首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate the spatial distribution of solar flares in the northern and southern hemispheres of the Sun that occurred during the period 1996 to 2003. This period of investigation includes the ascending phase, the maximum and part of the descending phase of solar cycle 23. It is revealed that the flare activity during this cycle is low compared to the previous solar cycle, indicating the violation of Gnevyshev-Ohl rule. The distribution of flares with respect to heliographic latitudes shows a significant asymmetry between northern and southern hemisphere which is maximum during the minimum phase of the solar cycle. The present study indicates that the activity dominates the northern hemisphere in general during the rising phase of the cycle (1997–2000). The dominance of northern hemisphere shifted towards the southern hemisphere after the solar maximum in 2000 and remained there in the successive years. Although the annual variations in the asymmetry time series during cycle 23 are quite different from cycle 22, they are comparable to cycle 21.  相似文献   

2.
This paper reports the results of a study of the N-S asymmetry in the flare index using the results of Knoka (1985) combined with our results for the solar cycles 17 to the current cycle 22. By comparing the time-variation of the asymmetry curve with the solar activity variation of the 11-year cycle, we have found that the flare index asymmetry curve is not in phase with the solar cycle and that the asymmetry peaks during solar minimum. A periodic behaviour in the N-S asymmetry appears: the activity in one hemisphere is more important during the ascending part of the cycle whereas during the descending part the activity becomes more important in the other hemisphere. The dominance of flare activity in the southern hemisphere continues during cycle 22 and, according to our findings, this dominance will increase gradually during the following cycle 23.  相似文献   

3.
4.
We have analyzed the asymmetry of sunspot areas during the current solar cycle 22, finding that it has been statistically significant and that the shape of the underlying trend within the full asymmetry time series (1874–1993) indicates that the dominance of solar activity has started to shift, during the current cycle, from the northern hemisphere to the southern one.  相似文献   

5.
Mordvinov  A.V.  Plyusnina  L.A. 《Solar physics》2000,197(1):1-9
Time–frequency variability of the solar mean magnetic field (SMMF) was studied, based on a continuous wavelet analysis. The rotational modulation of the SMMF dominates the wavelet spectrum at 27–30 and 13.5-day time scales. The rotational variation, in turn, is amplitude-modulated by the quasi-biennial periodicity in the SMMF. This is caused by magnetic field eruptions. Rigidly rotating modes appear in the time–longitude distribution of the large-scale magnetic field that is plotted from a deconvolution of the SMMF time series with a Carrington period. These rotational modes coexist and transform into one another over an 11-yr cycle. The modes with periods of 27.8–28.0 days dominate the phase of activity rise, whereas the 27-day rotational mode dominates the declining phase of the 11-yr cycle. The rotational modes with periods of 29–30 days occurred episodically. Most of the features in the time–longitude distribution of the SMMF are identifiable with those in similar diagrams of the solar background magnetic fields. They represent a combined effect of the background magnetic fields from both hemispheres. Eruptions of magnetic fields lead to dramatic changes in the picture of solar rotation and correlate well with the polarity asymmetry in the SMMF signal. The polarity asymmetry in the SMMF time series exhibits both long-term changes and a 22-yr cyclic behaviour, depending on the reversals of the global magnetic field in cycles 20–23.  相似文献   

6.
《New Astronomy》2003,8(7):655-664
The paper presents the results of a study of the asymmetry of the solar active prominences (SAP) at low (≤40°) and high (≥50°) latitudes, respectively, from 1957 through 1998 (solar cycles 19–22). A quantitative analysis of the hemispheric distribution of the SAP is given. We found that the annual hemispheric asymmetry indeed exists at low latitudes, but strangely, a similar asymmetry does not seem to occur for SAPs at high latitudes. We found that the north–south (N–S) asymmetry of the solar active prominences at high latitudes is always north dominated during solar cycles 19–22 while the N–S asymmetry of the SAPs at low latitudes is shifted to a dominance in the southern hemisphere for solar cycle 21 and remains south dominated even in cycle 22. Thus, the hemispheric asymmetry of the solar active prominences at high latitudes in a cycle appears to have little connection with the asymmetry of the solar activity at low latitudes.  相似文献   

7.
We study the solar cycle evolution during the last 8 solar cycles using a vectorial sunspot area called the LA (longitudinal asymmetry) parameter. This is a useful measure of solar activity in which the stochastic, longitudinally evenly distributed sunspot activity is reduced and which therefore emphasizes the more systematic, longitudinally asymmetric sunspot activity. Interesting differences are found between the LA parameter and the more conventional sunspot activity indices like the (scalar) sunspot area and the sunspot number. E.g., cycle 19 is not the highest cycle according to LA. We have calculated the separate LA parameters for the northern and southern hemisphere and found a systematic dipolar-type oscillation in the dominating hemisphere during high solar activity times which is reproduced from cycle to cycle. We have analyzed this oscillation during cycles 16–22 by a superposed epoch method using the date of magnetic reversal in the southern hemisphere as the zero epoch time. According to our analysis, the oscillation starts by an excess of the northern LA value in the ascending phase of the solar cycle which lasts for about 2.3 years. Soon after the maximum northern dominance, the southern hemisphere starts dominating, reaching its minimum some 1.2–1.7 years later. The period of southern dominance lasts for about 1.6 years and ends, on an average, slightly before the end of magnetic reversal.  相似文献   

8.
The results of an analysis of the north–south asymmetry in solar activity and solar magnetic fields are reported. The analysis is based on solar mean magnetic field and solar polar magnetic field time series, 1975–2015 (http://wso.stanford.edu), and the Greenwich sunspot data, 1875–2015 (http://solarscience.msfc.nasa.gov/greenwch.shtml). A long-term cycle (small-scale magnetic fields, toroidal component) of ~140 years is identified in the north–south asymmetry in solar activity by analyzing the cumulative sum of the time series for the north–south asymmetry in the area of sunspots. A comparative analysis of the variations in the cumulative sums of the time series composed of the daily values of the sun’s global magnetic field and in the asymmetry of the daily sunspot data over the time interval 1975–2015 shows that the photospheric large-scale magnetic fields may also have a similar long-term cycle. The variations in the asymmetry of large-scale and small-scale solar magnetic fields (sunspot area) are in sync until 2005.5 and in antiphase since then.  相似文献   

9.
This paper presents the results of a study of the N-S asymmetry in sudden disappearances (SD) of solar prominences during solar cycles 18–21, obtained as a part of a more extensive research on SD and reappearances during years 1931–1985 (Ballester, 1984). As can be seen, the N-S SD asymmetry curve is not in phase with the solar cycle and peaks about the time of solar minimum, the asymmetry reverses in sign during the solar maximum, being, this change of sign, coincident with the reversal of the Sun's magnetic dipole. The SD asymmetry curve can be fitted by a sinusoidal function with a period of eleven years. On the other hand, the SD asymmetry curve shows a strong coincidence with the N-S asymmetries presented by other solar activity manifestations as studied by different authors.  相似文献   

10.
We found an evidence that the solar cycle luminosity modulation of the Sun deduced from the total irradiance modulation which was measured by the Earth Radiation Budget (ERB) experiment on board of Nimbus 7 from November 16, 1978 to December 13, 1993 was not in phase with the solar cycle magnetic oscillation when we used the sunspot relative number as its index. The modulation was delayed in time behind the solar cycle magnetic oscillation by an amount of about 10.3 years on the order of length of one solar cycle. In order to quantitatively evaluate the correlation between the two quantities, we devised a method to extract characteristics which were proper to a particular solar cycle by defining a new index of the correlation called multiplied correlation index (MCI). We found that the characteristics of the ERB data time profile between solar cycles 21 and 22 were more similar to those of the solar cycle magnetic oscillation between solar cycles 20 and 21 than those between solar cycles 21 and 22 and thus the time profile of the luminosity modulation from the maximum phase of solar cycle 21 to the declining phase of the solar cycle 22 corresponded to the solar cycle magnetic oscillation from the maximum phase of solar cycle 20 to the declining phase of solar cycle 21. We interpret this phenomenon as an evidence that main features of the modulation is not caused by dark sunspots and bright faculae and plages on the surface of the Sun that should instantaneously affect the luminosity modulation but is caused by time-delayed modulation of global convection by the Lorentz force of the magnetic field of the solar cycle. The delay time of about 10.3 years is the time needed for the force to modify the flows of the convection and to modulate heat flow. Thus the delay time is a function of the strength of the magnetic field oscillation of the solar cycle which is represented by amplitude of the solar cycle. Accordingly, the delay time for other time intervals of the solar cycle magnetic oscillation with different amplitudes can be different from 10.3 years for the interval of the present analysis.  相似文献   

11.
Flare Index During the Rising Phase of Solar Cycle 23   总被引:1,自引:0,他引:1  
Ataç  Tamer  Özgüç  Atila 《Solar physics》2001,198(2):399-407
  相似文献   

12.
The time series of the relative sunspot number is interpreted as a sequence of physical cycles of sunspot activity overlapping in the minimum. The cycle periodicity, i.e., the time interval between neighboring cycles, can be considered as a quantitative characteristic of the sequence. Estimates of this interval have been obtained for 11 and 22-year cycles. In the growth phase and in the century cycle maximum, the 22-year cycles follow one another with an interval of 21 ± 0.4 years, and in the decline phase, 23 ± 0.3 years. This division of intervals into two groups depending on the century cycle phase should be taken into consideration when developing a theory of solar activity cycles.  相似文献   

13.
Ataç  Tamar  Özgüç  Atila 《Solar physics》1998,180(1-2):397-407
  相似文献   

14.
Usoskin  I.G.  Mursula  K. 《Solar physics》2003,218(1-2):319-343
The sunspot number series forms the longest directly observed index of solar activity and allows one to trace its variations on the time scale of about 400 years since 1610. This time interval covers a wide range from seemingly vanishing sunspots during the Maunder minimum in 1645–1700 to the very high activity during the last 50 years. Although the sunspot number series has been studied for more than a century, new interesting features have been found even recently. This paper gives a review of the recent achievements and findings in long-term evolution of solar activity cycles such as determinism and chaos in sunspot cyclicity, cycles during the Maunder minimum, a general behaviour of sunspot activity during a great minimum, the phase catastrophe and the lost cycle in the beginning of the Dalton minimum in 1790s and persistent 22-year cyclicity in sunspot activity. These findings shed new light on the underlying physical processes responsible for sunspot activity and allow a better understanding of such empirical rules as the Gnevyshev–Ohl rule and the Waldmeier relations.  相似文献   

15.
We study the evolution of the longitudinal asymmetry in solar activity through the wave packet technique applied to the period domain of 25 – 31 days (centered at the 27-day solar rotation period) for the sunspot number and geomagnetic aa index. We observe the occurrence of alternating smaller and larger amplitudes of the 11-year cycle, resulting in a 22-year periodicity in the 27-day signal. The evolution of the 22-year cycle shows a change of regime around the year 1912 when the 22-year period disappears from the sunspot number series and appears in the aa index. Other changes, such as a change in the correlation between solar and geomagnetic activity, took place at the same time. Splitting the 27-day frequency domain of aa index shows an 11-year cycle for higher frequencies and a pure22-year cycle for lower frequencies, which we attribute to higher latitude coronal holes. This evidence is particularly clear after 1940, which is another benchmark in the evolution of the aa index. We discuss briefly the mechanisms that could account for the observed features of the 22-year cycle evolution.  相似文献   

16.
We report here a study of various solar activity phenomena occurring in both north and south hemispheres of the Sun during solar cycles 8–23. In the study we have used sunspot data for the period 1832–1976, flare index data for the period 1936-1993, Hα flare data 1993–1998 and solar active prominences data for the period 1957–1998. Earlier Verma reported long-term cyclic period in N-S asymmetry and also that the N-S asymmetry of solar activity phenomena during solar cycles 21, 22, 23 and 24 will be south dominated and the N-S asymmetry will shift to north hemisphere in solar cycle 25. The present study shows that the N-S asymmetry during solar cycles 22 and 23 are southern dominated as suggested by Verma.  相似文献   

17.
A study on north–south (N–S) asymmetry of different solar activity features (DSAF) such as solar proton events, solar active prominences [total, low (?40°) and high (?50°) latitudes], Hα flare indices, soft X-ray flares, monthly mean sunspot areas and monthly mean sunspot numbers carried out from May 1996 to October 2008. Study shows a southern dominance of DSAF during this period. During the rising phase of the cycle 23 the number of DSAF approximately equals on both, the northern and the southern hemispheres. But these activities tend to shift from northern to southern hemisphere during the period 1998–1999. The statistical significance of the asymmetry time series using a χ2-test of goodness of fit indicates that in most of the cases the asymmetry is highly significant, meaning thereby that the asymmetry is a real feature in the N–S distribution of DSAF.  相似文献   

18.
Magnetic fields give rise to distinctive features in different solar atmospheric regimes. To study this, time variations of the flare index, sunspot number and sunspot area, each index arising from different physical conditions, were compared with the solar composite irradiance throughout cycle 23. Rieger-type periodicities in these time series were calculated using Fourier and wavelet transforms (WTs). The peaks of the wavelet power of these periodicities appeared between the years 1999 and 2002. We found that the solar irradiance oscillations are less significant than those in the other indices during this cycle. The irradiance shows non-periodic fluctuations during this time interval. The peaks of the flare index, sunspot number and sunspot total area were seen around 2000.4, 1999.9 and 2001.0, respectively. These periodicities appeared intermittently and were not simultaneous in different solar activity indices during the three years of the maximum phase of solar cycle 23.  相似文献   

19.
The time series of total solar irradiance (TSI) satellite observations since 1978 provided by ACRIM and PMOD TSI composites are studied. We find empirical evidence for planetary-induced forcing and modulation of solar activity. Power spectra and direct data pattern analysis reveal a clear signature of the 1.09-year Earth-Jupiter conjunction cycle, in particular during solar cycle 23 maximum. This appears to suggest that the Jupiter side of the Sun is slightly brighter during solar maxima. The effect is observed when the Earth crosses the Sun-Jupiter conjunction line every 1.09 years. Multiple spectral peaks are observed in the TSI records that are coherent with known planetary harmonics such as the spring, orbital and synodic periods among Mercury, Venus, Earth and Jupiter: the Mercury-Venus spring-tidal cycle (0.20 year); the Mercury orbital cycle (0.24 year); the Venus-Jupiter spring-tidal cycle (0.32 year); the Venus-Mercury synodic cycle (0.40 year); the Venus-Jupiter synodic cycle (0.65 year); and the Venus-Earth spring tidal cycle (0.80 year). Strong evidence is also found for a 0.5-year TSI cycle that could be driven by the Earth’s crossing the solar equatorial plane twice a year and may indicate a latitudinal solar-luminosity asymmetry. Because both spring and synodic planetary cycles appear to be present and the amplitudes of their TSI signatures appear enhanced during sunspot cycle maxima, we conjecture that on annual and sub-annual scales both gravitational and electro-magnetic planet-sun interactions and internal non-linear feedbacks may be modulating solar activity. Gravitational tidal forces should mostly stress spring cycles while electro-magnetic forces could be linked to the solar wobbling dynamics, and would mostly stress the synodic cycles. The observed statistical coherence between the TSI records and the planetary harmonics is confirmed by three alternative tests.  相似文献   

20.
Solar long-term activity runs at high latitudes in three ways: (i) in phase with solar long-term activity at low latitudes; (ii) in antiphase with solar long-term activity at low latitudes and (iii) does not follow either (i) or (ii), and mainly occurs around the times of maxima of (i) and (ii). In the present study, we investigate the north–south asymmetry of solar activity at high latitudes and found the following. In Case (i), high-latitude filament activity, for example, is inferred to have the same dominant hemisphere as low-latitude activity in a cycle. In Case (ii), the north–south asymmetry of high-latitude activity, represented by both the polar faculae and the Sun's polar field strength, is usually different from that of low-latitude activity in a sunspot cycle, and even in a cycle of high-latitude activity (polar faculae and the Sun's polar field strength), suggesting that the north–south asymmetry of solar activity at high latitudes should have little or no connection with that of low latitudes. In Case (iii), the north–south asymmetry of solar activity at high latitudes (polar flares) should have little connection with that at low latitudes as well. The observed magnetic field at high latitudes is inferred to consist of two components: one comes from the emergence of the magnetic field from the Sun's interior and the other comes from the drift of the magnetic activity at low latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号