首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New photoelectric UBV observations of the W Ursae Majoris-type eclipsing binary AK Her are presented. The system exhibits many phenomena such as O'Connell effect, unequal depth, phase shift and different duration in secondary eclipse due to its totality, which have been studied. O'Connell effect-duration relation may be exist. The (O-C) curve has been obtained and the new light elements have been calculated. The analysis of the minima-times data of the system reveals possible sinusoidal orbital period variation (LITE). The study of the (O-C)curve, the light curves, O'Connell effect and the duration effect have led to that the system is likely a case which undergoes cyclic around the marginal contact state conservatively with mass transfers between its components, i.e.in TRO mode. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Results are presented from photometric studies of the dwarf nova V1108 Her conducted at the primary focus of the 2.6-m G. A. Shajn Telescope at the Crimean Astrophysical Observatory during June-July 2008, 4 years after the 2004 outburst. An orbital period of 0.05672(4) days is found for the system. An analysis of observations made earlier during the 2004 outburst reveals an orbital signal which indicates that V1108 Her is an eclipsing system. The mass ratio of the secondary component to the white dwarf is estimated to be q = 0.068, which makes it highly likely that the secondary component of this system is a brown dwarf. The orbital light curves indicate a complex structure for the accretion disk whose radius has reached a 2:1 resonance. An explanation is suggested for a quasi-periodic modulation in the brightness at 1/4 of the orbital period observed in V1108 Her and other WZ Sge systems.  相似文献   

3.
An analysis of X-ray and optical light curves of the magnetic cataclysmic variable (MCV) BY Cam is presented. This system is one of three MCVs in which the spin period of the white dwarf and the binary orbital period differ by ∼1 per cent. As such these 'BY Cam' stars are important objects with which to probe the field structure of the magnetic white dwarf and ultimately the nature of synchronization of AM Her binaries. We confirm asynchronous rotation of the magnetic white dwarf with respect to the binary. We find evidence that the accretion stream accretes directly on to the white dwarf as in AM Her systems, but further, the stream impacts on to different magnetic poles over the course of the beat period. We present evidence that the optical and hard X-ray light curves modulate in phase, but together they are out of phase with the soft X-ray light curve. We confirm the spin down of the white dwarf which is expected to lead to the synchronization of the spin and orbital periods of BY Cam.  相似文献   

4.
B andV observations of the W Ursae Majoris-type eclipsing variable system AK Her were made on five nights at the Ege University Observatory. Several times of minima were obtained during the observations and the new light elements were calculated. The light-time period was found to be about 75.72 years. The light curve of the system appears to change in each cycle for both colours. The secondary minimum of the system seems to be a total eclipse with a duration of about 42 m .5.  相似文献   

5.
In this study, we present a photometric study of AM Her, a prototype of a class of magnetic CVs. Optical photometry of AM Her was obtained using the Russian–Turkish 1.5 m telescope at TüBİTAK National Observatory (TUG) in August 2003. The R band light curve of the system shows two maxima and two minima during one orbital cycle. In both observing nights the star showed flickering at a significant level. The measured flickering time scale is about 5 min.  相似文献   

6.
Orbital period variations of two neglected Algol type binaries, CC Her and XZ Aql, are studied based on all available times of minima. In the case of CC Her, it is found that the OC curve displays a tilted sinusoidal variation with an eccentricity of 0.54 ± 0.03 and a period of 52.4 ± 0.4 yr, which can be explained by the light‐time effect due to the presence of an unseen component. The course of the orbital period change in XZ Aql appears less reliable but its OC curve can be represented by a periodic variation with a period of 36.7 ± 0.6 yr superimposed on an upward parabola. The parabolic variation indicates a secular period increase with a rate of dP /dt = 7.1 s per century. The corresponding conservative mass transfer from less massive component to the more massive one is about 3.26 × 10–7 M yr–1. It is interesting to see that the OC variation of CC Her displays no evidence (as upward parabola) on the mass transfer characteristic for Algols. The periodic change of the orbital period of XZ Aql, like CC Her, may be caused by the presence of the thirdbody. The lower limits of the masses of the hypothetical unseen components for CC Her and XZ Aql are found to be 2.69 M and 0.47 M, respectively. The third body of CC Her should be detectable not only spectroscopically but also photoelectrically, if it exists. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
New and complete multi-band light curves of the oEA stars QY Aql, BW Del, TZ Dra, BO Her and RR Lep were obtained and analysed with the Wilson-Devinney code. The light curves residuals were further analysed with the Fourier method in order to derive the pulsation characteristics of the oscillating components. All the reliable observed times of minimum light were used to examine orbital period irregularities. The orbital period analyses revealed secular changes for QY Aql and BW Del, while the Light-Time Effect seems to be the best explanation for the cyclic period changes in TZ Dra and BO Her. RR Lep has a rather steady orbital period. Light curve solutions provided the means to calculate the absolute parameters of the components of the systems, which subsequently were used to make an estimate of their present evolutionary status.  相似文献   

8.
BVRI photometry of SS Cyg from the end of 1996 and the beginning of 1997 is presented. The star underwent an eruption around December 11. The amplitude of which was slightly bigger than those of observed earlier eruptions. We saw some indication of the future outburst in the decreasing of brightness in all colours by about 0.4 mag during the last two weeks before the event. The emission of the system moved strongly to the shorter wavelengths at outburst. Our multicolour data confirm the existence of a light variability with the orbital (spectroscopic) period at quiescence. Moreover we found for the first time that this variability exists also at outburst but its amplitude is 3–5 times smaller. Whereas the amplitudes of the orbital variability at quiescence decrease to the longer wavelengths, they increase at outburst to the longer wavelengths. The orbital folded curve at quiescence has two-wave shape and was fitted well by the different visibility of two diametrical opposite hot spots (210000 K) with angular size 100 on the magnetic poles of the white dwarf. An analogy between the two basic states of the U Gem-star SS Cyg, the polar AM Her and Z Cam-star RX And was found.  相似文献   

9.
Two-colour light curves of Z Her were obtained observing the system from 1978 to 1981. The wave-like distortion at outside eclipses were derived. The amplitudes of the wave increase and its minimum migrates towards the decreasing orbital phase with a period of about 1.4 yr. An attempt was made to represent the wave-like distortions with a truncated Fourier series. The representation was found to be unsatisfactory since the distribution of the present observations is not regular but forms separate groups along the time axis. Therefore, further observations to cover the phases evenly in between the minima are needed.  相似文献   

10.
We report here results from a new search for orbital motion of the accretion powered X-ray pulsar 4U 1626–67 using two different analysis techniques. X-ray light curve obtained with the Proportional Counter Array of the Rossi X-ray Timing Explorer during a long observation carried out in February 1996, was used in this work. The spin period and the local period derivative were first determined from the broad 2–60 keV energy band light curve and these were used for all subsequent timing analysis. In the first technique, the orbital phase dependent pulse arrival times were determined for different trial orbital periods in the range of 500 to 10,000 s. We have determined a 3σ upper limit of 13 lt-ms on the projected semimajor axis of the orbit of the neutron star for most of the orbital period range, while in some narrow orbital period ranges, covering about 10% of the total orbital period range, it is 20lt-ms. In the second method, we have measured the pulse arrival times at intervals of 100 s over the entire duration of the observation. The pulse arrival time data were used to put an upper limit on any periodic arrival time delay using the Lomb-Scargle periodogram. We have obtained a similar upper limit of 10 lt-ms using the second method over the orbital period range of 500–10,000 s. This puts very stringent upper limits for the mass of the compact object except for the unlikely case of a complete face-on orientation of the binary system with respect to our line-of-sight. In the light of this measurement and the earlier reports, we discuss the possibility of this system being a neutron star with a supernovae fall-back accretion disk.  相似文献   

11.
We present the light curve and photometric solutions of the contact binary AD Cnc. The light curve appears to exhibit a typical O'Connell effect, with Maximum I brighter than Maximum II by 0.010 mag. in V. From 1987 to 2000, the light curve showed changes of shape: the depth of the primary eclipse increased by about 0.056m while that of the secondary eclipse decreased by about 0.032m, so the difference between the primary and the secondary eclipses increased by about 0.088m, while there was no obvious variation in the O'Connell effect. Using the present and past times of minimum light, the changes in the orbital period of the system are analyzed. The result reveals that the orbital period of AD Cnc has continuously increased at a rate of dp/dt = 4.4 ×10-7day yr-1. The light curve is analyzed by means of the latest version of the Wilson-Devinney code. The results show that AD Cnc is a W-subtype contact binary with a small mass ratio of 0.267 and the two components are in poor thermal contact. AD Cnc has  相似文献   

12.
We present the result of UBV photometry and narrow-band photoelectric photometry of 44 i Boo made in January 1980 and March 1982, and we analysed the change in the orbital period of the binary over the past 65 years. We think that the fluctuations in the light curve are related to surface activities (cool and hot spots) on the stars and gas motion between the two stars, that the slowly-changing term in the orbital period is due to the light-time effect, while sudden changes in the period are related to mass ejection and eruptions on the stars.  相似文献   

13.
The available photometry from the online databases were used for the first light curve analysis of eight eclipsing binary systems EI Aur, XY Dra, BP Dra, DD Her, VX Lac, WX Lib, RZ Lyn, and TY Tri. All these stars are of Algol-type, having the detached components and the orbital periods from 0.92 to 6.8 days. For the systems EI Aur and BP Dra the large amount of the third light was detected during the light curve solution. Moreover, 468 new times of minima for these binaries were derived, trying to identify the period variations. For the systems XY Dra and VX Lac the third bodies were detected with the periods 17.7, and 49.3 years, respectively.  相似文献   

14.
云南-香港宽视场巡天新发现了一个磁活动双星系统,其轨道周期为0.60286 d.利用云南天文台1 m光学望远镜附加CCD (Charge-Coupled Device)相机,观测得到了这个双星系统的V、Rc双色光变曲线,结果表明该系统食外存在明显的测光畸变.借助云南天文台丽江2.4 m望远镜附加云南暗弱天体光谱成像仪(Yunnan Faint Object Spectrograph and Camera, YFOSC)对该双星系统的分光观测,测定了该双星系统主星的视向速度曲线并发现该系统的主星表面存在着强烈的色球活动,从而证明系统的光变曲线畸变源自主星的黑子活动.使用W-D (Wilson-Devinney)程序分析上述观测得到的光变曲线和视向速度曲线,得到了该双星系统的轨道参数以及黑子参数.最后,对该系统的特性进行了讨论并对未来的工作进行了展望.  相似文献   

15.
Orbital period variations of two RS CVn-type binaries, RU Cnc and AW Her, are presented based on the analysis of all available times of light minima. It is discovered that the orbital period of RU Cnc shows two possible period oscillations with periods of 13.38(±0.23) and 37.6(±3.4) years. The corresponding amplitudes of the oscillations are about 0.0098(±0.0023) and 0.0119(±0.0017) days. For AW Her, it is found that the period shows a cyclic variation with a period of 12.79(±0.34) years and an amplitude of about 0.0327(±0.0063) days. Since RU Cnc and AW Her are two RS CVn-type systems, the cyclic period oscillations are more likely to be caused by the magnetic activity cycles.  相似文献   

16.
We present a long-term time-resolved photometry of the short-period eclipsing binary IU Per. It confirms the intrinsic δ Scuti-like pulsation of the system reported by Kim et al.. With the obtained data, an orbital period study and an eclipsing light curve synthesis based on the Wilson-Devinney method were carried out. The photometric so- lution reveals a semi-detached configuration with the less-massive component filling its own Roche-lobe. By subtracting the eclipsing light changes from the data, we obtained the pure pulsating light curve of the mass-accreting primary component. A Fourier anal- ysis reveals four pulsation modes with confidence larger than 99%. A mode identification based on the results of the photometric solution was made. It suggests that the star may be in radial pulsation with a fundamental period of about 0.0628 d. A brief discussion concerning the evolutionary status and the pulsation nature is finally given.  相似文献   

17.
We analyze and interpret the RXTE/ASM X-ray light curves for the close binary system Her X-1/HZ Her obtained from February 1996 to September 2004. Some of the features found previously in the averaged X-ray light curves are confirmed by the new RXTE/ASM data. In particular, the anomalous dips and post-eclipse recoveries in two successive orbits in the short-on state are clearly distinguishable and are stable features of the X-ray light curves. We argue that to account for these features, the tilt of the accretion disk to the orbital plane must be assumed to change with phase of the 35-day period. We present a numerical model that can reproduce the observed features of the light curves.  相似文献   

18.
Multicolour photometry of the polar AM Her was obtained during 3 observational seasons (1994/95/96). The star was in its high state for most of the observations. It was in its low state in '96 April. It was established that these two states differ not only in the average light level but in the larger amplitudes of variations at low state than at high state. Moreover the energy distributions of the two states differ in the stronger dependence of the flux on ν at high state than at low state. The Fourier analysis of the photometric data shows variability with the spectroscopic (orbital) period. The amplitudes of this variability in all colours are about two times bigger at low state than at high state. An attempt to explain the photometric behaviour of AM Her by a model of dominant emission of two hot spots at the magnetic poles of the white dwarf was made and the spot parameters were determined. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Analyzing available photometry from the Super WASP and other databases, we performed the very first light curve analysis of eight eclipsing binary systems V537 And, GS Boo, AM CrB, V1298 Her, EL Lyn, FW Per, RU Tri, and WW Tri. All of these systems were found to be detached ones of Algol-type, having the orbital periods of the order of days. 722 new times of minima for these binaries were derived and presented, trying to identify the period variations caused by the third bodies in these systems.  相似文献   

20.
This study presents new photometric observations of classical Algol type binary BG Peg with a δ Scuti component. The light curve modeling was provided with the physical parameters of the component stars in the BG Peg system for the first time. After modeling light curves in B and V filters, the eclipse and proximity effects were removed from the light curve to analyze intrinsic variations caused by the hotter component of the system. Frequency analysis of the residuals light represents the multi-mode pulsation of the more massive component of the BG Peg system at periods of 0.039 and 0.047 days. Two frequencies could be associated with non-radial (l = 2) modes. The total amplitude of the pulsational variability in the V light curve was found to be about 0.045 mag. The long-term orbital period variation of the system was also investigated for the first time. The OC analysis indicates periodic variation superimposed on a downward parabola. The secular period variation means that the orbital period of the system is decreasing at a rate of ?5.5 seconds per century, probably due to the magnetic activity of the cooler component. The tilted sinusoidal OC variation may be caused by the gravitational effect of an unseen component around the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号