首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effluent from a land based shrimp farm was detected in a receiving creek as changes in physical, chemical and biological parameters. The extent and severity of these changes depended on farm operations. This assessment was conducted at three different stages of shrimp-pond maturity, including (1) when the ponds were empty, (2) full and (3) being harvested. Methods for assessing farm effluent in receiving waters included physical/chemical analyses of the water column, phytoplankton bioassays and nitrogen isotope signatures of marine flora. Comparisons were made with an adjacent creek that served as the farms intake creek and did not directly receive effluent. Physical/chemical parameters identified distinct changes in the receiving creek with respect to farm operations. Elevated water column NH(4)(+) (18.5+/-8.0 microM) and chlorophyll a concentrations (5.5+/-1.9 microg/l) were measured when the farm was in operation, in contrast to when the farm was inactive (1.3+/-0.3 microM and 1.2+/-0.6 microg/l, respectively). At all times, physical/chemical parameters at the mouth of the effluent creek, were equivalent to control values, indicating effluent was contained within the effluent-receiving creek. However, elevated delta(15)N signatures of mangroves (up to approximately 8 per thousand) and macroalgae (up to approximately 5 per thousand ) indicated a broader influence of shrimp farm effluent, extending to the lower regions of the farms intake creek. Bioassays at upstream sites close to the location of farm effluent discharge indicated that phytoplankton at these sites did not respond to further nutrient additions, however downstream sites showed large growth responses. This suggested that further nutrient loading from the shrimp farm, resulting in greater nutrient dispersal, will increase the extent of phytoplankton blooms downstream from the site of effluent discharge. When shrimp ponds were empty water quality in the effluent and intake creeks was comparable. This indicated that observed elevated nutrient and phytoplankton concentrations were directly attributable to farm operations.  相似文献   

2.
This study introduces a new method of tracing the history of nutrient loading in coastal oceans via delta(15)N analysis of organic nitrogen preserved in the skeleton of the massive Porites coral. Four coral cores were collected in Bali, Indonesia, from reefs exposed to high levels of fertilizers in agricultural run-off, from lagoonal corals impacted by sewage, and from a reef located 30 km offshore. Skeletal delta(15)N in the agriculturally exposed coral declined from 10.7+/-0.4 per thousand in 1970-1971, when synthetic fertilizers (-0.8 per thousand+/-0.2 per thousand) were introduced to Bali, to a depleted "anthropogenic" baseline of 3.5 per thousand+/-0.4% in the mid-1990s. delta(15)N values were negatively correlated with rainfall, suggesting that marine delta(15)N lowers during flood-bourn influxes of waste fertilizers. Reef cores exposed to untreated sewage in terrestrial discharge were enriched (7.8 and 7.3+/-0.4 per thousand), while the offshore core reflected background oceanic signals (6.2+/-0.4 per thousand). delta(15)N, N concentration, and C:N systematics indicate that the N isotopic composition of skeletal organic matter was generally well preserved over 30 years. We suggest that skeletal organic delta(15)N can serve as a recorder of past nitrogen sources. In Bali, this tracer suggests that the intensification of Western style agricultural practices since 1970 are contributing to the degradation of coastal coral reefs.  相似文献   

3.
In a coral reef environment, a slight increase in dissolved inorganic nitrogen (DIN;> or =1.0 micro M) can alter the ecosystem via macroalgal blooms. We collected seagrass leaves from the tropical and subtropical Pacific Ocean in five countries and examined the interactions between nutrient concentrations (C, N, P), molar ratios of nutrients, and delta15N to find a possible indicator of the DIN conditions. Within most sites, the concentrations of nutrients and their molar ratios showed large variations owing to species-specific values. On the other hand, almost identical delta15N values were found in seagrass leaves of several species at each site. The correlations between delta15N and nutrient concentrations and between delta15N and molar ratios of nutrients suggested that nutrient availability did not affect the delta15N value of seagrass leaves by altering the physiological condition of the plants. Increases in delta15N of seagrass leaves mostly matched increases in DIN concentrations in the bottom water. We suggest that delta15N in seagrass leaves can be a good tool to monitor time-integrated decrease/increase of DIN concentrations at a site, both in the water column and the interstitial water.  相似文献   

4.
One of the key environmental concerns about shrimp farming is the discharge of waters with high levels of nutrients and suspended solids into adjacent waterways. In this paper we synthesize the results of our multidisciplinary research linking ecological processes in intensive shrimp ponds with their downstream impacts in tidal, mangrove-lined creeks. The incorporation of process measurements and bioindicators, in addition to water quality measurements, improved our understanding of the effect of shrimp farm discharges on the ecological health of the receiving water bodies. Changes in water quality parameters were an oversimplification of the ecological effects of water discharges, and use of key measures including primary production rates, phytoplankton responses to nutrients, community shifts in zooplankton and delta15N ratios in marine plants have the potential to provide more integrated and robust measures. Ultimately, reduction in nutrient discharges is most likely to ensure the future sustainability of the industry.  相似文献   

5.
Stable nitrogen isotope ratios were used to study the incorporation of anthropogenically-derived nitrogen into the food webs of salt marsh systems along a contamination gradient in Narragansett Bay. Nitrogen isotope ratios (delta(15)N) were measured in six estuarine species collected from three marshes along this gradient, monthly from June to October between 1997 and 1999. A significant decrease in delta(15)N was found with distance along the estuary for four of the six species. Significant differences were found among monthly isotope ratios for some species. Nitrogen isotope ratios in sea lettuce (Ulva lactuca) increased during the summer season with highest delta(15)N values measured during September and October. This trend was most pronounced at the station receiving the highest nutrient inputs. Elevated delta(15)N values at this station appeared to correlate with seawater ammonia/nitrate concentration ratios. The temporal variations in delta(15)N suggest that care should be taken in species selection and the design of sampling schemes of studies using delta(15)N for monitoring anthropogenic nutrients in aquatic systems. Sampling programs designed to determine long-term trends should consider species that do not show rapid fluctuations in isotope ratios. The mud snail, Nassarius obsoletus, responded this way in the present study. Studies designed to measure short-term changes should include species such as U. lactuca, which rapidly respond to isotope changes. The results from this study also help to establish a baseline for nitrogen isotope values in Narragansett Bay. This information can be used to monitor future trends in nitrogen inputs to this estuary.  相似文献   

6.
The present study aimed to quantify the water and sediment quality and growth and production parameters and to establish nutrient budgets for an average of five selected semi-intensive shrimp ponds in Bangladesh over a growing cycle. Physico-chemical parameters of water and sediments were measured and analyzed by standard methods. Gross yield (kg ha-1) of shrimp was calculated from the stocking and harvesting data. Finally, a partial nutrient mass budget for N and P was calculated. Most of the parameters of water and sediments correlated significantly with each other suggesting a high degree of interactions between different parameters in the system. Significantly higher concentrations of all species of nitrogenous nutrients were recorded in the effluent waters than that entering into the ponds. Therefore, a high loading and net output of nitrogenous nutrients in effluent waters was documented. The study also indicated a net discharge of solids and minerals through effluent loading. However, significantly lower concentrations of phosphorus in the effluent water indicated a net retention and trapping of phosphatic nutrients in the environment. Total production ranged between 532.0 and 697.0 kg ha-1 cycle-1 and P. monodon production between 484.0 and 562.0 kg ha-1 cycle-1. Ponds gained nitrogen primarily from intake water (55%) and fertilizers (29%), and nitrogen was lost primarily from water exchange (78%) and harvested shrimp (12%). Phosphorus gain occurred mostly from intake water (52%) and fertilizers (25%), and phosphorus was lost primarily from water exchange (52%) and harvested shrimp (3.3%). About 10% of input nitrogen and 44% of phosphorus were not accounted for in measured losses, and presumably were fixed or metabolized in the system. On average, 78 g N was discharged to and 25 g P was removed from the surrounding water by the system for each kilogram of shrimp produced. Mean conversion of feed nitrogen and phosphorus to shrimp flesh averaged 74% and 40%, respectively. It was concluded that semi-intensive systems serve as net supplier of N to and net remover of P from the surrounding water.  相似文献   

7.
《Marine pollution bulletin》2012,64(5-12):77-85
Environmental fate of fish farm wastes (FFW) released from an open-sea-cage farm at Kat O, Hong Kong was examined by measuring carbon and nitrogen stable isotope (SI) ratios in selected benthic organisms collected along a 2000 m transect from the farm. Our results showed that FFW significantly influenced the energy utilization profile of consumers near the fish farm. Although nitrogen enrichment effect on δ15N was anticipated in biota near the farm, the predicted patterns did not consistently occur in all feeding guilds. Two species of suspension-feeders, which relied on naturally δ15N-depleted sources, were δ15N-enriched near the fish farm. In contrast, both species of benthic grazer and deposit-feeder, which relied on naturally δ15N-enriched algal sources, were δ15N-depleted under the influence of FFW. The SI signatures of biota can, therefore, serve as feasible biomarkers for FFW discharges only when the trophic structure of the receiving environment is fully elucidated.  相似文献   

8.
This field study aims to determine whether increased levels of organically enriched particulate matter released by net pen fish farms (Eilat, Red Sea) would affect the growth of nubbins taken from the branching coral Stylophora pistillata. We followed the survival and growth of 1322 nubbins pruned from five colonies that were transplanted at a depth of 6 m in the vicinity of the fish cages and in a reference site, in front of the Interuniversity Institute (IUI). Nubbins were attached on U-shaped PVC plates in three orientations (up, vertical and down positions). After 50 days, survival was high in both localities and no difference was recorded between the spatial orientations. At the fish farm, however, burial of the nubbin's lateral growths and partial coverage of nubbins by settled particulate matter resulted in significant reduction of the lateral growth rates of nubbins settled in the up position as compared to the reference site. On the other hand, faster growth rates were recorded in the vertical set of nubbins at the fish farm when compared with the IUI site. These results strengthen the conclusion that physical effects, rather than nutrient enrichment, may constitute the main cause of stress for minute coral fragments (resembling coral recruits) growing near the vicinity of a fish farm.  相似文献   

9.
Stable nitrogen isotopes (δ15N) in bioindicators are increasingly employed to identify nitrogen sources in many ecosystems and biological characteristics of the eastern oyster (Crassostrea virginica) make it an appropriate species for this purpose. To assess nitrogen isotopic fractionation associated with assimilation and baseline variations in oyster mantle, gill, and muscle tissue δ15N, manipulative fieldwork in Chesapeake Bay and corresponding modeling exercises were conducted. This study (1) determined that five individuals represented an optimal sample size; (2) verified that δ15N in oysters from two locations converged after shared deployment to a new location reflecting a change in nitrogen sources; (3) identified required exposure time and temporal integration (four months for muscle, two to three months for gill and mantle); and (4) demonstrated seasonal δ15N increases in seston (summer) and oysters (winter). As bioindicators, oysters can be deployed for spatial interpolation of nitrogen sources, even in areas lacking extant populations.  相似文献   

10.
The main aim of this study was to estimate the influence of the seasonal variations of the Danube River particulate organic matter (POM) inputs on the Black Sea surface seawater POM and upper layer of sediments along the Romanian coast. Ratios of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotopes allowed differentiating river and marine organic matter sources. Danube River POM presented significantly lower average values of delta(13)C (-27.52+/-0.88 per thousand) and delta(15)N (4.88+/-1.45 per thousand) than seawater POM (delta(13)C=-24.70+/-2.37 per thousand and delta(15)N=6.75+/-1.96 per thousand), whereas surface sediment presented average values similar to seawater POM (delta(13)C=-24.02+/-2.39 per thousand and delta(15)N=7.29+/-2.16 per thousand). Stable isotope values showed that the Danube River influence on marine ecosystems decreased from the North to the South of the Romanian coast. Strong seasonal variations of C and N isotopic signatures were observed in all compartments studied with generally higher values in spring when the river was flooding.  相似文献   

11.
Nitrogen loading to aquatic ecosystems from sewage is recognised worldwide as a growing problem. The use of nitrogen stable isotopes as a means of discerning sewage nitrogen in the environment has been used annually by the Ecosystem Health Monitoring Program in Moreton Bay (Australia) since 1997 when the technique was first developed. This ("sewage plume mapping") technique, which measures the delta(15)N isotopic signature of the red macroalga Catenella nipae after incubation in situ, has demonstrated a large reduction in the magnitude and spatial extent of sewage nitrogen within Moreton Bay over the past 5 years. This observed reduction coincides with considerable upgrades to the nitrogen removal efficacy at several sewage treatment plants within the region. This paper describes the observed changes and evaluates whether they can be attributed to the treatment upgrades.  相似文献   

12.
Environmental fate of fish farm wastes (FFW) released from an open-sea-cage farm at Kat O, Hong Kong was examined by measuring carbon and nitrogen stable isotope (SI) ratios in selected benthic organisms collected along a 2000 m transect from the farm. Our results showed that FFW significantly influenced the energy utilization profile of consumers near the fish farm. Although nitrogen enrichment effect on δ15N was anticipated in biota near the farm, the predicted patterns did not consistently occur in all feeding guilds. Two species of suspension-feeders, which relied on naturally δ15N-depleted sources, were δ15N-enriched near the fish farm. In contrast, both species of benthic grazer and deposit-feeder, which relied on naturally δ15N-enriched algal sources, were δ15N-depleted under the influence of FFW. The SI signatures of biota can, therefore, serve as feasible biomarkers for FFW discharges only when the trophic structure of the receiving environment is fully elucidated.  相似文献   

13.
The availability and partition of nitrogen (N) and phosphorus (P) in inorganic and organic compartments, as well as their stoichiometric ratio, are influenced by both physical and biological forcing factors. On this basis, the temporal and spatial dynamics in N:P atomic ratios in different compartments may provide information on the functioning of marine ecosystems. Here we explore the relative importance of water temperature, river inputs, wind mixing, stratification, ingression of nutrient-depleted Eastern Adriatic Current and phytoplankton biomass on concentrations and ratios between nitrogen and phosphorus in a semi-enclosed bay (the Gulf of Trieste), using data from monitoring programs carried out during 8 years. Water samples are first classified in 6 water types based on N:P ratios in different components, and then relationships between water type space-time distribution and a set of forcing factors is sought. Results show that the gulf is characterised by relatively stable N:P ratios in all compartments (about 23-26), always exceeding the classical Redfield ratio. In the surface layer, however, nitrogen and phosphorus dynamics are decoupled because of river input and plankton productivity, and a significant spatial and temporal variability is observed in terms of stoichiometric balance, nutrient concentrations and partition among the different pools. Deviations from stable N:P ratios follow a seasonal evolution. In spring, continental inputs alter inorganic nutrient compartments (N:P up to 115); later on, during the seasonal succession of biological processes (e.g. late spring phytoplankton blooms, summer increase in microbial activities and autumn phytoplankton blooms), a change is also seen in the organic dissolved and particulate pools. Multivariate statistical analysis suggests that, among the considered forcing factors, the most relevant in modulating the N:P stoichiometry in the Gulf of Trieste are river inputs and ingression of the Eastern Adriatic Current (acting in opposite directions) along with phytoplankton dynamics. During the whole period, besides variations in N:P stoichiometry, in the Gulf of Trieste dissolved organic matter represents the largest pool of N and P, which can provide a source of nutrients for the planktonic community alternative to inorganic nutrient.  相似文献   

14.
A new approach for detecting and mapping sewage impacts   总被引:12,自引:0,他引:12  
Increased nitrogen loading has been implicated in eutrophication occurrences worldwide. Much of this loading is attributable to the growing human population along the world's coastlines. A significant component of this nitrogen input is from sewage effluent, and delineation of the distribution and biological impact of sewage-derived nitrogen is becoming increasingly important. Here, we show a technique that identifies the source, extent and fate of biologically available sewage nitrogen in coastal marine ecosystems. This method is based on the uptake of sewage nitrogen by marine plants and subsequent analysis of the sewage signature (elevated delta 15N) in plant tissues. Spatial analysis is used to create maps of delta 15N and establish coefficient of variation estimates of the mapped values. We show elevated delta 15N levels in marine plants near sewage outfalls in Moreton Bay, Australia, a semi-enclosed bay receiving multiple sewage inputs. These maps of sewage nitrogen distribution are being used to direct nutrient reduction strategies in the region and will assist in monitoring the effectiveness of environmental protection measures.  相似文献   

15.
While specialized species are linked to a particular resource, omnivorous species may switch between food items according to the availability and the quality of resources. Here we use larvae of the omnivorous caddisfly genus Hydropsyche (Trichoptera) to analyse changes in diet composition across an elevational gradient. Periphyton and Hydropsyche larvae were sampled from 22 populations at stream orders from 2 to 5 on the German part of the Bohemian Forest. Elevations of sampling sites ranged between 300 m and 900 m a.s.l.. Diet composition was estimated by the analyses of the gut content of larvae as well as by stable nitrogen isotopes (δ15N). The δ15N values of the periphyton decreased and the C/N ratio of periphyton increased with increasing environmental harshness (decreasing water pH, temperature and conductivity with increasing elevation) indicating a decrease of periphyton food quality. Across individuals, the proportion of animals in the gut of Hydropsyche larvae was positively related to the difference of δ15N values between larvae and periphyton. The proportion of animals within the gut and (baseline corrected) δ15N values of Hydropsyche populations increased with increasing environmental harshness. We suggest that the (i) low primary production caused by shading, low temperatures and low nutrient levels, (ii) the low nutrient quality of periphyton and (iii) the availability of animal prey due to the input of allochthonous resources in headwaters caused the shift in the diet of Hydropsyche larvae along the river continuum.  相似文献   

16.
The fate of aquaculture wastes from a seacage farm within a pristine mangrove environment was studied. Seasonal and tidal differences were most important in determining water quality within receiving waters and obscured any nutrient enrichment effect by the farm. Farm wastes added significantly to the N budget status of the creek system, but overall water quality conformed to Queensland EPA Water Quality standards. Mangrove trees throughout the creek system contained 15N signatures traceable to aquaculture feeds, but the footprint of the farm itself was best indicated by the ratio of Zn:Li in sediments. The creek became hypoxic (<2 mg l−1) during wet season low tides. Consequently, we recommended monitoring of water-column oxygen concentrations to warn of hypoxic conditions threatening to fish health, as well as Zn:Li ratios in sediment accumulation zones to determine the area of influence of the farm.  相似文献   

17.
Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef (One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 microM NH4+; 2.3 microM PO4(-3)) rapidly declined, reaching near-background levels (mean = 0.9 microM NH4+; 0.5 microM PO4(-3)) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 microM NH4+; 5.1 microM PO4(-3)) declining to means of 11.3 microM NH4+ and 2.4 microM PO4(-3) at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients. ENCORE has shown that reef organisms and processes investigated in situ were impacted by elevated nutrients. Impacts were dependent on dose level, whether nitrogen and/or phosphorus were elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment were visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs. inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies.  相似文献   

18.
两淮采煤沉陷区水域水体富营养化及氮、磷限制模拟实验   总被引:4,自引:5,他引:4  
选取两淮采煤沉陷区内3个不同营养水平的水域为研究站点,即淮北南湖站(HBNH)、淮南潘谢顾桥站(PXGQ)和潘谢谢桥站(PXXQ),首先分析了水体营养盐含量、比例结构和营养状态指数,3个站点TP浓度的年均值分别为0.056、0.064和0.092 mg/L,TN浓度年均值则为1.00、0.94和2.67 mg/L,3个站点水体呈现"中营养-轻度富营养"和"中度富营养"2种营养状态,总体上表现出P相对N缺乏的特征.设置对照组、加氮组、加磷组和加氮磷组开展秋季氮、磷限制模拟实验研究.结果表明:HBNH、PXXQ两个站点为P限制,而PXGQ站点则为N限制.尽管水体正磷酸盐浓度较低,但由于藻类具有利用有机磷或储备P库的能力,3个研究站点依然保持了较高的初级生产力,HBNH、PXGQ和PXXQ 3个站点的叶绿素a浓度年均值分别为13.07、26.95和46.25 mg/m3,与各水体的营养水平保持一致.两淮采煤沉陷区水体富营养化控制关键可能在于调控磷元素的水平.  相似文献   

19.
The aim of this study was to quantify the N removal efficiency of an Ulva-based phytotreatment system receiving wastewaters from a land-based fish farm (Orbetello, Italy), to identify the main biogeochemical pathways involved and to provide basic guidelines for treatment implementation and management. Fluxes of O2 and nutrients in bare and in Ulva colonised sediments were assessed by light/dark core incubations; denitrification by the isotope pairing technique and Ulva growth by in situ incubation of macroalgal disks in cages. O2 and nutrient budgets were estimated as sum of individual processes and further verified by 24-h investigations of overall inlet and outlet loads. Ulva uptake (up to 7.8 mmol Nm(-2) h(-1)) represented a net sink for water column and regenerated NH4+ whilst N removal via denitrification (10-170 micromol Nm(-2) h(-1)) accounted for a small percentage of inorganic nitrogen load (<5%). Laboratory experiments demonstrated a high potential for denitrification (over 800 microM Nm(-2) h(-1)) indicating that N loss could be enhanced. The control of Ulva standing stocks by optimised harvesting of surplus biomass may represent an effective strategy to maximise DIN removal and could result in the assimilation of approximately 50% of produced inorganic nitrogen.  相似文献   

20.
The freshwater pearl mussel (Margaritifera margaritifera) is a highly specialized and sensitive freshwater bivalve, whose survival in the juvenile phase is indicative of high quality habitats. This contribution investigates the use of juvenile freshwater pearl mussels as bioindicators, considering the influence of mussel stock and study stream conditions on juvenile performance, as described by survival and growth rates. A standardized cross experiment was carried out investigating juvenile performance in four different pearl mussel stocks originating from the Rhine, Danube and Elbe drainages, representing distinct genetic conservation units. The juveniles were exposed in five study streams which were selected to integrate pearl mussel streams with different water qualities and recruitment status of the mussel population. Per study stream, five standard mesh cages containing an equal number of 20 (10 × 2) juvenile pearl mussels per stock in separate chambers were installed. Survival and growth rates of juveniles were checked after three months (i.e. before their first winter) and after nine months (i.e. after their first winter). Mussel stock and study stream conditions significantly influenced juvenile performance. Growth rates were determined by study stream conditions and increased with stream water temperature, organic carbon and C/N ratios. Survival rates varied stock-specifically, indicating different levels of local adaptation to their native streams. Due to the detection of stream-specific differences in juvenile performance, freshwater pearl mussels appear suitable as bioindicators. However, a careful consideration of stock-specificity is necessary to avoid false interpretation of bioindication results. The comparison of stock-specific survival in native versus non-native streams implicates that exposure of juveniles outside their native habitats is able to increase breeding success or else serve for risk spreading in breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号