首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paper presents the history of measurements of the geomagnetic field parameters over the territory of Russia in the 18th century derived from archival and literature sources. Topographical mapping of the European territory and neighboring seas of the Russian Empire from the late 17th to the mid 18th century during which magnetic measurements were made was of great importance for determining magnetic declination. The magnetic declination in Siberia and its neighboring seas was measured for the first time during the first expedition of V. Bering in 1728 and then during his second expedition (the Great Northern Expedition) in 1733–1742. Magnetic measurements were carried out along the northern coast of Siberia and in the Bering Sea. The academic group of the expedition performed magnetic declination measurements over southern regions of Siberia (Krasnoyarsk, Irkutsk, Nerchinsk, Yakutsk, etc.) in 1735 and 1736. During the second half of the 18th century, Russian expeditions determined geographical coordinates of the cities of European Russia and carried out magnetic declination measurements for them. During these expeditions Inokhodtsev paid attention to the anomalous magnetic declination in the Kursk region. In his opinion, the anomaly could have been caused by the presence of iron ore.  相似文献   

2.
We present the results of studies of the subauroral and mid-latitude ionosphere variations in the north-eastern region of Asia. We used the data from network of vertical and oblique-incidence sounding ionosondes and optical measurements. Long-term experiments on the radio paths Magadan–Irkutsk and Norilsk–Irkutsk were carried out within the period 2005–2007. Vertical sounding stations operated in standard regime. Observation of airglow near Irkutsk was provided by the zenith photometer that measured intensities of 557.7 and 630.0 nm atomic oxygen emissions. The results may be summarized as follows. (1) Large daytime negative disturbances are observed during the main and recovery phases mainly at high latitudes, whereas the positive disturbances observed during the main phase at mid latitudes. The disturbances changed their sign between Yakutsk and Irkutsk. (2) During the main and recovery storm phases the fall of foF2 associated with the equatorward wall of the main ionospheric trough is observed in the afternoon and evening. (3) Fluctuations of the electron density more intensive at mid latitudes during the storm main phase are observed during all considered periods. They are classed as traveling ionospheric disturbances (TID). Such sharp gradients of electron density are responsible for the strong changes in the characteristics of the radio wave propagation, particularity MOF. (4) A large-scale ionospheric disturbance is noted at the meridional chain of ionosonds in December 2006 as the sharp increase of foF2. It appears in the evening in the minimum of Dst at high latitude and propagate to equator. (5) A maximum of 630 nm emission above Irkutsk corresponds to the foF2 increase. (6) The obtained experimental data on the net of vertical and oblique-incidence sounding with high time resolution show that such net is the effective facility to study the conditions of the radio wave propagation and can be used for the diagnostic of the ionosphere.  相似文献   

3.
This study presents the ionospheric effects caused by the series of geomagnetic storms of September 9–14, 2005. The behavior of different ionospheric parameters over the Yakutsk, Irkutsk, Millstone Hill and Arecibo stations during the considered period have been numerically calculated, using a global self-consistent model of the thermosphere, ionosphere, and protonosphere (GSM TIP) developed at WD IZMI-RAN. The model calculations of disturbances of the ionospheric parameters during storms qualitatively agree with the experimental data at these midlatitude stations. We suggest that the causes of the quantitative differences between the model calculations and the observational data were the use of the 3-hour Kp index of geomagnetic activity and the dipole approximation of geomagnetic field in GSM TIP, with additional contributions from the effects of solar flares which are not considered in GSM TIP.  相似文献   

4.
Vertical and horizontal plasma drifts are investigated during the polarization jet (PJ) detection in the F2 ionospheric layer based on the Doppler measurements at the Yakutsk meridian chain of subauroral ionospheric stations. It is shown that the velocities of vertical and horizontal drifts are significantly higher than the background motion during PJ observation periods. The ionospheric plasma motion direction changes from upward to downward on the polar edge of the main ionospheric trough. Doppler measurements on the DPS-4 ionosondes are compared with the simultaneous measurements of the plasma drift on the DMSP satellites during their passage near the Yakutsk meridian. The two kinds of measurements are in good agreement with each other. During the magnetic storm of June 23, 2005, by measurements of the DMSP satellites, the velocities of upward plasma flows were 1.0–1.4 km/s at a satellite altitude of 850 km. In the ionospheric F region, this speed corresponds to 150 m/s. According to satellite measurements, the westward drift velocity reached 2.5 km/s. The development of the polarization jet in the ionosphere was accompanied by a tenfold decrease in the electron density in 15–30 min.  相似文献   

5.
Using vertical and oblique radio-sounding data, we analyze the ionospheric and thermospheric disturbances during the magnetic storm that occurred in northeastern Russia on March 17–19, 2015. We consider the heliospheric sources that induced the magnetic storm. During the main and early recovery phases, the midlatitude stations are characterized by extremely low values of electron density at the F2 layer maximum. Using oblique sounding data, we recorded signals that propagated outside the great circle arc. In evening and night hours, no radio signals were found to pass along the Norilsk–Irkutsk and Magadan–Irkutsk paths. The observed ionospheric effects are shown to be caused by a sharp shift of the boundaries of the main ionospheric trough to the invariant latitude 46° N during the main phase of the magnetic storm. The negative ionospheric disturbance during the recovery phase of the storm, which was associated with significant variations in the composition of the neutral atmosphere, led to a change in the mode composition of received radio signals and a decline in observed maximal frequencies in daytime hours of March 18, 2015 by more than 2 times.  相似文献   

6.
The results of an analysis of midlatitude coherent echo, registered with the Irkutsk incoherent scatter radar during 53 observational seances, are presented. The observations continued for 4358 h from January 1998 to January 2005. Echo signals revealed during an analysis are divided into two groups with respect to power: strong (s) and weak (w) echoes. It was detected that echo signals with coherent echo characteristics are observed during all local time hours and at different levels of geomagnetic activity. The probability of s-echo appearance is minimal in noon hours and is maximal in post-midnight-morning hours. It has been indicated that the longest and strongest coherent echoes are observed at midlatitudes during great magnetic storms at an increased dynamic pressure of the solar wind.  相似文献   

7.
Geomagnetism and Aeronomy - Observational data from the Kiev (Ukraine), Borok, St. Petersburg, Hel (Poland), Arti, Novosibirsk, Almaty (Kazakhstan), and Irkutsk magnetic observatories are used to...  相似文献   

8.
On the basis of observations for the IGY period (visoplots) it is shown, that during magnetic storms diffuse glow is detected at all latitudes between the lowest latitude of the visually observed auroral glow at the zenith and the auroral oval. The diffuse glow region spatially coincides with the region of soft electron precipitation extending equatorward from the boundary of the oval to the latitude of the plasmopause projections along the magnetic force lines to the ionosphere. Using published materials on the diffuse glow dynamics and SAR arcs at the Yakutsk meridian, as well as simultaneous measurements of the DMSP F9 satellite, we discuss the contribution from low-energy electron precipitation transfered via convection toward Earth from the magnetosphere’s plasma sheet to excitation of 630.0 nm emission in low-intensity (<1.0 kR) SAR arcs.  相似文献   

9.
The results of ionosphere sounding in Yakutsk during the September 16, 2004, earthquake that occurred in east Yakutia are presented. Variations in the critical frequency and height of F 2-layer and the radio reflection arrival angles illustrating the dynamics of the ionospheric disturbance are shown.  相似文献   

10.
During an interaction of the Earth’s magnetosphere with the interplanetary magnetic cloud on October 18–19, 1995, a great magnetic storm took place. Extremely intense disturbances of the geomagnetic field and ionosphere were recorded at the midlatitude observatory at Irkutsk (Φ′≈45°, Λ′≈177°, L≈2) in the course of the storm. The most important storm features in the ionosphere and magnetic field are: a significant decrease in the geomagnetic field Z component during the storm main phase; unusually large amplitudes of geomagnetic pulsations in the Pi1 frequency band; extremely low values of critical frequencies of the ionospheric F2-layer; an appearance of intense Es-layers similar to auroral sporadic layers at the end of the recovery phase. These magnetic storm manifestations are typical for auroral and subauroral latitudes but are extremely rare in middle latitudes. We analyze the storm-time midlatitude phenomena and attempt to explore the magnetospheric storm processes using the data of ground observations of geomagnetic pulsations. It is concluded that the dominant mechanism responsible for the development of the October 18–19, 1995 storm is the quasi-stationary transport of plasma sheet particles up to L≈2 shells rather than multiple substorm injections of plasma clouds into the inner magnetosphere.  相似文献   

11.
The effect of the solar eclipse that occurred on August 1, 2008, on the level of the natural electro-magnetic emission signals in the ELF-VLF range, simultaneously observed at Kamchatka and in Yakutsk, and the variations in the amplitude and phase of signals from the VLF radiostations, registered in Yakutsk, has been considered. The VLF radiostations in Krasnodar, Novosibirsk, and Khabarovsk successively emitted signals at frequencies of 11 905, 12 649, and 14 880 Hz. Based on the observations of the signals from these radiostations, it has been established that the signal amplitudes and phases increased by 3–5% and 30°–45° when the signals crossed the lunar shadow region. The synchronous registration of the ELF-VLF noise emission indicated that a bay-like increase and the following decrease in the emission to the background level was observed at both receiving points during the eclipse from ∼1000 to 1130 UT. This effect was registered at frequencies of 0.6–5.6 kHz in Yakutsk and at lower (30–200 Hz) and higher (2.5–11 kHz) frequencies at Kamchatka. In this case the noise emission intensity maximum was observed when the lunar shadow maximally approached the registration point. At higher frequencies, the emission maximum was observed simultaneously at both points (at 1100 UT) but with a delay relative to the maximum at lower frequencies. The possible causes of the appearance of the solar eclipse effects in the natural ELF-VLF emission are considered.  相似文献   

12.
A morphological analysis of vertical sounding data obtained in Irkutsk from 2003 to 2008 has been performed. The AE index was used to determine the geomagnetic activity level, and the storm main phase onset was registered based on the D st index. The ionospheric response to a magnetic storm was estimated based on the relative deviation of the critical frequency and altitude of the ionospheric F2 region from the median values. Superstrong magnetic storms and storms without positive initial phases were not considered when the data were selected. We found that positive ionospheric disturbances, which were accompanied by an increase in the F2 region maximum altitude, predominated between the storm initial phase and main phases during all considered magnetic storms. Between these storm phases, negative disturbances were only registered at night. Predominance of positive ionospheric disturbances over negative ones can be related to the selection of storms for studies.  相似文献   

13.
The data of the ionospheric observations (the daily f plots) at the Yakutsk meridional chain of ionosondes (Yakutsk–Zhigansk–Batagai–Tixie Bay) with sharp decreases (breaks) in the critical frequency of the regular ionospheric F2 layer (foF2) are considered. The data for 1968–1983 were analyzed, and the statistics of the foF2 break observations, which indicate that these breaks are mainly registered in equinoctial months and in afternoon and evening hours under moderately disturbed geomagnetic conditions, are presented. Calculations performed using the prognostic model of the high-latitude ionosphere indicate that the critical frequency break position coincides with the equatorial boundary of large-scale plasma convection in the dusk MLT sector.  相似文献   

14.
Geomagnetism and Aeronomy - Doppler measurement data from the Yakutsk subauroral ionospheric station have been used to reveal for the first time new and previously unknown dynamic phenomena during...  相似文献   

15.
The time derivative (d H/dt) of the geomagnetic field horizontal component (H) for seven intervals of high geomagnetic activity in 2003–2005 has been calculated, based on the data of Alma-Ata, Novosibirsk, and Irkutsk observatories, in order to estimate the probability of appearance of geomagnetically induced current (GIC), the value of which is linearly dependent on d H/dt, in power lines on the territory of Kazakhstan. The distributions of the H and d H/dt directions have been constructed; in this case it was most interesting that these distributions were narrow and extended along the magnetic meridian for Alma-Ata and were wider angular for Novosibirsk and Irkutsk. It has been indicated that large H values, determining significant GIC values, took place at a sudden commencement of strong storms, which had a character of a pulsed disturbance of the geomagnetic field, and during large-amplitude geomagnetic field pulsations. The duration of the periods of large |d H/dt| values exceeding the threshold (30 nT/min), when GIC could cause unwanted consequences in power circuits, has been determined.  相似文献   

16.
Data about the variations of mesopause temperature (~87 km) obtained from ground-based spectrographic measurements of the OH emission (834.0 nm, band (6-2)) at Irkutsk and Zvenigorod observatories were compared with satellite data on vertical temperature distribution in the atmosphere from Aura MLS v3.3. We analyzed MLS data for two geopotential height levels: 0.005 hPa (~84 km) and 0.002 hPa (~88 km) as the closest to OH height (~87 km). We revealed that Aura MLS temperature data have lower values than ground-based (cold bias). In summer periods, that difference increases. Aura cold biases compared with OH(6-2) at Irkutsk and Zvenigorod were calculated. For the 0.002 hPa height level, the biases are 10.1 and 9.4 K, and for 0.005 hPa they are 10.5 and 10.2 K at Irkutsk and Zvenigorod, respectively. When the bias is accounted for, an agreement between Aura MLS and OH(6-2) data obtained at both Irkutsk and Zvenigorod is remarkable.  相似文献   

17.
Geomagnetism and Aeronomy - A study of the wave changeability in the F2-layer critical frequency over Kaliningrad (54.6° N, 20° E) and Irkutsk (53° N, 103° E) stations during...  相似文献   

18.
This paper presents a qualitative analysis of the properties and particular examples of strong (10% < |δfoF2| < 30%) and very strong (|δfoF2| > 30%) fluctuations in the critical frequency of the F2 layer (foF2) of the quiet ionosphere at midlatitudes under low solar activity according to the Irkutsk station data for 2007–2008. It is found that strong day-to-day fluctuations in foF2 are mainly related to changes in thermospheric parameters, which have a nature of planetary waves and tides. Evidently, very strong day-to-day fluctuations in foF2 are caused by superposition of the effects in the ionosphere caused by changes in the thermospheric parameters and those related to a complex of processes of solar wind interaction with the magnetosphere, including the effects caused by the reversal of the vertical component of the solar wind magnetic field southwards. The increase in foF2 during nighttime hours in winter up to values typical for the daytime maximum in foF2 is the brightest example of very strong changes in foF2 in the quiet ionosphere.  相似文献   

19.
The occurrence frequency of SAR arcs during 1997–2006 has been analyzed based on the photometric observations at the Yakutsk meridian (Maimaga station, corrected geomagnetic coordinates: 57° N, 200° E). SAR arcs appeared in 114 cases (~500 h) during ~370 nights of observations (~3170 h). The occurrence frequency of SAR arcs increases to 27% during the growth phase of solar activity and has a clearly defined maximum ~36% at a decline of cycle 23. The SAR arc registration frequency corresponds to the variations in geomagnetic activity in this solar cycle. The dates, UT, and geomagnetic latitudes of photometric observations are presented for 1997–2006.  相似文献   

20.
Large auroral and ionospheric databases, covering a solar cycle (1978–1986), were used to obtain a comprehensive evaluation of the auroral electrojet effect (as inferred from the auroral AE-index) on the ionospheric response in both hemispheres from sub-auroral to equatorial latitudes. The study was limited to the East Asian-Australian longitudinal sector where data are available from a chain of nine latitudinally displaced stations. Enhancement in the standard ionospheric parameter, the virtual height of the F-region (ΔhF) recorded by vertical-incidence ionosondes, was used to trace the ionospheric disturbance.Unlike the previous studies of this type, the total magnetic and ionospheric data, in hourly intervals, were used to derive the correlation coefficient r between two intrinsically different parameters: ΔhF and AE-index for the local nighttime (20–06 LT or 10–20 UT). A suitable averaging and smoothing technique was applied to the data to enhance the correlation trend between these parameters. It is evident that the height fluctuations of sub-auroral ionosphere (for stations: Yakutsk in Siberia and Hobart and Canberra in Australia) closely resemble the auroral electrojet surges, inferred from the AE-index over the solar cycle. The linear coefficient r is highly significant, being close to 0.6 for most of the time; during the years of maximum auroral activity (1981–1983) r approached 0.8. The consistently high correlation r, regardless of the season, applies only to the most poleward station used in this study, Yakutsk. The sub-auroral stations (Hobart and Canberra) positioned further equatorwards show a strong decline in the correlation coefficient r during the local summer but have high r during winter and the equinoxes. There is a general decline in r towards lower latitudes, suggesting that the response to auroral substorms is on the whole diminishing with the distance from the auroral source to the equator. There appears to be an anomalous increase in r as observed around 10° invariant latitude.These findings appear to be the first long-term proof of the symmetry of the ionospheric responses to auroral substorm activity in the northern and southern auroral ovals which is an important contribution to space climatology. It is suggested that the aurorally generated acoustic gravity waves (AGWs), manifested in the global ionosphere as large scale travelling ionospheric disturbances (LSTIDs), may contribute to the observed auroral-ionospheric phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号