(1.97~2.69).上述特征表明,仰口地区变辉长岩中的锆石均为继承性的岩浆锆石,而没有新生的变质锆石.LA-(MC)-ICP-MS锆石原位U-Pb定年和Lu-Hf同位素分析结果表明,两件锆石样品Y1和Y2的年龄数据所构成的不一致线显示了十分接近的上交点和下交点年龄.其上交点年龄分别为785±15Ma(2σ)和784±12Ma(2σ),应代表原岩的形成时代,表明变辉长岩的原岩与Rodinia超大陆裂解的岩浆事件存在密切的成因关系;而下交点年龄分别为226±24Ma(2σ)和228±26Ma(2σ),与苏鲁其它类型超高压岩石中含柯石英锆石微区记录的变质年龄十分吻合,应代表变辉长岩的超高压变质时代.岩浆结晶锆石的核部具有明显偏高的176Lu/177Hf(0.00044~0.00291)和176Yh/177Hf(0.0165~0.1168)比值,而176Hf/177Hf比值变化于0.281956~0.282048之间,相应的εHf(t)=-8.5~-14.0,tDM2=2.03~2.32Ga,表明仰口地区变辉长岩的原岩起源于古元古代时期的富集地幔或发生部分熔融的下地壳残留体.被改造的岩浆结晶锆石的边部则具有明显偏低的176Lu/177Hf(0.00029~0.00060)和176Yh/177Hf(0.0112~0.0200)比值,而176Hf/177Hf(t)比值变化于0.281953~0.282002之间,相应的εHf(t)=-10.2~-11.9,tDM2=2.12~2.21Ga.与岩浆结晶锆石核部相比,被改造的岩浆锆石边部的176Lu/177Hf、176Yb/177Hf、176Hf/177Hf(t)比值和εHf(t)和tDM2值的变化范围更小,表明中-新三叠纪的超高压变质作用使岩浆结晶锆石边部的Lu-Hf同位素体系发生调整,更趋向于均一化. 相似文献
16.
Based on the relations between the chemical properties of elements, the formation conditions of thermal springs, and the geologic structure of the area, the main factors controlling the geochemistry of local fissure-vein waters were determined. Our results suggest that the most important factors are the temperature gradient and intensity of water exchange, which exert a fluctuating influence on the chemical composition of waters from different parts of the area. The chemical composition of hydrothermal waters provides insight into the geologic evolution of the region and conditions of water-rock interaction. It was shown that hydrochemical parameters can be used to refine the temperature of water heating, to rank springs by the duration of water-rock interaction, to establish the relative age and depth of faults that served as pathways for thermal water discharge, and to determine the geochemical conditions of water migration. The data reported in this paper demonstrate that fault-related mineralization formed during intense volcanic activity at the early stage of Baikal rift development affected the chemical composition of thermal springs. 相似文献
17.
Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions 总被引:1,自引:0,他引:1
Donald J. DePaolo 《Geochimica et cosmochimica acta》2011,75(4):1039-253
A surface reaction kinetic model is developed for predicting Ca isotope fractionation and metal/Ca ratios of calcite as a function of rate of precipitation from aqueous solution. The model is based on the requirements for dynamic equilibrium; i.e. proximity to equilibrium conditions is determined by the ratio of the net precipitation rate (Rp) to the gross forward precipitation rate (Rf), for conditions where ionic transport to the growing crystal surface is not rate-limiting. The value of Rp has been experimentally measured under varying conditions, but the magnitude of Rf is not generally known, and may depend on several factors. It is posited that, for systems with no trace constituents that alter the surface chemistry, Rf can be estimated from the bulk far-from-equilibrium dissolution rate of calcite (Rb or kb), since at equilibrium Rf = Rb, and Rp = 0. Hence it can be inferred that Rf ≈ Rp + Rb. The dissolution rate of pure calcite is measureable and is known to be a function of temperature and pH. At given temperature and pH, equilibrium precipitation is approached when Rp (=Rf − Rb) ? Rb. For precipitation rates high enough that Rp ? Rb, both isotopic and trace element partitioning are controlled by the kinetics of ion attachment to the mineral surface, which tend to favor more rapid incorporation of the light isotopes of Ca and discriminate weakly between trace metals and Ca. With varying precipitation rate, a transition region between equilibrium and kinetic control occurs near Rp ≈ Rb for Ca isotopic fractionation. According to this model, Ca isotopic data can be used to estimate Rf for calcite precipitation. Mechanistic models for calcite precipitation indicate that the molecular exchange rate is not constant at constant T and pH, but rather is dependent also on solution saturation state and hence Rp. Allowing Rb to vary as , consistent with available precipitation rate studies, produces a better fit to some trace element and isotopic data than a model where Rb is constant. This model can account for most of the experimental data in the literature on the dependence of 44Ca/40Ca and metal/Ca fractionation in calcite as a function of precipitation rate and temperature, and also accounts for 18O/16O variations with some assumptions. The apparent temperature dependence of Ca isotope fractionation in calcite may stem from the dependence of Rb on temperature; there should be analogous pH dependence at pH < 6. The proposed model may be valuable for predicting the behavior of isotopic and trace element fractionation for a range of elements of interest in low-temperature aqueous geochemistry. The theory presented is based on measureable thermo-kinetic parameters in contrast to models that require hyper-fast diffusivity in near-surface layers of the solid. 相似文献
18.
The occurrence, types, morphology, and mineralogical characteristics of tube microfossils were studied in gossanites from twelve VHMS deposits of the Urals. Several types of tube microfossils were recognized, including siboglinids, polychaetes and calcerous serpulids, replaced by a variety of minerals (e.g. hematite–quartz, hematite–chlorite, carbonate–hematite) depending on the nature of the substrate prior to the formation of the gossanites. Colonial hematite tube microfossils (~ 150 μm across,1–2 mm long) are composed of hematitic outer and inner walls, and may exhibit a cellular structure within their cavities. Spherical forms are saturated with Fe-oxidizing bacteria inside the tubes – probably analogues of trophosomes. Colloform stromatolitic outer wall surfaces are characterized by the presence of numerous interlaced filaments of hematite (2–3 μm diameter, up to 1–2 mm long). Between tube microfossils, the hematitized cement contains bundles of hematitized filaments with structures similar to the hyphae of fungi. Hematite–chlorite tube microfossils are scattered in gossanites, mostly as biological debris. They are typically 30 to 300 μm in diameter and 1 to 5 mm long. The layered structure of their tube walls is characterized by hematite–quartz and chlorite layers. Abundant filamentous bacteria coated by glycocalix and chlorite stromatolite are associated with hematite–chlorite tubes. The carbonate–hematite tube microfossils (up to 300 μm across, 2–3 mm long) occur in carbonate-rich gossanites. The tubes are characterized by fine (~ 10 μm thick) walls of hematite and cavities dominated by relatively dark carbonate or hematite. Carbonates may be present both in walls and cavities. Stromatolite-like leucoxene or hematite–carbonate aggregates were also found in association with tubes. Randomly oriented filaments are composed of ankerite. Single filaments are composed of individual cells, typically smaller than 100 nm across, similar to that of magnetotactic bacteria.Three dimensional tomographic images of all types of tube microfossils demonstrate a clear wavy microlayering from outer and inner walls, which may reflect segmentation of the tube worms. The traces of burrowing or fragments of glycocalix with relict spheres are typical of tube microfossils from gossanites.The carbon isotopic composition of carbonates associated with tube microfossils from hematite–quartz, hematite–carbonate, and hematite–chlorite gossanites average − 7.2, − 6.8, –22.8‰, PDB, respectively. These values are indicative of a biogenic origin for the carbonates. The oxygen isotopic composition of these carbonates is similar in all three gossanite types averaging + 13.5, + 14.2, + 13.0‰ (relative to SMOW), and indicative of active sulfate reduction during the diagenetic (and anadiagenetic) stages of the sediments evolution. The trace element characteristics of hematite from tube microfossils are characterized by high contents of following trace elements (average, ppm): Mn (1529), As (714), V (540), W (537), Mo (35), and U (5). Such high contents are most likely the result of metal and metalloid sorption by fine particles of precursor iron hydroxides during the oxidation of sulfides and decomposition of hyaloclasts via microbially-mediated reactions. 相似文献
19.
A petrographic investigation revealed polyphase quartz cementation in the Finefrau Sandstone (Upper Carboniferous, Western Germany) and the Solling Sandstone (Lower Triassic, Central Germany). Three different cements could be distinguished in each sandstone based on their cathodoluminescence and trace element composition. The first quartz generation is suggested to have been formed during eogenesis due to dissolution and replacement of feldspar. The mesogenetic paragenesis comprises two generations of quartz and illite, which are accompanied by albite in the Solling Sandstone. Sharp luminescence zoning in quartz overgrowths points to distinct episodes of cementation in both sandstones. Significant amounts of Al, Li and H and traces of Ge and B have been detected in the quartz overgrowths. The Al‐content of the quartz cements in the Finefrau Sandstones exceeds that in the quartz cements in the Solling Sandstone by a factor of five. It is suggested that this compositional variation reflects the conditions in the pore‐water, such as temperature and pH. The Al‐concentration is generally correlated to the Li‐content with the exception of the latest quartz generation in the Finefrau Sandstones which is also most enriched in trace elements. The ratio of Li/Al varies between 0·11 and 0·25 in the two sandstones. The Li/H‐ratio, which ranges from 0·12 to 0·3, is controlled by the activity ratio of Li and H in the pore fluid. Clay minerals are the most important source for Li and high salinities favour the mobilization of Li during diagenesis. Thus, a relatively low salinity and low pH are responsible for the low Li/H‐ratio in the Finefrau Sandstone, while high salinity and neutral to alkaline pH results in a high Li/H‐ratio for the Solling Sandstone. The Ge‐contents are generally near the average of detrital quartz and indicate that pressure dissolution is a major source for quartz cementation. Different chemical compositions of distinct quartz generations indicate changes in the physico‐chemical conditions and point to mobilization of silica from different sources (for example, pressure solution and clay mineral transformations). 相似文献
20.
新疆西天山北缘的博罗科努晚古生代岛弧带出露大量中酸性侵入体,并发育一系列斑岩-矽卡岩型铁铜多金属矿床。文章对该岛弧带中部阔库确科矽卡岩型铁铜矿床成矿岩体中的锆石开展了微量元素地球化学研究,查明了锆石成因、形成物理化学条件及其对成矿的启示意义等。数据显示,与成矿密切相关的正长花岗岩和闪长岩中锆石均表现为重稀土元素富集、轻稀土元素亏损,正长花岗岩中锆石的∑REE介于(627~1625)×10-6,闪长岩中锆石的∑REE介于(345~1439)×10-6。锆石Ti温度计显示正长花岗岩锆石的结晶温度集中在598~810℃;闪长岩锆石结晶温度为651~932℃,正长花岗岩的氧逸度(ΔFMQ+4.25)高于闪长岩(ΔFMQ-1.01)。成矿岩体锆石均形成于封闭的岩浆体系中,主要为岩浆锆石,少量闪长岩中的锆石可能在岩浆晚期遭受了富集轻稀土元素的热液改造。锆石形成构造背景属于大陆岛弧环境。成矿岩体锆石的Ce4+/Ce3+值明显高于区域内不成矿岩体的Ce4+/Ce3+值,其中正长花岗岩锆石中更高的Ce4+/Ce3+值表明,阔库确科矿区内志留系与正长花岗岩发生接触交代形成的矽卡岩中可能有更大的Cu成矿潜力。 相似文献