首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrope–almandine garnets (Mg# = 28.3–44.9, Ca# = 15.5–21.3) from a heavy mineral concentrate of diamondiferous kimberlites of the largest diamond deposit, the Yubileinaya pipe, along with kimberlite- like rocks and diamondiferous volcano–sediments of the Laptev Sea coast, have been found to contain polymineral, predominantly acicular inclusions, composed of aggregates of shrilankite (Ti2ZrO6), rutile, ilmenite, clinopyroxene, and apatite. The presence of shrilankite as an inclusion in garnets from assumed garnet–pyroxene rocks of the lower crust, lifted up by diamond-bearing kimberlite, allows it to be considered as an indicator mineral of kimberlite, which expands the possibilities when searching for kimberlite in the Arctic.  相似文献   

2.

Five compositional-textural types of ilmenite can be distinguished in nine kimberlites from the Eastern Dharwar craton of southern India. These ilmenite generations record different processes in kimberlite history, from mantle to surface. A first generation of Mg-rich ilmenite (type 1) was produced by metasomatic processes in the mantle before the emplacement of the kimberlite. It is found as xenolithic polycrystalline ilmenite aggregates as well as megacrysts and macrocrysts. All of these ilmenite forms may disaggregate within the kimberlite. Due to the interaction with low-viscosity kimberlitic magma replacement of pre-existing type 1 ilmenite by a succeeding generation of geikielite (type 2) along grain boundaries and cracks occurs. Another generation of Mg-rich ilmenite maybe produced by exsolution processes (type 3 ilmenite). Although the identity of the host mineral is unclear due to extensive alteration and possibility includes enstatite. Type 4 Mn-rich ilmenite is produced before the crystallization of groundmass perovskite and ulvöspinel. It usually mantles ilmenite and other Ti-rich minerals. Type 5 Mn-rich ilmenite is produced after the crystallization of the groundmass minerals and replaces them. The contents of Cr and Nb in type 2, 4 and 5 ilmenites are highly dependent on the composition of the replaced minerals, they may not be a good argument in exploration. The highest Mg contents are recorded in metasomatic ilmenite that is produced during kimberlite emplacement, and cannot be associated with diamond formation. The higher Mn contents are linked to magmatic processes and also late processes clearly produced after the crystallization of the kimberlite groundmass, and therefore ilmenite with high Mn contents cannot be considered as a reliable diamond indicator mineral (DIM) and kimberlite indicator mineral (KIM).

  相似文献   

3.
中国金伯利岩中的钛铁矿   总被引:2,自引:0,他引:2  
董振信 《矿物学报》1991,11(2):141-147
本文研究了金伯利岩中,作为巨晶和粗晶,基质相矿物,与金云母、镁铝榴石、铬尖晶石等矿物的连生体,金刚石中包裹体矿物及金伯利岩地幔岩包裹体矿物产出的钛铁矿的大小,形态、皮壳及化学成分、端元组分、环带及成分变异趋势。并与其他岩类中的钛铁矿作了对比。探讨了不同产状、共生组合类型的钛铁矿的成因。指出了与金刚石紧密伴生的钛铁矿的标型特征及找矿意义。  相似文献   

4.
First data on the geologic and geochemical compositions of kimberlites from nine kimberlite pipes of southwestern Angola are presented. In the north of the study area, there are the Chikolongo and Chicuatite kimberlite pipes; in the south, a bunch of four Galange pipes (I–IV); and in the central part, the Ochinjau, Palue, and Viniaty pipes. By geochemical parameters, these rocks are referred to as classical kimberlites: They bear mantle inclusions of ultrabasites, eclogites, various barophilic minerals (including ones of diamond facies), and diamonds. The kimberlite pipes are composed of petrographically diverse rocks: tuffstones, tuff breccias, kimberlite breccias, autolithic kimberlite breccias, and massive porphyritic kimberlites. In mineralogical, petrographic, and geochemical compositions the studied kimberlites are most similar to group I kimberlites of South Africa and Fe-Ti-kimberlites of the Arkhangel’sk diamondiferous province. Comparison of the mineralogical compositions of kimberlites from southwestern Angola showed that the portion of mantle (including diamondiferous) material of depth facies in kimberlite pipes regularly increases in the S-N direction. The northern diamond-bearing kimberlite pipes are localized in large destructive zones of NE strike, and the central and southern diamond-free pipes, in faults of N-S strike.  相似文献   

5.
金刚石及其寄主岩石是人类认识地球深部物质组成和性质、壳幔和核幔物质循环重要研究对象。本文总结了中国不同金刚石类型的分布,着重对比了博茨瓦纳和中国含金刚石金伯利岩的地质特征,取得如下认识:(1)博茨瓦纳含矿原生岩石仅为金伯利岩,而中国含矿岩石成分复杂,金伯利岩主要出露在华北克拉通,展布于郯庐、华北中央和华北北缘金伯利岩带,具有工业价值的蒙阴和瓦房店矿床分布于郯庐金伯利岩带中;钾镁煌斑岩主要出露在华南克拉通,重点分布在江南和华南北缘钾镁煌斑岩带中;(2)钙钛矿原位U-Pb年龄和Sr、Nd同位素显示,86~97 Ma奥拉帕金伯利岩群和456~470 Ma蒙阴和瓦房店金伯利岩均具有低87Sr/86Sr(0.703~0.705)和中等εNd(t)(-0.09~+5)特征,指示金伯利岩浆源自弱亏损地幔或初始地幔源区;(3)博茨瓦纳金伯利岩体绝大多数以岩筒产出,而中国以脉状为主岩筒次之;博茨瓦纳岩筒绝大部分为火山口相,中国均为根部相,岩筒地表面积普遍小于前者;(4)奥拉帕A/K1和朱瓦能金伯利岩体是世界上为数不多的主要产出榴辉岩捕虏体和E型金刚石的岩筒之一,而同位于奥拉帕岩群的莱特拉卡内、丹姆沙和卡罗韦岩体与我国郯庐带的金伯利岩体类似,均主要产出地幔橄榄岩捕虏体以及P型和E型金刚石;(5)寻找含矿金伯利岩重点注意以下几点:克拉通内部和周缘深大断裂带是重要的控岩构造;镁铝榴石、镁钛铁矿、铬透辉石、铬尖晶石和铬金红石等是寻找含金刚石金伯利岩重要的指示矿物;航磁等地球物理测量需与土壤取样找矿方法相结合才能取得更好效果;(6)郯庐金伯利岩带、江南钾镁煌斑岩带和塔里木地块是中国重要含矿岩石的找矿靶区,冲积型金刚石成矿潜力巨大。  相似文献   

6.
Ilmenite is one of the common kimberlitic indicator minerals recovered during diamond exploration, and its distinction from non-kimberlitic rock types is important. This is particularly true for regions where these minerals are present in relatively low abundance, and they are the dominant kimberlitic indicator mineral recovered. Difficulty in visually differentiating kimberlitic from non-kimberlitic ilmenite in exploration concentrates is also an issue, and distinguishing kimberlitic ilmenite from those derive from other similar rocks, such as ultramafic lamprophyres, is practically impossible. Ilmenite is also the indicator mineral whose compositional variety has the most potential to resolve provenance issues related to mineral dispersions with contributions from multiple kimberlite sources.

Various published data sets from selected kimberlitic (including kimberlites, lamproites, and various ultramafic lamprophyres) and non-kimberlitic rock types have been compiled and evaluated in terms of their major element compositions. Compositional fields and bounding reference lines for ilmenites derived from kimberlites (sensu stricto), ultramafic lamprophyres, and other non-kimberlitic rock types have been defined primarily on MgO–TiO2 graphs as well as MgO–Cr2O3 relationships.  相似文献   


7.
Four variously pipe or sill-like, Carboniferous ( ≈ 305 Ma) bodies have been located near the NE edge of the Archaean Yilgarn craton. The rocks comprise Ba---Ti-bearing tetraferriphlogopite-tetraferriannite, low Al---Ti-diopside, calcite, perovskite and groundmass titanomagnetite-chromite (up to 41.3% Cr2O3), with minor apatite, Mg---Mn ilmenite, rare-earth phosphate, K---Ba-feldspar (up to 17% BaO), baryte and an unidentified Ba---Zr silicate. The last three reflect very high whole-rock Ba (up to 5,652 ppm). Aegirine-rich pyroxenes occur in fenitic alteration assemblages. Together with high Si/Al and low Mg/Ca whole-rock geochemistry, these features are diagnostic of ultramafic lamprophyres (damkjernites and aillikites), although the rocks also show some affinities with classical kimberlites. Mineral concentrates from loam samples yield an array of minerals of mantle origin, including garnets (Dawson and Stephens' groups G1, 3, 5, 9 and 10), chromian diopsides (up to 6.2% Cr2O3), magnesiochromites (up to 20% MgO, 70% Cr2O3) and four compositional groups of ilmenites (low-Mn picroilmenites, Mn-rich, Mg-poor and two moderate Mn---Mg compositions). Actual spinel-lherzolite nodules are common in one body and the presence of spinel-and/or garnet-lherzolites can be inferred in the others from the concentrates. The Bulljah bodies are therefore of deep mantle origin, as confirmed by the recovery of a single microdiamond. They thus extend the field of potentially (if not necessarily economically) diamondiferous rocks beyond kimberlites and lamproites. When added to other recent lamprophyre finds, the Bulljah discoveries suggest that the Yilgarn craton could, like many other ancient cratons, be ringed and/or dotted by a diverse array of alkaline and lamprophyric rocks of varying ages which remain to be discovered.  相似文献   

8.
Carbonate-rich, SiO2-poor residua are developed in some kimberlites solidifying as ocelli, layers, or discrete dikes which satisfy petrographic definitions of carbonatite. Arguments that these rocks have mineralogies, antecedents, and comagmatic rocks differing from those of the carbonatites in alkaline rock complexes, including the specific observation that kimberlites and carbonatites contain ilmenites and spinels of different composition, have been used to refute the alleged kimberlite-carbonatite relationship. New microprobe analyses of ilmenites and spinels from carbonate-rich rocks associated with kimberlites in three South African localities correspond to spinels and ilmenites of carbonatites from alkalic complexes, or have characteristics intermediate between those of carbonatites and kimberlites. The ilmenites are distinguished from kimberlite ilmenites by higher MnO, FeTiO3, and Nb2O5, and by negligible Cr2O3. The spinels are distinguished from kimberlite spinels by their Al2O3 and Cr2O3 contents. There is clearly a genetic relationship between the kimberlites and the carbonate-rich rocks, despite the observation that their ilmenites and spinels are distinctly different, which indicates that the same observation is not a valid argument against a petrogenetic relationship between kimberlites and carbonatites. These rocks are among the diverse products from mantle processes influenced by CO2, and we believe that the petrogenetic links among them are forged in the upper mantle. We see insufficient justification to deny the name carbonatite to carbonate-rich rocks associated with kimberlites if they satisfy the petrographic definition in terms of major mineralogy.  相似文献   

9.
This paper reviews key characteristics of kimberlites on the Ekati property, NWT, Canada. To date 150 kimberlites have been discovered on the property, five of which are mined for diamonds. The kimberlites intrude Archean basement of the central Slave craton. Numerous Proterozoic diabase dykes intrude the area. The Precambrian rocks are overlain by Quaternary glacial sediments. No Phanerozoic rocks are present. However, mudstone xenoliths and disaggregated sediment within the kimberlites indicate that late-Cretaceous and Tertiary cover (likely <200 m) was present at the time of emplacement. The Ekati kimberlites range in age from 45 to 75 Ma. They are mostly small pipe-like bodies (surface area mostly <3 ha but up to 20 ha) that typically extend to projected depths of 400–600 m below current surface. Pipe morphologies are strongly controlled by joints and faults. The kimberlites consist primarily of variably bedded volcaniclastic kimberlite (VK). This is dominated by juvenile constituents (olivine and lesser kimberlitic ash) and variable amounts of exotic sediment (primarily mud), with minor amounts of xenolithic wall-rock material (generally <5%). Kimberlite types include: mud-rich resedimented VK (mRVK); olivine-rich VK (oVK); sedimentary kimberlite; primary VK (PVK); tuffisitic kimberlite (TK) and magmatic kimberlite (MK). The presence and arrangement of these rock types varies widely. The majority of bodies are dominated by oVK and mRVK, but PVK is prominent in the lower portions of certain kimberlites. TK is rare. MK occurs primarily as precursor dykes but, in a few cases, forms pipe-filling intrusions. The internal geology of the kimberlites ranges from simple single-phase pipes (RVK or MK), to complex bodies with multiple, distinct units of VK. The latter include pipes infilled with steep, irregular VK blocks/wedges and at least one case in which the pipe is occupied by well-defined sub-horizontal VK phases, including a unique, 100-m-thick graded sequence. The whole-rock compositions of VK samples suggest significant loss of kimberlitic fines during eruption followed by variable dilution by surface sediment and concurrent incorporation of kimberlitic ash. Diamond distribution within the kimberlites reflects the amount and nature of mantle material sampled by individual kimberlite phases, but is modified considerably by eruption and depositional processes. The characteristics of the Ekati kimberlites are consistent with a two-stage emplacement process: (1) explosive eruption/s causing vent clearing followed by formation of a significant tephra rim/cone of highly fragmented, olivine-enriched juvenile material with varying amounts of kimberlitic ash and surface sediments (predominantly mud); and (2) infilling of the vent by direct deposition from the eruption column and/or resedimentation of crater rim materials. The presence of less fragmented, juvenile-rich PVK in the lower portions of certain pipes and the intrusion of large volumes of MK to shallow levels in some bodies suggest emplacement of relatively volatile-depleted, less explosive kimberlite in the later stages of pipe formation and/or filling. Explosive devolatilisation of CO2-rich kimberlite magma is interpreted to have been the dominant eruption mechanism, but phreatomagmatism is thought to have played a role and, in certain cases, may have been dominant.  相似文献   

10.
Magnesium ilmenite from discrete nodules and lamellar intergrowths with pyroxene from the Kao, Sekameng, Frank Smith, and Monastery kimberlites has been analysed for Ti, Fe, Mg, Nb, Zr, Cr, Cu, Zn, Mn, Co, and Ni. Each kimberlite contains discrete ilmenites which exhibit a wide compositional range within the ilmenite-geikeilite series. Lamellar ilmenites from Frank Smith and Monastery differ in composition but both show a limited range in composition which lies within the compositional range shown by discrete ilmenites from these pipes. The ilmenites are enriched in Nb, Zr, Cr, Co, and Ni and depleted in Mn, Cu, and Zn relative to Mg-poor ilmenites from basic intrusions. Nb, Zr, and Ni correlate with Fe, Ti and Mg variations but the abundances of the other trace elements are independent of major element variation. R-mode factor analysis is interpreted to imply that the geochemistry cannot be interpreted in terms of a differentiation hypothesis in which trace elements are removed from or concentrated in residua. Factor scores and major element abundances indicate that each pipe is characterized by a particular suite of discrete ilmenite nodules, which are considered to be phenocrysts in a proto-kimberlite magma. Lamellar ilmenite-pyroxene intergrowths are unlikely to have had a eutectic origin, and show no simple relationship to the discrete ilmenites.  相似文献   

11.
The lower sill at Benfontein, South Africa, shows a high degree of magmatic sedimentation to kimberlite, oxide-carbonate, and carbonate layers. The iron-titanium oxide minerals are similar in the carbonate-rich and silicate-rich layers and are represented by titaniferous Mg-Al chromite, Mg-Al titanomagnetite, magnesian ilmenite, rutile, and perovskite. The spinel crystallization trend was toward enrichment in Mg and Ti and depletion in Cr; this trend is similar to that observed in many kimberlites. The ilmenite has Mg and Cr contents within the range observed in kimberlites and lacks the Mn enrichment observed in ilmenites from carbonatites. Perovskite in silicate-rich and carbonate-rich layers shows similar total REE contents and LREE enrichment and lacks the remarkable Nb enrichment observed in perovskite from carbonatites. These new data on the iron-titanium oxide minerals in the lower Benfontein sill do not support a genetic relationship between kimberlites and carbonatites.  相似文献   

12.
In Venezuela, kimberlites have so far only been found in the Guaniamo region, where they occur as high diamond grade sheets in massive to steeply foliated Paleoproterozoic granitoid rocks. The emplacement age of the Guaniamo kimberlites is 712±6 Ma, i.e., Neoproterozoic. The Guaniamo kimberlites contain a high abundance of mantle minerals, with greater than 30% olivine macrocrysts. The principal kimberlite indicator minerals found are pyrope garnet and chromian spinel, with the overwhelming majority of the garnets being of the peridotite association. Chrome-diopside is rare, and picroilmenite is uncommon. Chemically, the Guaniamo kimberlites are characterized by high MgO contents, with low Al2O3 and TiO2 contents and higher than average FeO and K2O contents. These rocks have above average Ni, Cr, Co, Th, Nb, Ta, Sr and LREE concentrations and very low P, Y and, particularly, Zr and Hf contents. The Nb/Zr ratio is very distinctive and is similar to that of the Aries, Australia kimberlite. The Guaniamo kimberlites are similar in petrography, mineralogy and mantle mineral content to ilmenite-free Group 2 mica kimberlites of South Africa. The Nd-Sr isotopic characteristics of Guaniamo kimberlites are distinct from both kimberlite Group 1 and Group 2, being more similar to transitional type kimberlites, and in particular to diamondiferous kimberlites of the Arkhangelsk Diamond Province, Russia. The Guaniamo kimberlites form part of a compositional spectrum between other standard kimberlite reference groups. They formed from metasomatised subcontinental lithospheric mantle and it is likely that subduction of oceanic crust was the source of this metasomatised material, and also of the eclogitic component, which is dominant in Guaniamo diamonds.  相似文献   

13.
14.

Renard 65, a diamondiferous pipe in the Neoproterozoic Renard kimberlite cluster (Québec, Canada), is a steeply-dipping and downward-tapering diatreme comprised of three pipe-filling units: kimb65a, kimb65b, and kimb65d. The pipe is surrounded by a marginal and variably-brecciated country rock aureole and is crosscut by numerous hypabyssal dykes: kimb65c. Extensive petrographic and mineralogical characterization of over 700 m of drill core from four separate drill holes, suggests that Renard 65 is a Group I kimberlite, mineralogically classified as phlogopite kimberlite and serpentine-phlogopite kimberlite. Kimb65a is a massive volcaniclastic kimberlite dominated by lithic clasts, magmaclasts, and discrete olivine macrocrysts, hosted within a fine-grained diopside and serpentine-rich matrix. Kimb65b is massive, macrocrystic, coherent kimberlite with a groundmass assemblage of phlogopite, spinel, perovskite, apatite, calcite, serpentine and rare monticellite. Kimb65c is a massive, macrocrystic, hypabyssal kimberlite with a groundmass assemblage of phlogopite, serpentine, calcite, perovskite, spinel, and apatite. Kimb65d is massive volcaniclastic kimberlite with localized textures that are intermediate between volcaniclastic and coherent, with tightly packed magmaclasts separated by a diopside- and serpentine-rich matrix. Lithic clasts of granite-gneiss in kimb65a are weakly reacted, with partial melting of feldspars and crystallization of richterite and actinolite. Lithic clasts in kimb65b and kimb65d are entirely recrystallized to calcite + serpentine/chlorite + pectolite and display inner coronas of diopside-aegirine and an outer corona of phlogopite. Compositions are reported for all minerals in the groundmass of coherent kimberlites, magmaclasts, interclast matrices, and reacted lithic clasts. The Renard 65 rocks are texturally classified as Kimberley-type pyroclastic kimberlites and display transitional textures. The kimberlite units are interpreted to have formed in three melt batches based on their distinct spinel chemistry: kimb65a, kimb65b and kimb65d. We note a strong correlation between the modal abundances of lithic clasts and the textures of the kimberlites, where increasing modal abundances of granite/gneiss are observed in kimberlites with increasingly fragmental textures.

  相似文献   

15.
Criteria are suggested for distinguishing xenocrystic ilmenites from those indigenous to the host kimberlite. For instance, in contrast to groundmass grains, ilmenite xenocrysts usually are larger, have reaction rims of leucoxene and perovskite, exhibit strong magnesium enrichment outward, and sometimes have exsolution lamellae and deformation features. Most of the abundant ilmenite macrocrysts found in kimberlite appear to have been phenocrysts in a crystal mush unrelated to kimberlite. On the other hand, kimberlitic groundmass ilmenite is rare, but consistently more magnesian than the cores of macrocrysts. Strong Mg-enrichment patterns evident in the ilmenite macrocrysts probably developed during their attempt to equilibrate with the more magnesian, fractionating kimberlitic liquid. The hypothesis of extensive reaction of ilmenite with kimberlite melt/ fluid has implications with regard to the following: (1) the degree of differentiation of kimberlite melts; (2) the genesis of mantle megacrysts; (3) the reactivity of kimberlite; and (4) the usefulness of groundmass ilmenite as a petrogenetic indicator.  相似文献   

16.
The Buffalo Hills kimberlites define a province of kimberlite magmatism occurring within and adjacent to Proterozoic crystalline basement termed the Buffalo Head Terrane in north-central Alberta, Canada. The kimberlites are distinguished by a diverse xenocryst suite and most contain some quantity of diamond. The xenocryst assemblage in the province is atypical for diamondiferous kimberlite, including an overall paucity of mantle indicator minerals and the near-absence of compositionally subcalcic peridotitic garnet (G10). The most diamond-rich bodies are distinguished by the presence of slightly subcalcic, chromium-rich garnet and the general absence of picroilmenite, with the majority forming a small cluster in the northwestern part of the province. Barren and near-barren pipes tend to occur to the south, with increasing proximity to the basement structure known as the Peace River Arch. Niobian picroilmenite, compositionally restricted low-to moderate-Cr peridotitic garnet, and megacrystal titanian pyrope occur in kimberlites closest to the arch. Major element data for clinopyroxene and trace element data for garnet from diamond-rich and diamond-poor kimberlites suggests that metasomatism of lithospheric peridotite within the diamond stability field may have caused destruction of diamond, and diamond source rocks proximal to the arch were the most affected.  相似文献   

17.
Mineralogical and chemical relationships indicate that the majority of ilmenites recovered from Group I kimberlites crystallized directly from the kimberlite magma in two contrasting P-T regimes: Ilmenites of the discrete nodule association formed in pegmatitic veins and apophyses surrounding the kimberlite magma at depth. Compositional ranges of the discrete nodule assemblage reflect essentially isobaric crystallization across the thermal aureole about the magma reservoir. Early crystallization of high pressure Cr-rich phases (garnet, clinopyroxene and possibly spinel) could result in later forming megacryst ilmenites being Cr-poor. During ascent of the kimberlite magma (essentially identical to the liquid injected into the pegmatitic veins), crystallization of garnet and clinopyroxene would be inhibited as a result of the expansion of the olivine phase field. The magma would not undergo Crdepletion, with the result that later crystallizing (ground-mass) ilmenites would be Cr-rich relative to associated ilmenite megacrysts.Rare ilmenite inclusions in diamonds show chemical affinities with those of the discrete nodule suite. It is proposed that large Type IIa diamonds may be late-crystallizing members of the discrete nodule assemblage. They are in other words related to the kimberlite event itself, and would represent a third diamond paragenesis, distinctly younger than those related to peridotites and eclogites.The mode of formation of rare MARID suite and metasomatized mantle xenoliths is not clearly understood, although mineralogical and chemical evidence point to a direct or indirect link to the host kimberlite.  相似文献   

18.
The Archaean-Proterozoic Dharwar craton has many recorded occurrences of diamondiferous kimberlites. Reports of kimberlite emplacement in parts of the tectonically complex eastern Dharwar craton and a significant density contrast between kimberlites and the host peninsular gneisses motivated us to conduct gravity studies in the Narayanpet-Irladinne area of the eastern Dharwar craton. This region is contiguous with the Maddur-Narayanpet kimberlite that lies to its north, while the river Krishna lies to its south. From observed association of reported kimberlites in the Maddur-Narayanpet field with subsurface topography of the assumed three-layer earth section obtained by Bouguer gravity modelling, we developed a subsurface criterion for occurrence of kimberlites in the present study area. Using this criterion, five potential zones for kimberlite localization were identified in the Narayanpet-Irladinne region, eastern Dharwar craton.  相似文献   

19.
We report the first data on the contents of main oxides and REE in rocks and the compositions of pyropes and almandines from the Maiskoe kimberlite body recently discovered in the Nakyn field of the Yakutian kimberlite province.The kimberlites are characterized by low contents of Ti, a slight domination of Mg over Ca, and high contents of K2O in some samples. The pyropes have high contents of Cr2O3 (up to 14.5 wt.%); many of them (~16%) are poor in Ca. In petrochemical and mineralogical features the kimberlites of the Maiskoe body are complementary to the highly diamondiferous kimberlites of the nearby Botuobinskaya and Nyurbinskaya pipes. At the same time, they are not the final link in the evolution of kimberlite magmatism in the Nakyn field, which makes the latter still more promising for diamonds.  相似文献   

20.
At present, 48 Late Cretaceous (ca. 70–88 Ma) kimberlitic pipes have been discovered in three separate areas of the northern Alberta: the Mountain Lake cluster, the Buffalo Head Hills field and the Birch Mountains field. The regions can be distinguished from one another by their non-archetypal kimberlite signature (Mountain Lake) or, in the case of kimberlite fields, primitive (Buffalo Head Hills) to evolved (Birch Mountains) magmatic signatures.

The dominant process of magmatic differentiation is crystal fractionation and accumulation of olivine, which acts as the main criteria to distinguish between primitive and evolved Group I-type kimberlite fields in the northern Alberta. This is important from the viewpoint of diamond exploration because the majority (about 80%) of the more primitive Buffalo Head Hills kimberlites are diamondiferous, whereas the more evolved Birch Mountains pipes are barren of diamonds for the most part. Petrographically, the Buffalo Head Hills samples are distinct from the Birch Mountains samples in that they contain less carbonate, have a smaller modal abundance of late-stage minerals such as phlogopite and ilmenite, and have a higher amount of fresh, coarse macrocrystal (>0.5 mm) olivine. Consequently, samples from the Buffalo Head Hills have the highest values of MgO, Cr and Ni, and have chemistries similar to those of primitive hypabyssal kimberlite in the Northwest Territories. Based on whole-rock isotopic data, the Buffalo Head Hills K6 kimberlite has 87Sr/86Sr and Nd values similar to those of South African Group I kimberlites, whereas the Birch Mountains Legend and Phoenix kimberlites have similar Nd values (between 0 and +1.9), but distinctly higher 87Sr/86Sr values (0.7051–0.7063).

The lack of whole-rock geochemical overlap between kimberlite and the freshest, least contaminated Mountain Lake South pipe rocks reflects significant mineralogical differences and Mountain Lake is similar geochemically to olivine alkali basalt and/or basanite. Intra-field geochemical variations are also evident. The K4 pipe (Buffalo Head Hills), and Xena and Kendu pipes (Birch Mountains) are characterized by anomalous concentrations of incompatible elements relative to other northern Alberta kimberlite pipes, including chondrite-normalized rare-earth element distribution patterns that are less fractionated than the other kimberlite samples from the Buffalo Head Hills and Birch Mountains. The Xena pipe has similar major element chemical signatures and high-Al clinopyroxene similar to, or trending towards, the Mountain Lake pipes. In addition, K4 and Kendu have higher 87Sr/86Sr and lower Nd than Bulk Earth and plot in the bottom right quadrant of the Nd–Sr diagram. We suggest, therefore, that the K4 and Kendu pipes contain a contribution from old, LREE-enriched (low Sm/Nd) lithosphere that is absent from the other kimberlites, are affected by crustal contamination, or both.

Based on xenocryst populations, the northern Alberta kimberlite province mantle is dominated by carbonate-saturated lherzolitic mantle. Higher levels of melt depletion characterize the Buffalo Head Hills mantle sample. Despite high diamondiferous to barren pipe ratios in the Buffalo Head Hills pipes, mineral indicators of high diamond potential, such as G10 garnet, diamond inclusion composition chrome spinels and high-sodium eclogitic garnet, are rare.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号